奥数3(4、5、6竖式数字迷(二)、找规律(一)、找规律(二))
- 格式:doc
- 大小:141.00 KB
- 文档页数:6
第十三讲数字谜题------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------横式数字谜题横式数字谜问题是指算式是横式形式,并且只给出了部分运算符号和数字,有一些数字或运算符号“残缺”,要我们根据运算法则进行判断、推理,从而把“残缺”的算式补充完整。
解决此类问题时:第一步,要仔细审题;第二步,要选择突破口;第三步,试验求解。
就是要求我们能够灵活地运用运算法则和整数的性质,仔细观察算式的特点,学会发现问题、分析问题。
从这个意义上讲,研究和解决此类问题,有利于培养我们观察、分析、归纳、推理能力。
竖式数字谜题竖式数字谜是一种猜数的游戏。
解竖式数字型,就得根据有关的运算法则、数的性质(和差积商的为数,数的乘除性、奇偶性、尾数规律等)来进行正确地推理、判断。
解答竖式数字谜时应注意以下几点:(1)空格中只能填写0,1,2,3,4,5,6,7,8,9,而且最高位不能为0;(2)进位要留意,不能漏掉了;(3)答案有时不唯一;(4)两数字相加,最大进位为1,三个数字相加最大进位为2;(5)两个数字相乘,最大进位为8;(6)相同的字母(汉字或符号)代表相同的数字,不同的字母(汉字或符号)代表不同的数字。
1:正确推断横式数字谜题。
2:正确推断竖式数字谜题:3:培养学生观察、分析、归纳、推理能力。
例1 在下面算式等号左边合适的地方添上括号,使等式成立:5+7×8+12÷4-2=20。
百度文库 东方果核学科教师辅导讲义学生姓名:辅导科目: 题aoa 耶□口□□1 □□ □5"「口^ 口 M/nnnnn4 £ ~CLT C2授课日期及其时段 2013 年1、在左下乘法竖式的□中填入合适的数字, 使竖式成立。
2、在右边乘法竖式的□里填入合适的数字, 使竖式成立。
3、在左下边除法竖式的□中填入适当的数, 使竖式成立。
4、在右边除法竖式的□中填入合适的数字。
使竖式成立。
年级: 年级 课时数:2h 学科教师:5、在下列各竖式的□里填上合适的数:6、在右式中,“我”、“爱”、X 数”、“学”分别代表什么数时,乘法竖式成立?爱數学』我矍数学X“我”、“们”、“爱”、“祖”、“国” 们各等于多少时,右边的乘法竖式成立? 国祖爱们我 我们爱祖国8、找出下列各数列的规律,并按其规律在()内填上合适的数: (1) 4, 7 ,10 13 , () , ⑵ 84, 72, 6 0 ,() ();⑶ 2 , 6 , 18, (), () , ⑷ 625 , \|25 , 25 , () ,(); ⑸ 1 , 4 , 9 , 16 ,( ), …⑹ 2 , 6, 20 , () ,(),- 9、找出下列各数列的规律,并按其规律在(1) ⑵⑶ ⑷ 1, 2, 2, 3, 3, 4,(),();(),(),10, 5, 12, 6, 14, 7; 3 , 7 , 10 , 17, 27,();1 , 2, 2, 4, 8, 32 ,()。
10、找出下列各数列的规律,并按其规律在 ⑴ 18, 20, 24, 30,(); ⑵ 11, 12, 14, 18, 26,();⑶ 2, 5, 11, 23, 47,(),()。
11、找出下列各数列的规律,并按其规律在()内填上合适的数: ()内填上合适的数:()内填上合适的数:7、 各代表一个不同的数字,它⑴ 12, 15, 17, 30, 22 , 45,(),();⑵ 2 , 8, 5, 6, 8, 4,()10.15 , 21 , 18 , 19 , 21 , 17 ,(),()。
在这一节课中,教材内容中主要是通过不同的符号,汉字或字母来组成各种不同的竖式数字谜,让学生根据竖式的结构来计算(求出)这些未知的数字.弄清楚加减法各部分之间的数量关系是我们学习数字谜的基础.解答数字谜的关键是找准突破口.通过这节课的学习,要使学生掌握解答竖式数字谜的一般技巧.先要观察数字的特点,然后找出“关键位置”认真分析,一般可以引导学生从各个不同的数位进行考虑.解答完题目以后,教师还要培养学生验算的好习惯.我们经常会看到一些残缺不全的算式,要求我们在方格内填上合适的数字,使算式成立.我们也经常看到在一个算式里面有很多的汉字或字母,要我们猜猜它们代表几,像这样的问题都是数字谜问题.