证明垂直平分线与角平分线
- 格式:doc
- 大小:588.00 KB
- 文档页数:12
课题垂直平分线、角平分线的有关证明问题教学过程一、主要知识点1、线段的垂直平分线。
线段垂直平分线上的点到这条线段两个端点的距离相等;到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
2、角平分线。
角平分线上的点到这个角的两边的距离相等。
在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。
二、重点例题分析例 1:在△ ABC 中, AB 的中垂线 DE 交 AC 于 F,垂足为 D,若 AC=6 , BC=4 ,求△ BCF 的周长。
(垂直平分线的性质)ECFA D B例 3:如图所示, AC=AD , BC=BD , AB 与 CD 相交于点 E。
求证:直线 AB 是线段 CD 的垂直平分线。
(用定义去证)AC DEB例 4:如图所示,在△ ABC 中,AB=AC ,∠BAC=1200,D、F 分别为 AB 、AC 的中点,DE AB,FGAC ,E、 G 在 BC 上, BC=15cm ,求 EG 的长度。
(连AE ,AG )AD FB E G C例 5::如图所示, Rt△ ABC 中,, D 是 AB 上一点, BD=BC ,过 D 作 AB 的垂线交 AC 于点 E, CD 交 BE 于点 F。
求证: BE 垂直平分 CD 。
(证全等)CEFA D B例 6::在⊿ ABC 中,点 O 是 AC 边上一动点,过点O 作直线 M N∥BC ,与∠ACB的角平分线交于点E,与∠ ACB的外角平分线交于点F,求证: OE=OFA(角平分线性质、平行线间高处处一样)OM E F N12B C例 7、如图所示, AB>AC , A 的平分线与BC的垂直平分线相交于D,自D作DE AB 于E,DFAC于F ,求证: BE=CF 。
(角平分线与垂直平分线的性质的综合应用)AEB M CFD相应练习A1、如图,在△ ABC 中, AB=AC=BC ,AE= CD , AD 、BE 相交于点 P, B Q⊥ AD于 Q。
第二讲、垂直平分线与角平分线知识回顾1、线段的垂直平分线垂直平分线定理:线段垂直平分线上的点到这一条线段两个端点的距离相等。
垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,这个点叫做三角形的外心。
2、角平分线角平分线定理:角平分线上的点到角两边的距离相等。
角平分线逆定理:在角内部,如果一点到角两边的距离相等,则它在该角的平分线上。
三角形的三条角平分线交于一点,并且这个点到三边距离相等,这个点叫做三角形的内心。
典型例题1.如图,点D,E分别在△A B C的边A C、B C上,∠A B D:∠A:∠C=2:6:5,若D E垂直平分B C,则∠B D E=()A.30°B.35°C.40°D.50°2.在平面内,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条角平分线的交点B.三条高线的交点C.三条中线的交点D.三条边垂直平分线的交点3.已知△A B C边A B、A C的垂直平分线D M、E N相交于O,M、N在B C边上,若∠M A N=20°,则∠B A C 的度数为()A.100°B.120°C.140°D.160°4.如图,在△A B C中,边A C的垂直平分线交A C于点M,交B C于点N,若A B=3,B C=13.那么△A B N的周长是()A.10B.13C.16D.无法确定5.如图,在△A B C中,∠C=30°,点D是A C的中点,D E⊥A C交B C于E;点O在D E上,O A=O B,O D=1,O E=2,则B E的长为()A.3B.4C.5D.66.已知如图,O P平分∠M O N,P A⊥O N于点A,点Q是射线O M上的一个动点,若∠M O N=60°,O P =4,则P Q的最小值是()A.2B.3C.4D.不能确定7.如图,△A B C的∠B的外角的平分线B D与∠C的外角的平分线C E相交于点P,若点P到直线A C的距离为4,则点P到直线A B的距离为()A.4B.3C.2D.18.如图,在△A B C中,∠C=90°,以A为圆心,任意长为半径画弧,分别交A C,A B于点M,N,再分别以M,N为圆心,大于M N长为半径画弧,两弧交于点O,作射线A O,交B C于点E.已知C E=3,B E=5,则A C的长为()A.8B.7C.6D.59.