第十三章 数学公式
- 格式:ppt
- 大小:182.00 KB
- 文档页数:16
成人高考高升专数学常用知识点及公式温馨提示:数学公式不能死记硬背,而是理解掌握后灵活运用,上课第一章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素 解析:集合的交集或并集主要以列举法或不等式的形式出现知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。
若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。
题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲 A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件) B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件 C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第二章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
第13章轴对称0 0D / 高效速记︓初中数学必考公式定律与知识梳理 -@44 D/D/6>D>D/-@>% )一轴对称1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(或轴)对称.2.轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.拓展延伸两个图形成轴对称和轴对称图形的前提不一样,前者是两个图形,后者是一个图形.成轴对称的两个图形不仅大小㊁形状一样,而且与位置有关.OBNRQAM P图131例13.1如图131所示,点P 是øA O B 外的一点,点M ,N 分别是øA O B 两边上的点,点P 关于O A 的对称点Q 恰好落在线段MN 上,点P 关于O B 的对称点R 落在MN 的延长线上.若P M =2.5c m ,P N =3c m ,MN =4c m ,则线段Q R 的长为( )c m .A .4.5B .5.5C .6.5D .7所以P M=M Q,P N=N R.因为P M=2.5c m,P N=3c m,MN=4c m,所以N R=3c m,M Q=2.5c m,即N Q=MN-M Q=4-2.5=1.5(c m),则线段Q R的长为R N+N Q=3+1.5=4.5(c m).答案A3.垂直平分线经过线段中点并且垂直于这条线段的直线,叫作这条线段的垂直平分线.4.线段的垂直平分线的性质(1)线段的垂直平分线上的点,到这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.5.轴对称和轴对称图形的性质(1)如果两个图形关于某条直线对称,那么这条直线叫作对称轴,对称轴是两个图形中任何一对对应点所连线段的垂直平分线.(2)轴对称图形的对称轴是轴对称图形中任何一对对应点所连线段的垂直平分线.关键提醒轴对称图形(或关于某条直线对称的两个图形),它们的对应线段相等,对应角相等.6.轴对称的特征如果一个图形关于某条直线对称,那么连接对称点的线段的垂直平分线就是该图形的对称轴.二画轴对称图形1.作图形的对称轴找对称轴的方法:首先判断是不是轴对称图形,再观察是否存在一条直线将这个图形分成两部分,将这两部分沿这条直线折叠,如果重合,这条直线就是对称轴.另外,要全方位地去找,不要漏掉对称轴.2.画轴对称图形组成几何图形最基本的元素是 点 ,所以画轴对称图形必须掌握对称点的画法(即过已知点作对称轴的垂线并加倍延长即可).画轴对称图形的步骤如下:(1)确定对称轴.(2)作各定点关于对称轴的对称点.(3)按原图的形状依次连接各对称点.例13.2如图132所示,已知әA B C和直线l,试画出әA B C关于直线l的对称图形.解析分别作出A㊁B㊁C三点关于直线l的对称点A'㊁B'㊁C',后顺次连接即可.ABCl图132ACB BC(A )l图133解所画图形如图133所示:әA'B'C'即为所求.3.用坐标表示轴对称(1)已知点关于x轴或y轴对称的点的坐标的规律:点(x,y)关于x(2)如何在坐标系中作一个已知图形的对称图形:只要找到一些特殊点(如多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.例13.3在平面直角坐标系中,已知点A(2,3),则点A关于x轴对称的点的坐标为().A.(3,2)B.(2,-3)C.(-2,3)D.(-2,-3)解析因为点A(2,3),所以点A关于x轴对称的点的坐标为(2,-3).答案B三等腰三角形1.等腰三角形有两条边相等的三角形叫作等腰三角形.相等的两条边叫作腰,另一条边叫作底边,两腰所夹的角叫作顶角,底边与腰的夹角叫作底角.2.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成 等边对等角 ).性质2:等腰三角形的顶角平分线㊁底边上的中线㊁底边上的高相互重合(简称 三线合一 ).性质3:等腰三角形是轴对称图形,底边的垂直平分线就是它的对称轴.知识拓展等腰三角形是轴对称图形,其顶角的平分线㊁底边上的中线㊁底边上的高线所在的直线是对称轴.