在填数字时,要认真分析数字的特点,充分运用加、减法之间的关系,巧妙地安排每一个数,很快就能求出方格里应填的数字.今天这节课我们就一起来解答数字谜问题.解这种题应按三个步骤分析思考:(1)审题审题就是找出算式中数字之间的关系和特征,挖掘题目中的隐含条件,它是确定各空格内应该填什么数字的主要依据.(2)选择解题突破口在审题的基础上,认真思考找出算式中容易填出或关键性的空格,做为解题的突破口.这一步是填空格的关键.(3)确定各空格填什么数字从突破口开始,依据竖式的已知条件,逐个填出各空格中的数字.在“庆元旦”晚会上,主持人小丽出了这样两道题目:请大家想一想,被纸片盖住的是什么数字?【解答】(1)先填个位,已知6+口的个位为1,所以口=5,且个位向十位进1.再填十位,由于个位向十位进1,十位上数□+7+1的个位数为1,所以十位数□应填3,且十位向百位进1.最后填百位,由十位进1,可知百位□填1.(2)我们可以从位数入手.被减数是一个三位数,减数是一个两位数,差是一个一位数,应能推出它的被减数应尽可能的小,减数应尽可能大.再从个位入手,可知,被减数的个位是2,且个位向十位借1,而差的百位、十位上均无数字,说明被减数的百位是1,而减数十位上的数字是9.当然此题也可反着想:□6+6=□0□,也可推出答案.由上面的解题过程可以看到,解这种题应按三个步骤分析思考:(1)审题审题就是找出算式中数字之间的关系和特征,挖掘题目中的隐含条件,它是确定各空格内应该填什么数字的主要依据.(2)选择解题突破口在审题的基础上,认真思考找出算式中容易填出或关键性的空格,做为解题的突破口.这一步是填空格的关键.(3)确定各空格填什么数字从突破口开始,依据竖式的已知条件,逐个填出各空格中的数字.111976166153111976162619知识分类一:加减法竖式谜小红在家做计算题,不小心碰倒了墨水瓶,把这两道题弄得残缺不全.认真观察一下,你能将墨迹破坏的数字找回来吗?【解答】:3322+4367=76896236-797=5439用0、1、2、3、4、5、6、7、8、9这十个数字组成下面的加法算式,每个数字只许用一次,现已写出3个数字,请把这个算式补齐.【解答】由算式知,和的千位数字只能是百位上数字之和向前进的数,因此把确定千位数字做为突破口(1)填千位:据上分析,千位上只能填1.(2)确定百位:为了能使百位向千位进1,所以第一个加数的百位可能是9或7.(因为8已用过)试验:若百位上9,则和的百位只可能是1或2,而1和2都已用过,因此百位上不能填9,只能填7.则和的百位为0,且十位向百位进1.(3)确定剩下的4个空格:现在只剩下四个数字没有用,它们是9、6、5、3.试验:若第二个加数的个位填5,和的个位为9,剩下的数字6、3不能满足十位上的要求. 若第二个加数的个位填9,和的个位为3,剩下的数字5、6正好满足十位上的要求,即第一个加数的十位填6,和的十位填5.此题的答案为842178453201976在下面算式的空格内,各填上一个合适的数字,使算式成立.165 □□□□□□【解答】19+986=1005在下面算式的空格内,各填入一个合适的数字,使算式成立.【解答】这是一道四位数减去三位数差为两位数的减法,所以选择被减数的千位做为解题突破口.又由于个位上已知两个数字,因此先从个位入手填.①填个位 由于个位这一列只有一个待定的数,减数的个位应为9,且个位向十位借1.②填千位,四位数减去三位数差为两位数,所以被减数的千位数字是1,且百位向千位借1.③填百位,由于差是两位数,所以被减数的百位数字为0,十位也向百位借1.这样百位向千位借1当10,十位又向百位借1,还剩9,9-9=0,因此减数的百位应填9.④填十位,由于十位向百位借1,所以被减数的十位数字不得超过减数的十位数字,即被减数的十位数字是0或1,那么差的十位数字为8或9.此题有两个答案.819899080119999810119把数字1-5分别填写在下面算式中的口里.这题限制了所需要填的五个数字,且个位这一列只有一个空格,因此把确定个位数字做为解题突破口.①填个位 显然,差的个位上填1.②填百位 由差的十位数字8知,十位上数相减时,要向被减数的百位借1,这样百位上有9-1-口=口知,减数的百位填3或5,相应的差的百位上填5或3. ○3填十位 现在只剩下2、4两个数,分别填在被减数和减数的十位上.9876在下面算式的空格内,各填入一个合适的数字,使算式成立.