已知:如图,△A B C中,∠C=90°,点O为△A B C的三条角平分线的交点,O D⊥B C,O E⊥A C,O F ⊥A B,点D,E,F分别是垂足,且A B=5,B C=4,C A=3,则点O到三边A B,A C和B C的距离分别等于()A.1,1,1B.2,2,2C.3,3,3D.1,2,310.如图,在R t△A B C中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交A C,A B于点M,N,再分别以点M,N为圆心,大于M N的长为半径画弧,两弧交于点P,作射线A P交边B C于点D,若C D=5,A B=12,则△A B D的面积是()A.15B.30C.45D.6011.如图,A D是△A B C的角平分线,D E⊥A C,D F⊥A B,E,F分别是垂足,若B D=2C D,A B=6,则A C的长为()A.3B.6C.9D.1212.如图,△A B C中,A D⊥B C交B C于D,A E平分∠B A C交B C于E,F为B C的延长线上一点,F G⊥A E交A D的延长线于G,A C的延长线交F G于H,连接B G,下列结论:①∠D A E=∠F;②∠A G H=∠B A E+∠A C B;③S△A E B:S△A E C=A B:A C,其中正确的结论有()个.A.0B.1C.2D.3二.解答题(共5小题)13.如图,△A B C中,∠A B C=30°,∠A C B=50°,D E、F G分别为A B、A C的垂直平分线,E、G分别为垂足.(1)求∠D A F的度数;(2)若△D A F的周长为10,求B C的长.14.如图,A B垂直平分线段C D(A B>C D),点E是线段C D延长线上的一点,且B E=A B,连接A C,过点D作D G⊥A C于点G,交A E的延长线与点F.(1)若∠C A B=α,则∠A F G=(用α的代数式表示);(2)线段A C与线段D F相等吗?为什么?(3)若C D=6,求E F的长.15.如图,D E⊥A B于E,D F⊥A C于F,若B D=C D,B E=C F求证:A D平分∠B A C.16.如图,D是∠E A F平分线上的一点,若∠A C D+∠A B D=180°,请说明C D=D B的理由.17.如图,A D∥B C,∠D=90°.如图,若∠D A B的平分线与∠C B A的平分线交于点P,试问:点P是线段C D的中点吗?为什么?课后作业1.如图,在△A B C中,A B边的中垂线D E,分别与A B边和A C边交于点D和点E,B C边的中垂线F G,分别与B C边和A C边交于点F和点G,又△B E G周长为16,且G E=1,则A C的长为()A.13B.14C.15D.162.如图,△A B C中,∠C=90°,E D垂直平分A B,若A C=12,E C=5,且△A C E的周长为30,则B E的长为()A.5B.10C.12D.133.如图,在△A B C中,A B,A C的垂直平分线D F,E G交于点M,点F,G在B C上.若∠G A F=46°,则∠M的度数为()A.67°B.65°C.55°D.45°4.如图,A D是△A B C的角平分线,D E⊥A B,垂足为E,A B=20,C D=6,若∠C=90°,则△A B D面积是()A.120B.80C.60D.40(第1题图)(第2题图)(第3题图)(第4题图)5.如图,B M是∠A B C的平分线,点D是B M上一点,点P为直线B C上的一个动点.若△A B D的面积为9,A B=6,则线段D P的长不可能是()A.2B.3C.4D.5.56.如图,在△A B C中,∠B=90°,点O是∠C A B、∠A C B平分线的交点,且B C=4c m,A C=5c m,则点O到边A B的距离为()A.1c m B.2c m C.3c m D.4c m7.平面内,到三角形三边所在直线距离相等的点共有()个.A.3B.4C.5D.68.如图,R t△A C B中,∠A C B=90°,∠A B C的平分线B E和∠B A C的外角平分线A D相交于点P,分别交A C和B C的延长线于E,D.过P作P F⊥A D交A C的延长线于点H,交B C的延长线于点F,连接A F交D H于点G.则下列结论:①∠A P B=45°;②P F=P A;③B D﹣A H=A B;④D G=A P+G H.其中正确的是()A.1B.2C.3D.4二.解答题(共2小题)9.如图,在△A B C中,∠B A C=90°,B E平分∠A B C,A M⊥B C于点M交B E于点G,A D平分∠M A C,交B C于点D,交B E于点F.求证:线段B F垂直平分线段A D.10.△A B C中,∠C=90°,∠B A C的平分线交B C于D,且C D=15,A C=30,求A B的长.。