等腰三角形的外心㊁内心㊁重心和垂心都在底边的高线上(即 四心共线 ).等腰直角三角形的底角都等于45ʎ.关键提醒运用等腰三角形的性质解题时,在等腰三角形中若已知一内角为锐角,而未指明是底角还是顶角时,应注意分类讨论,防止漏解.3.等腰三角形的判定方法(1)利用定义:两条边相等的三角形是等腰三角形.(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成 等角对等边 ).AE D BC图134例13.4如图134所示,D 为әA B C 内一点,C D 平分øA C B ,B E ʅC D ,垂足为D ,交A C 于点E ,øA =øA B E .若A C =5,B C =3,则B D 的长为( ).A .2.5B .1.5C .2D .1解如图134所示,因为C D 平分øA C B ,B E ʅC D ,所以B C =C E .又因为øA =øA B E ,所以A E =B E .所以B D =12B E =12A E =12(A C -B C ).因为A C =5,B C =3,所以B D =12(5-3)=1.答案D四等边三角形1.等边三角形在等腰三角形中,有一种特殊的等腰三角形 三边都相等的三角形,我们把这样的三角形叫作等边三角形.知识拓展由定义可知,等边三角形是一种特殊的等腰三角形,也就是说等腰三角形包括等边三角形,因而等边三角形具有等腰三角形的一切性质.2.等边三角形的性质和判定方法(1)性质:①等边三角形的三个内角都相等,并且每一个角都等于60ʎ.②等边三角形是轴对称图形,它有三条对称轴.(2)判定:①三个角都相等的三角形是等边三角形.ADCEB图135②有一个角是60ʎ的等腰三角形是等边三角形.例13.5如图135所示,等边әA B C 的边长是6c m ,B D 是中线,延长B C 至E ,使C E =C D ,连接D E ,则D E 的长是c m .解析因为әA B C 是等边三角形,B D 是中线,所以øA B C =øA C B =60ʎ,所以øD B C =30ʎ.又因为C E =C D ,所以øC D E =øC E D .又因为øB C D =øC D E +øC E D ,所以øC D E =øC E D =12øB C D =30ʎ.所以øD B C =øC E D ,即D B =D E .因为等边әA B C 的边长是6c m ,所以D E =B D =33c m .五含30°角的直角三角形在直角三角形中,如果一个锐角等于30ʎ,那么它所对的直角边等于斜边的一半.关键提醒应用此性质的前提条件是 在直角三角形中 .例13.6如图136所示,әA B C 中,øC =90ʎ,A C =3,øB =30ʎ,点P 是B C 边上的动点,则A P 长不可能是( ).30°C BP图136A.3.5B.4.2C.5.8D.7解析由垂线段最短可知,A P的长不可小于3.因为在әA B C中,øC= 90ʎ,A C=3,øB=30ʎ,所以A B=6,所以A P的长不能大于6.故选D.答案D。
第1节 坐标系与参数方程第1课时 坐标系最新考纲 1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化;3.能在极坐标系中给出简单图形表示的极坐标方程.知 识 梳 理1.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面上的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面的关系式成立:⎩⎨⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0), 这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程[微点提醒] 关于极坐标系1.极坐标系的四要素:①极点;②极轴;③长度单位;④角度单位和它的正方向,四者缺一不可.2.由极径的意义知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系,约定极点的极坐标是极径ρ=0,极角可取任意角.3.极坐标与直角坐标的重要区别:多值性.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( ) (3)在极坐标系中,曲线的极坐标方程不是唯一的.( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( )解析 (1)一般认为ρ≥0,当θ∈[0,2π)时,平面上的点(除去极点)才与极坐标建立一一对应关系;(4)极坐标θ=π(ρ≥0)表示的曲线是一条射线. 答案 (1)× (2)√ (3)√ (4)×2.(选修4-4P15习题T3改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π4 解析 ∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1); ∴ρ=1sin θ+cos θ⎝⎛⎭⎪⎫0≤θ≤π2.答案 A3.(选修4-4P15T4改编)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A.⎝ ⎛⎭⎪⎫1,π2B.