【解答】这是一道加减法混合运算的填空格题,我们把加法、减法分开考虑,使问题简化:(1)加法:①填十位 从算式可以看出,第二个加数与和的十位上都是9,所以个位上数字之和一定向十位进了1,十位数字之和也向百位进了1,因此算式中十位上应是□+9+1=19,故第一个加数的十位上填9.②填个位 由于个位上1+口的和向十位进1,所以口中只能填9,和的个位就为0.③填百位和千位 由于两位数加三位数,和是四位数,所以百位上数相加后必向千位进1.这样第二个加数的百位应填9,和的千位填1,和的百位填0.(2)减法: ①填个位 由于被减数的个位是0,差的个位是4,因此减数的个位应填6. ②填十位、百位 由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位必须是9,同时十位相减时必须向百位借1,这样减数与差的十位也只能填9.941999999994061199999999406119知识分类二:加减法混合竖式谜【解答】在这个题目中,我们要从低位开始考虑,而且一定要注意进位和退位的问题,除了方法更考察学生的口算能力.45453290453201733453298853207我来做下面的方框各应该填几?请你猜一猜,每个算式中的汉字各表示几?【解答】首先我们可以确定百位的“数”=1,看个位,“爱”+5=2,所以“爱”=7; 再来观察上面的减法算式:“学”4-67=17,可见“学”=8;再来观察下面的加法算式:17+“我”5=112,可得“我”=9.我爱数数数爱学2456知识分类三:汉字、符号竖式谜下面的符号和汉字各代表几?208迎奥运迎运 【解答】△=(8)迎=( 1 ) 奥=( 9 ) 我=( 2) 爱=( 6 )运=( 4)北=( 3 ) 京=( 5 )2723111算下面竖式中的汉字各代表多少?我=( ) 爱=( ) 数=( ) 学=( )【解答】先看千位数,两个相同数相加,不可能是9,那么一定是百位向千位进了1,所以千位上是4,由于百位向千位进了1,因此,爱+爱=10,则爱=5,十位没有向百位进1.再看十位数,和是5,肯定个位进上了1,所以十位上数=2,个位上的数,学+学=16,则学=8,即:4528+4528=9026.我=(4),爱=(5), 数=(2),学=(8).相同的汉字代表相同的数字,这些汉字各代表几?+-泰山泰山福永泰山泰泰寿 【解答】泰=(8)山=(9 )福=( 1 )永=( 7 )寿=(0)我爱数学我爱数学9065。
数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、与数论结合的数字谜 (1)、特殊数字【例 1】 如图,不同的汉字代表不同的数字,其中“变”为1,3,5,7,9,11,13这七个数的平均数,那么“学习改变命运”代表的多位数是 .例题精讲知识点拨教学目标5-1-2-3.乘除法数字谜(二)1999998⨯学习改变命运变【例 2】 右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。
杯小9望99999×赛赛希学【例 3】 右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问A 和E 各代表什么数字?E AEDEEEEE×3CB【例 4】 下页算式中不同的汉字表示不同的数字,相同的汉字表示相同的数字,则符合题意的数“华罗庚学校赞”是什么?学赞学庚赞校华罗庚×好校罗华【例 5】 如图相同字母表示相同的数字,不同字母表示不同的数字。
小学奥数基础教程(三年级)- 1 -小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三)十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。
解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数。
根据“加数=和-另一个加数”知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。
解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
1. 掌握最值中的数字谜的技巧2. 能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。