三角形的角平分线与垂直平分线角平分线与垂直平分线是三角形中重要的几何概念。
它们可以帮助我们研究三角形的性质和推导出一些有用的结论。
本文将详细介绍角平分线与垂直平分线的定义、性质和应用。
一、角平分线角平分线定义为从一个角的顶点出发,将这个角分成两个相等的角的线段。
以三角形ABC为例,假设角A的角平分线为AD,则角BAD 与角DAC是相等的。
这一定义可以推广到任意三角形中的任意角。
角平分线具有以下性质:1. 一个角的两条平分线相交于该角的顶点,并将该角平分成两个相等的角。
2. 三角形的内角平分线三条相交于一点,称为内心。
这个点到三角形三边的距离相等,可以证明是三角形内接圆的圆心。
3. 三角形的外角平分线三条相交于一点,称为外心。
这个点到三角形的顶点的距离相等,可以证明是三角形外接圆的圆心。
4. 三角形的角平分线分割对边成比例,即根据角平分线定理可得:AB/BC=AD/DC。
角平分线的应用广泛,特别是在证明三角形的性质和推导结论时非常有用。
例如,可以利用角平分线证明角的等分性质、三角形的相似性质、垂心定理等。
二、垂直平分线垂直平分线定义为从一个线段的中点出发,与该线段垂直且将该线段平分为两段相等的线段。
以三角形ABC为例,假设AB的垂直平分线为DE,则AD=BD=BE=CE=CD。
这一定义可以推广到任意线段。
垂直平分线具有以下性质:1. 一个三角形的三条垂直平分线交于一点,称为垂心。
这个点到三角形三顶点的距离相等,可以证明是三角形外接圆的圆心。
2. 一个角的垂直平分线经过角的顶点,并将该角平分成两个相等的角。
3. 垂直平分线等分线段,即对于一个线段AB,若点D是其垂直平分线的交点,则AD=DB。
垂直平分线也有许多应用,特别是在几何证明中常常能发挥关键作用。
例如,可以利用垂直平分线证明角的等分性质、直角三角形的性质、垂心定理等。
总结:角平分线与垂直平分线是三角形中重要的概念,它们有着许多有用的性质和应用。
三角形的角平分线与垂直平分线的性质解析三角形是几何学中的基本图形之一,由三条边和三个角组成。
在研究三角形的性质时,角平分线和垂直平分线是两个重要的概念。
本文将详细解析三角形的角平分线与垂直平分线的性质,并通过几何证明来加深理解。
一、角平分线的性质角平分线是指将一个角分成两个相等角的线段。
在三角形中,每个角都可以有三条角平分线,它们分别连接角的顶点和对边上的点。
下面将分别探讨三角形内、角平分线与三角形外、角平分线的性质。
1. 三角形内的角平分线性质对于任意三角形ABC,以顶点A为例,AC为角A的对边,BD为角A的一条角平分线(B点在AC上)。
则有以下结论:(1)角平分线BD将角A分成两个相等的角。
这是角平分线的定义性质,也即∠BAD = ∠DAC。
(2)角平分线所在的边(线段BD)与对边(线段AC)成等角。
这一性质可以通过角平分线定义的推论得到,即∠ABD = ∠CBD。
(3)角平分线所在的边(线段BD)与三角形的另一边(线段AB 或BC)成外角。
外角是指角的补角,也即∠ABC = ∠CBD + ∠ABD。
2. 三角形外的角平分线性质接上述讨论,若角平分线BD延长到线段BC上的点E,则有以下结论:(1)角平分线BD将角A分成两个相等的角。
这一性质是角平分线的定义性质,同前述。
(2)角平分线所在的射线(射线BD)与对边(线段AC)夹角的平分线是角平分线BD所在的边(线段BD)。
这一性质也即∠ABD是∠ACD的平分线,通过几何证明可得。
(3)角平分线所在的射线(射线BD)与三角形的另一边(线段AB或BC)成内角。
内角是指角的补角,也即∠DBE = ∠ABC + ∠CBD。
这一性质可通过几何证明来得到。
二、垂直平分线的性质垂直平分线是指将一个线段分成两个相等线段,并且与该线段垂直的线段。
在三角形中,每条边都可以有一条垂直平分线,它们分别与对边相交于一个点,并且将对边分成两个相等线段。
下面将讨论垂直平分线的性质。
平面向量的垂直平分线定理和角平分线定理在数学中,平面向量的垂直平分线定理和角平分线定理是关于平面向量的重要性质。
这两个定理在解决几何问题以及证明定理时起到了重要的推动作用。
在本文中,我们将探讨平面向量的垂直平分线定理和角平分线定理的定义、性质以及应用。
1. 平面向量的垂直平分线定理平面向量的垂直平分线定理是指,对于一个平面内的两个不共线的向量a和b,垂直于向量a和向量b的直线称为向量a和向量b的垂直平分线。
具体而言,垂直平分线经过向量a的起点、向量b的终点以及二者的中点。
垂直平分线的性质如下:- 垂直平分线上的任意一点到向量a和向量b起点的距离相等。
- 垂直平分线将平面分成两个相等的部分。
- 垂直平分线上的任意一点与向量a和向量b之间的夹角都是45度。
垂直平分线定理的应用之一是解决平面三角形的问题。