⎝ ⎛⎭⎪⎫1,-π2C.(1,0)D.(1,π)解析 法一 由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,即x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝ ⎛⎭⎪⎫1,-π2.法二 由ρ=-2sin θ=2cos ⎝ ⎛⎭⎪⎫θ+π2,知圆心的极坐标为⎝ ⎛⎭⎪⎫1,-π2,故选B. 答案 B4.(2015·湖南卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0,即x 2+(y -1)2=1. 答案 x 2+(y -1)2=15.(2014·广东卷)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.解析 将2ρcos 2 θ=sin θ两边同乘以ρ,得2(ρcos θ)2=ρsin θ,化为直角坐标方程为2x 2=y ①,C 2:ρcos θ=1化为直角坐标方程为x =1②,联立①②可解得⎩⎨⎧x =1,y =2,所以曲线C 1与C 2交点的直角坐标为(1,2). 答案 (1,2)6.(2014·陕西卷)在极坐标系中,点⎝⎛⎭⎪⎫2,π6到直线ρsin(θ-π6)=1的距离是________. 解析 将极坐标⎝ ⎛⎭⎪⎫2,π6转化为直角坐标为(3,1).极坐标方程ρsin ⎝ ⎛⎭⎪⎫θ-π6=1转化为直角坐标方程为x -3y +2=0,则点(3,1)到直线x -3y +2=0的距离d =|3-3×1+2|1+(-3)2=1.答案 1考点一 平面直角坐标系中的伸缩变换易错警示【例1】 在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y 后的图形.(1)5x +2y =0;(2)x 2+y 2=1. 解 伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y则⎩⎨⎧x =2x ′,y =3y ′.(1)若5x +2y =0,则5(2x ′)+2(3y ′)=0,所以5x +2y =0经过伸缩变换后的方程为5x ′+3y ′=0,为一条直线. (2)若x 2+y 2=1,则(2x ′)2+(3y ′)2=1,则x 2+y 2=1经过伸缩变换后的方程为4x ′2+9y ′2=1,为椭圆. 规律方法 伸缩变换后方程的求法平面上的曲线y =f (x )在变换φ:⎩⎨⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝ ⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.易错警示 应用伸缩变换时,要分清变换前的点坐标(x ,y )与变换后的点坐标(x ′,y ′).【训练1】 在同一坐标系中,求将曲线y =12sin 3x 变为曲线y =sin x 的伸缩变换公式.解 将曲线y =12sin 3x ①经过伸缩变换变为y =sin x ,即y ′=sin x ′②, 设伸缩变换公式是⎩⎨⎧x ′=λx ,y ′=μy(λ>0,μ>0),把伸缩变换关系式代入②式得:μy =sin λx 与①式的系数对应相等得到⎩⎨⎧μ=2,λ=3,所以,变换公式为⎩⎨⎧x ′=3x ,y ′=2y .考点二 极坐标与直角坐标的互化【例2】 (2019·德阳诊断)已知极坐标系的极点为平面直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,曲线C 的参数方程为⎩⎨⎧x =-1+2cos α,y =1+2sin α(α为参数),直线l 过点(-1,0),且斜率为12,射线OM 的极坐标方程为θ=3π4.(1)求曲线C 和直线l 的极坐标方程;(2)已知射线OM 与曲线C 的交点为O ,P ,与直线l 的交点为Q ,则线段PQ 的长.解 (1)∵曲线C 的参数方程为⎩⎨⎧x =-1+2cos α,y =1+2sin α(α为参数),∴曲线C 的普通方程为(x +1)2+(y -1)2=2,将x =ρcos θ,y =ρsin θ代入整理得ρ+2cos θ-2sin θ=0, 即曲线C 的极坐标方程为ρ=22sin ⎝ ⎛⎭⎪⎫θ-π4.∵直线l 过点(-1,0),且斜率为12,∴直线l 的方程为y =12(x +1),∴直线l 的极坐标方程为ρcos θ-2ρsin θ+1=0. (2)当θ=3π4时,|OP |=22sin ⎝ ⎛⎭⎪⎫3π4-π4=22,|OQ |=12×22+22=23, 故线段PQ 的长为22-23=523.规律方法 1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式;x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx (x ≠0).2.进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等技巧.【训练2】 (1)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线上,求a 的值及直线的直角坐标方程. (2)把曲线C 1:x 2+y 2-8x -10y +16=0化为极坐标方程. 