模块一、横式数字谜【例 1】 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.12345□□□□【考点】混合计算中的数字谜 【难度】2星 【题型】填空 【关键词】希望杯,六年级,初赛,第3题,6分 【解析】 为了得到最大结果必须用“×”连接4和5,那么4和5前边一定是“+”,通过尝试得到:112345203-÷+⨯=.【答案】1203【例 2】 将+,-,×,÷四个运算符号分别填入下面的四个框中使该式的值最大。
1111123456□□□□【考点】混合计算中的数字谜 【难度】3星 【题型】填空 【关键词】华杯赛,初赛,第9题 【解析】 题目给出5个数,乘、除之后成3个数,其中减数应尽量小,由两个数合成(相乘或相除)的加数与另一个分数相加应尽量大,,,,;,例题精讲知识点拨教学目标5-1-2-5.最值中的数字谜(二),,;而,,,;其中最小的是,而,,所以最大【答案】最大【例3】将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数.这个结果最大为.÷++=÷+【考点】混合计算中的数字谜【难度】3星【题型】填空【解析】等号左边相当于三个奇数相加,其结果为奇数,而等号右边的计算结果为奇数时,最大为628487÷+=,又3157987÷++=满足条件(情况不唯一),所以结果的最大值为87.【答案】87【例4】一个电子表用5个两位数(包括首位为0的两位数)表示时间,如15:23:45/06/18表示6月18日15点23分45秒.有一些时刻这个电子表上十个数字都不同,在这些时刻中,表示时间的5个两位数之和最大是.【考点】【难度】星【题型】填空【关键词】迎春杯,高年级,决赛,8题【解析】假设五个两位数的十位数上的数字之和为x,那么个位数上的数字之和为45x-,则五个两位数上的数字之和为1045459x x x+-=+,所以十位数上的数字之和越大,则五个两位数之和越大.显然,五个两位数的十位数字都不超过5,只能是012345,,,,,这五个数字中的五个.如果五个数字是54321,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,1只能在“月份”的十位上,此时“日期”的个位、“月份”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54320,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,此时“日期”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54310,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,则“日期”的个位无法满足情况.如果五个数字是54210,,,,,那么54,只能在“分”、“秒”两个两位数的十位,210,,依次在“日期”的十位上、“时”的十位上、“月份”的十位上容易满足条件.所以最大值为()45954210153+⨯++++=.【答案】153【例5】0.2.0080.A BCC A B∙∙=∙∙,三位数ABC的最大值是多少?【考点】乘除法中的最值问题【难度】3星【题型】填空【关键词】走美杯,六年级,初赛,第4题【解析】 2.008化为分数是251125,可以约分为251125的分数有502250、753375,所以ABC的最大值为753.【答案】753模块二、乘除法中的最值问题【例6】已知一个五位回文数等于45与一个四位回文数的乘积(即45abcba deed=⨯),那么这个五位回文数最大的可能值是________.【考点】乘除法中的最值问题【难度】3星【题型】填空【关键词】迎春杯,五年级,初赛,第7题【解析】 根据题意,45abcba deed =,则abcba 为45的倍数,所以a 应为0或5,又a 还在首位,所以a =5,现在要让abcba 尽可能的大,首先需要位数高的尽可能的大,所以令9b =,8c =,则a b c b a++++=5+9+8+9+5=36是9的倍数,用59895÷45=1331符合条件,所以这个五位回文数最大的可能值是59895.【答案】59895【例 7】 在下面乘法竖式的每个方格中填入一个非零数字,使算式成立。
第2讲竖式数字谜(二)本讲加、减、乘、除只限于乘数、除数是一位数的乘、除法竖式数字谜问题。
掌握好加、减、乘、除法的基本运算规则竖式谜的基础。
根据题目结构形式,通过综合观察、分析,找出“突破口”是解题的关键。