通过构造垂直平分线,可以求解三角形的内切圆、外接圆、重心以及其他重要性质。
此外,垂直平分线还可以用于证明定理和性质,为进一步的数学推导提供基础。
2. 角平分线定理角平分线定理是指,对于一个平面内的两个相邻角,在它们共有的边上存在一条直线,称为角平分线。
具体而言,角平分线经过相邻角的顶点以及它们共有的边的中点。
角平分线的性质如下:- 角平分线将平面分成两个相等的部分。
- 角平分线上的任意一点到相邻角的两条边的距离相等。
- 角平分线将相邻角划分成相等的两个角。
角平分线定理的应用之一是解决几何问题中与角度相关的计算。
通过构造角平分线,可以帮助我们求解角的大小、证明定理以及推导几何性质。
角平分线在三角形、四边形以及其他多边形的研究中具有重要作用。
总结:平面向量的垂直平分线定理和角平分线定理是数学中关于平面向量的重要性质。
垂直平分线和角平分线的定义、性质以及应用使得我们能够更好地理解向量的性质和几何问题。
通过应用垂直平分线和角平分线定理,我们能够解决一些与平面向量和角度相关的问题,证明数学定理以及推导几何性质,为数学研究和实际应用提供了有力的工具。
线段的垂直平分线与角平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 几何语言:∵ CD 是线段AB 的垂直平分线 ∴CA=CB 定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 几何语言:∵ CA=CB ∴ 点C 在线段AB 的垂直平分线定理的作用:证明一个点在某线段的垂直平分线上. 3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC. 定理的作用:证明三角形内的线段相等. 4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. 几何语言表示:∵ OE 是∠AOB 的平分线,CF ⊥OA ,DF ⊥OB ∴CF =DF. 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线. 5、角平分线性质定理的逆定理:角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上. 几何语言表示:∵ PC ⊥OA ,PD ⊥OB , PC =PD ,∴点P 在∠AOB 的平分线上. 定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与逆定理的区别和联系. 6、关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.图1图2图4线段垂直平分线练习题1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm , 求AC 的长度 2已知:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm , 那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28度,那么∠EBC 是3、已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC 。
5.角平分线、垂直平分线知识考点:了解角平分线、垂直平分线的有关性质和定理,并能解决一些实际问题。
精典例题:【例题】如图,已知在△ABC 中,AB =AC ,∠B =300,AB 的垂直平分线EF 交AB 于点E ,交BC 于点F ,求证:CF =2BF 。
分析一:要证明CF =2BF ,由于BF 与CF 没有直接联系,联想题设中EF 是中垂线,根据其性质可连结AF ,则BF =AF 。
问题转化为证CF =2AF ,又∠B =∠C =300,这就等价于要证∠CAF =900,则根据含300角的直角三角形的性质可得CF =2AF =2BF 。
分析二:要证明CF =2BF ,联想∠B =300,EF 是AB 的中垂线,可过点A 作AG ∥EF 交FC 于G 后,得到含300角的Rt △ABG ,且EF 是Rt △ABG 的中位线,因此BG =2BF =2AG ,再设法证明AG =GC ,即有BF =FG =GC 。
例题图1F EC B A例题图2 G F ECB A分析三:由等腰三角形联想到“三线合一”的性质,作AD ⊥BC 于D ,则BD =CD ,考虑到∠B =300,不妨设EF =1,再用勾股定理计算便可得证。
以上三种分析的证明略。