例1图5.8的算式里,每个□代表一个数字。
问:这6个□中的数字总和是多少?例2已知两个四位数的差是8921(图5.9),那么这两个四位数的和最大是______。
例3在左下乘法竖式的□中填入合适的数字,使竖式成立。
分析与解:由于积的个位数是5,所以在乘数和被乘数的个位数中,一个是5,另一个是奇数。
因为乘积大于被乘数的7倍,所以乘数是大于7的奇数,即只能是9(这是问题的“突破口”),被乘数的个位数是5。
因为7×9<70<8×9,所以,被乘数的百位数字只能是7。
至此,求出被乘数是785,乘数是9(见右上式)。
例4在右边乘法竖式的□里填入合适的数字,使竖式成立。
分析与解:由于乘积的数字不全,特别是不知道乘积的个位数,我们只能从最高位入手分析。
乘积的最高两位数是2□,被乘数的最高位是3,由可以确定乘数的大致范围,乘数只可能是6,7,8,9。
到底是哪一个呢?我们只能逐一进行试算:(1)若乘数为6,则积的个位填2,并向十位进4,此时,乘数6与被乘数的十位上的数字相乘之积的个位数只能是5(因4+5=9)。
这样一来,被乘数的十位上就无数可填了。
这说明乘数不能是6。
(2)若乘数为7,则积的个位填9,并向十位进4。
与(1)分析相同,为使积的十位是9,被乘数的十位只能填5,从而积的百位填4。
得到符合题意的填法如右式。
(3)若乘数为8,则积的个位填6,并向十位进5。
为使积的十位是9,被乘数的十位只能填3或8。
当被乘数的十位填3时,得到符合题意的填法如右式。
当被乘数的十位填8时,积的最高两位为3,不合题意。
(4)若乘数为9,则积的个位填3,并向十位进6。
为使积的十位是9,被乘数的十位只能填7。
而此时,积的最高两位是3,不合题意。
东方果核学科教师辅导讲义
学生姓名:年级:年级课时数:2h 辅导科目: 学科教师:
课题
授课日期及其时段2013年月日点——点
教学内容
1、在左下乘法竖式的□中填入合适的数字,使竖式成立。
2、在右边乘法竖式的□里填入合适的数字,使竖式成立。
3、在左下边除法竖式的□中填入适当的数,使竖式成立。
4、在右边除法竖式的□中填入合适的数字。
使竖式成立。
5、在下列各竖式的□里填上合适的数:
6、在右式中,“我”、“爱”、“数”、“学”分别代表什么数时,乘法竖式成立?
7、“我”、“们”、“爱”、“祖”、“国”各代表一个不同的数字,它
们各等于多少时,右边的乘法竖式成立?
8、找出下列各数列的规律,并按其规律在( )内填上合适的数:
(1)4,7,10,13,( ),…
(2)84,72,60,( ),( );
(3)2,6,18,( ),( ),…
(4)625,125,25,( ),( );
(5)1,4,9,16,( ),…
(6)2,6,12,20,( ),( ),…
9、找出下列各数列的规律,并按其规律在( )内填上合适的数:
(1)1,2,2,3,3,4,( ),( );
(2)( ),( ),10,5,12,6,14,7;
(3) 3,7,10,17,27,( );
(4) 1,2,2,4,8,32,( )。
10、找出下列各数列的规律,并按其规律在( )内填上合适的数:
(1)18,20,24,30,( );
(2)11,12,14,18,26,( );
(3)2,5,11,23,47,( ),( )。
11、找出下列各数列的规律,并按其规律在( )内填上合适的数:
(1)12,15,17,30, 22,45,( ),( );
(2) 2,8,5,6,8,4,( ),( )。
12、按其规律在下列各数列的( )内填数。
1.56,49,42,35,( )。
2.11, 15, 19, 23,( ),…
3.3,6,12,24,( )。
4.2,3,5,9,17,( ),…
5.1,3,4,7,11,( )。
6.1,3,7,13,21,( )。
7.3,5,3,10,3,15,( ),( )。
8.8,3,9,4,10,5,( ),( )。
9.2,5,10,17,26,( )。
10.15,21,18,19,21,17,( ),( )。
13、观察下列图形的变化规律,并按照这个规律将第四个图形补充完整。
14、在下列各组图形中寻找规律,并按此规律在“?”处填上合适的数:
15、寻找规律填数:
16、寻找规律在空格内填数:
17、在下列表格中寻找规律,并求出“?”:
18、寻找规律填数:
19、寻找规律填数:
6.下图中第50个图形是△还是○?○△○○○△○○○△○…
作业布置。