例题图3D F ECB A问题图321ED CB A探索与创新:【问题】请阅读下面材料,并回答所提出的问题: 三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。
如图,△ABC 中,AD 是角平分线。
求证:ACABDC BD =。
分析:要证ACABDC BD =,一般只要证BD 、DC 与AB 、AC 或BD 、AB 与DC 、AC 所在三角形相似,现在B 、D 、C 在同一条直线上,△ABD 与△ADC 不相似,需要考虑用别的方法换比。
我们注意到在比例式ACABDC BD =中,AC 恰好是BD 、DC 、AB 的第四比例项,所以考虑过C 作CE ∥AD 交BA 的延长线于E ,从而得到BD 、CD 、AB 的第四比例项AE ,这样,证明ACABDC BD =就可以转化为证AE =AC 。
第三课时证明(二)之线段的垂直平分线和角平分线定理的应用以及证明一.本章节知识点:1、角平分线:(1)角平分线的定义:一条射线,把一个角分成两个相等的角,这条射线叫做这个角的角平分线.(2)用直尺和圆规作已知角的平分线2、角平分线的性质:(1)角平分线上的点到角的两边的举距离相等.(2)到角两边距离相等的点在角的角平分线上.3、三角形角平分线性质:三角形三条角平分线交于三角形内部一点,并且交点到三边距离相等.4、角平分线的性质及相关证明:(1)有角平分线时,常用角平分线上的点向角两边作垂线段,利用角平分线上的点到角两边距离相等证题.(2)有角平分线时,通常在角的两边截取相等的线段,构造全等三角形.5、角平分线的逆定理:逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。
6.垂直平分线(1)定义:垂直平分一条线段的直线叫线段的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等。
②三角形三边的垂直平分线相交于一点,且到三个顶点的距离相等。
(3)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
二.典型例题例1.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处B.两处C.三处D.四处答案:D说明:因为到角的两边的距离相等的点在角的平分线上,所以可供选择的地点可在这三条直线围成的三角形的内角平分线的交点处或这个三角形的外角平分线的交点处,如图,可供选择的地址有P1、P2、P3、P4共四处,答案为D.例2.如图,△ABC中,∠ABC = 120º,∠C = 26º,且DE⊥AB,DF⊥AC,DE = DF.求∠ADC的度数.解:△ABC中,∠BAC+∠ABC+∠C = 180º,∵∠ABC = 120º,∠C = 26º,∴∠BAC = 180º−120º−26º = 34º,∵DE⊥AB,DF⊥AC,E、F为垂足,DE = DF,∴点D在∠BAC的平分线上,∠DAF =∠DAB =∠BAC =×34º = 17º.∴△ADC中,∠ADC = 180º−∠DAF−∠C = 180º−17º−26º = 137º.例3.如图,已知:在ABC∆中,︒=∠90C,︒=∠30A,BD平分ABC∠交AC于D. 求证:D在AB的垂直平分线上.分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明DABD=即可.证明:∵︒=∠90C ,︒=∠30A (已知),∴ ︒=∠60ABC (∆Rt 的两个锐角互余)又∵BD 平分ABC ∠(已知)∴ A ABC DBA ∠=︒=∠=∠3021. ∴AD BD =(等角对等边)∴D 在AB 的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).例4.如图,已知:在ABC ∆中,AC AB =,︒=∠120BAC ,AB 的垂直平分线交AB 于E ,交BC 于F 。
三角形中的角平分线与垂直平分线在几何学中,三角形是最基础且常见的几何图形之一。
而角平分线和垂直平分线是三角形内部的两个重要概念。
它们在解决三角形性质和计算题中起着关键的作用。
本文将详细探讨三角形中的角平分线和垂直平分线的性质及其应用。
一、角平分线角平分线是指从一个角的顶点出发,将该角等分成两个相等的角的线段。
在任意三角形中,都存在三条角平分线。
我们给出以下两个性质:1.1 角平分线的性质性质一:三角形中的角平分线与对边上的点连线相等。
证明:设三角形ABC的角A的平分线为AD,与对边BC相交于点D。
则有∠BAD = ∠DAC(角平分线定义)。
因此,∠BAC = ∠BAD+ ∠DAC = ∠DAC + ∠DAC = 2∠DAC。
同理,可证明∠CED = 2∠DCE。
因此,∠BAC = 2∠DAC =2∠DCE。
于是,三角形ABC中的角平分线AD也等于对边BC。
性质二:三角形中的角平分线互相垂直。
证明:设三角形ABC的角A的平分线为AD,角B的平分线为BE,两条平分线相交于点D。
则有∠DAB = ∠DAC,∠DBE = ∠EBC(角平分线定义)。
又因为∠ADB = ∠BED = 90°(直角),所以∠BDA = ∠BEA = 180° - ∠ADB - ∠DBE = 180° - 90° - 90° = 0°。
因此,∠BDA = ∠BEA = 0°,即角ADB和角BEA为直角。
所以,角平分线AD垂直于角BAC的角平分线BE。
通过以上两个性质,我们可以看出角平分线在三角形中有着重要的几何意义和运用价值。
二、垂直平分线垂直平分线是指从一个线段的中点出发,与该线段垂直且等分该线段的直线。
在三角形中,任意一条边的中垂线可以称为该边的垂直平分线。
我们来介绍两个垂直平分线的性质:2.1 垂直平分线的性质性质一:三角形中的垂直平分线互相交于圆心。
空间几何中的角平分线与垂直平分线的性质推导解析在空间几何中,角平分线与垂直平分线是两个重要的概念。
它们在解决角和线段相关问题时起到了重要的作用。
本文将对角平分线与垂直平分线的性质进行推导解析。
一、角平分线的性质推导解析角平分线是指将一个角平分为两个相等的角的直线。
下面讨论角平分线的性质。
1. 角平分线的存在性证明:设在平面α中,有一点O。
对于该平面中的任意两条射线OA和OB,存在且唯一一条射线OC,使得OC既与OA也与OB所围成的两个角∠AOC和∠COB相等。
因此,点O到角∠AOB的两边OA和OB上有一条射线OC,称之为角∠AOB的角平分线。
2. 角平分线的性质一:角平分线上的任意一点都与两条角的顶点连线所围成的两个小角相等。
证明:设角∠AOB的角平分线为OC,连接OA和OB。
由分割线性质可知,∠BOC = ∠AOC。
又因为∠BOC = ∠AOC,∠BOC = ∠COA,∠COA = ∠AOB。
所以,点O到角∠AOB的两边OA和OB上的射线OC分别为角∠COA和∠COB的平分线,且这两个角相等。
3. 角平分线的性质二:角平分线上的任意一点到角的两边所成角的大小相等。
证明:设角∠AOB的角平分线为OC,连接OA和OB。
∵∠COA = ∠AOC,∠COB = ∠BOC∴∠AOB = ∠COA + ∠COB = ∠AOC + ∠BOC又因∠COA = ∠AOC, ∠COB = ∠BOC∴∠AOB = 2∠COA = 2∠COB。
即,点O到角∠AOB的两边OA和OB上的射线OC分别为∠COA和∠COB的角平分线,且∠COA = ∠COB,而∠AOB =2∠COA = 2∠COB所以,点O到角∠AOB的两边OA和OB上的射线OC分别为∠COA和∠COB的角平分线,且∠COA = ∠COB,而∠AOB =2∠COA = 2∠COB二、垂直平分线的性质推导解析垂直平分线是指将一条线段的中点与该线段的垂直平分线上的任意一点连接起来所得的线段。
第二节 证明(二)
——垂直平分线与角平分线
【知识要点】
1.你知道线段的垂直平分线如何运用尺规作图吗?从做法上你得到什么启示? 2.你知道如何运用尺规作图做已知角的平分线吗?从做法上你得到什么启示? 3.你能说明为什么三角形的外心和内心相交于一点吗?
4.你能举出一些运用三角形外心和内心来解决实际生活问题的例子吗?
【典型例题】
# 例1 如图,AB=AC ,DE 垂直平分AB 交AB 于D ,交AC
于E .若 ABC ∆的周长为28,BC=8,求BCE ∆的周长.
# 例2 如图,AB >AC ,A ∠的平分线与BC 的
垂直平分线DM 相交于D ,自D 作AB DE ⊥于E ,
AC DF ⊥于F .求证:BE=CF
A
# 例3 如图,在ABC ∆中, 108=∠A ,
AB=AC ,21∠=∠.求证:BC=AC+CD
# 例4 如图,AB=AC ,C B ∠=∠,BAC ∠的平分线AF
交DE 于F .求证:AF 为DE 的垂直平分线. A
E F
B
D
C
例5 如图,P 为ABC ∆的BC 边的垂直平分线PG 上
一点,且A PBC ∠=∠2
1
.BP ,CP 的延长线分别交
AC ,AB 于点D ,E .求证:BE=CD
例6 如图,在ABC ∆中,C ABC ∠=∠3,
21∠=∠,BD AD ⊥.求证:AC=AB+2BD
C
G
A
E
B
D
P
例7 如图,已知AD 是ABC ∆中A ∠的平分线,DE//AC 交AB 于E ,DF//AB 交AC 于F . 求证:点E ,F 关于直线AD 对称
* 例8 如图,在ABC ∆中,AB >BC , 60=∠B ,BAC ∠,
ACB ∠的平分线交于点G .
(1)图中是否有相等的线段?若 有,请写出相等的线段,并证明.(2)图中线段AC 是否等于 其他两条线段的和?若有,请写出等式,并证明;若无,请 说明理由. A
E
B
D C
F
* 例9 如图,ABC ∆是边长为1的正三角形,BDC ∆
是顶角
120=∠BDC 的等腰三角形,以D 为顶点作一 个
60角,角的两边分别交AB 于M ,交AC 于N ,连接 MN ,形成AMN ∆.求证:AMN ∆的周长等于2
* 例10 设ABC ∆的外心为O ,在其边AB 和BC 上分别
取点M 和点N ,使得AOC MON ∠=∠2. 求证:MBN ∆的周长不小于边AC 的长.
大展身手
姓名: 成绩:
#
1.如图,已知AC 平分PAQ ∠,点B ,B ′分别在边
AP ,AQ 上,如果添加一个条件,即可推出AB=AB ′,那么 该条件可以是( ) A .B B ′⊥AC
B .BC= B ′
C C .ACB ∠=AC ∠ B ′
D .ABC ∠=∠A B ′C
# 2.M ,N ,A ,B 是同一平面上的四个点,如果MA=MB ,NA=NB ,
则点 、 在线段 的垂直平分线上.
# 3.设线段AB 的垂直平分线MN 交AB 于点C ,P 是MN 上不同
于点C 的一点,那么PAB ∆是 三角形,PC 是PAB ∆的 线、 线和 ..
# 4.在ABC ∆中,E 为BC 中点,BC DE ⊥交AB 于点D ,
若
25=∠B ,AD=CD ,则
25=∠B ,AD=CD ,则ADC ∠ ,
ACB ∠= .
# 5.在ABC ∆中,AB=AC ,DE 是AB 边的中垂线,垂足为E ,
交AC 于D .若BDC ∆的周长为24,AB=14,则BC= ; 若
40=∠A ,则DBC ∠= .
# 6.在ABC ∆中, 120=∠BAC .PM 为AB 边的中垂线,
垂足为M ,交BC 于P ;QN 为AC 边的中垂线,垂足为N ,交BC 于Q ,则PAQ ∠= ,或BC=9cm ,则APQ ∆的周长为 cm.
# 7.在ABC ∆中,B ∠,C ∠的平分线交于D 点,已知
100=∠BDC .则A ∠的度数为 .
# 8.在ABC ∆中,B ∠,C ∠的平分线交于D 点,过D 作
EF ∥BC ,分别交AB ,AC 于E ,F 两点,若AB=6,AC=5,则AEF ∆ 的周长为 .
# 9.如图,在ABC Rt ∆中, 90=∠C ,BE 平分
ABC ∠,交AC 于E ,DE 是斜边AB 的垂直平分线,
且DE=1cm ,则AC= cm.
10.如图,P 为正方形外一点, 15=∠=∠PBC PAD ,
求证:PDC ∆为等边三角形.
11.在ABC ∆中,AC BC B C 2,2=∠=∠.求A ∠的度数.
12.如图,在ABC ∆中,ABC ∠的平分线与ACB ∠ 的外角平分线相交于点D ,过D 作DE ∥BC ,分别交 AB ,AC 于E ,F .求证:EF=BE-CF
13.如图,在ABC ∆中,AB=AC ,
36=∠A ,
求证:AB=CF
*
14.如图,ABC ∆中,21∠=∠,AB=2AC ,DA=DB .
求证:AC ⊥CD
BAC ∠和ABC ∠的平分线AD ,BE 相交于点F .求证:EF=DF
* 16.A ,B 两港在大湖南岸,C 港在大湖北岸.A ,B ,C 三港 恰为一等边三角形的三个顶点.A 港的甲船与B 港的乙船同时出 发都沿直线向C 港匀速行驶,当乙船行驶出40千米时,甲、乙 两船与C 港位置恰是一个直角三角形的三个顶点;而当甲船行 驶达C 港时,乙船尚距C 港20千米.问:A ,B 两港之间的距 离是多少千米?。