解 (1)∵点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,∴a =2cos ⎝ ⎛⎭⎪⎫π4-π4=2,所以直线的方程可化为ρcos θ+ρsin θ=2, 从而直线的直角坐标方程为x +y -2=0. (2)将⎩⎨⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0,得ρ2-8ρcos θ-10ρsin θ+16=0,所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. 考点三 曲线极坐标方程的应用【例3-1】 (2019·太原二模)点P 是曲线C 1:(x -2)2+y 2=4上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中点,将点P 逆时针旋转90°得到点Q ,设点Q 的轨迹为曲线C 2. (1)求曲线C 1,C 2的极坐标方程;(2)射线θ=π3(ρ>0)与曲线C 1,C 2分别交于A ,B 两点,定点M (2,0),求△MAB 的面积.解 (1)由曲线C 1的直角坐标方程(x -2)2+y 2=4可得曲线C 1的极坐标方程为ρ=4cos θ.设Q (ρ,θ),则P ⎝ ⎛⎭⎪⎫ρ,θ-π2,则有ρ=4cos ⎝ ⎛⎭⎪⎫θ-π2=4sin θ.所以曲线C 2的极坐标方程为ρ=4sin θ. (2)M 到射线θ=π3(ρ>0)的距离d =2sin π3=3,|AB |=ρB -ρA =4⎝ ⎛⎭⎪⎫sin π3-cos π3=2(3-1),所以S △MAB =12|AB |×d =12×2(3-1)×3=3- 3.【例3-2】 (2017·全国Ⅱ卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)设点M 为曲线C 1上的动点,点P 在线段OM 上,且|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16得C 2的极坐标方程为ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0). 由题设知|OA |=2,ρB =4cos α, 于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫2α-π3-32≤2+ 3. 当α=-π12时,S 取得最大值2+ 3. 所以△OAB 面积的最大值为2+ 3.规律方法 求线段的长度有两种方法.方法一,先将极坐标系下点的坐标、曲线方程转化为平面直角坐标系下的点的坐标、曲线方程,然后求线段的长度.方法二,直接在极坐标系下求解,设A (ρ1,θ1),B (ρ2,θ2),则|AB |=ρ21+ρ22-2ρ1ρ2cos (θ2-θ1);如果直线过极点且与另一曲线相交,求交点之间的距离时,求出曲线的极坐标方程和直线的极坐标方程及交点的极坐标,则|ρ1-ρ2|即为所求.【训练3】 (1)在极坐标系中,求直线ρsin ⎝ ⎛⎭⎪⎫θ+π4=2被圆ρ=4截得的弦长.(2)(2019·衡阳二模)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos φ,y =sin φ(φ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A ,B 为C 上两点,且OA ⊥OB ,设射线OA :θ=α,其中0<α<π2. (ⅰ)求曲线C 的极坐标方程; (ⅱ)求|OA |·|OB |的最小值.解 (1)由ρsin ⎝ ⎛⎭⎪⎫θ+π4=2,得22(ρsin θ+ρcos θ)=2,可化为x +y -22=0.圆ρ=4可化为x 2+y 2=16,圆心(0,0)到直线x +y -22=0的距离d =|22|2=2, 由圆中的弦长公式,得弦长 l =2r 2-d 2=242-22=4 3. 故所求弦长为4 3.(2)(ⅰ)将曲线C 的参数方程⎩⎨⎧x =2cos φ,y =sin φ(φ为参数)化为普通坐标方程为x 22+y2=1.因为x =ρcos θ,y =ρsin θ,所以曲线C 的极坐标方程为ρ2=21+sin 2 θ.(ⅱ)根据题意:射线OB 的极坐标方程为θ=α+π2或θ=α-π2, 所以|OA |=21+sin 2 α,|OB |=21+sin 2⎝ ⎛⎭⎪⎫α±π2=21+cos 2 α,所以|OA |·|OB |=21+sin 2 α·21+cos 2 α=4(1+sin 2α)(1+cos 2 α)≥21+sin 2 α+1+cos 2 α2=43. 当且仅当sin 2 α=cos 2 α,即α=π4时,|OA |·|OB |取得最小值为43.[思维升华]1.曲线的极坐标方程化成直角坐标方程:对于简单的我们可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以ρ等.2.直角坐标(x ,y )化为极坐标(ρ,θ)的步骤: (1)运用ρ=x 2+y 2,tan θ=yx (x ≠0);(2)在[0,2π)内由tan θ=yx (x ≠0)求θ时,由直角坐标的符号特征判断点所在的象限(即θ的终边位置). [易错防范]1.确定极坐标方程,极点、极轴、长度单位、角度单位及其正方向,四者缺一不可.2.平面上点的直角坐标的表示形式是唯一的,但点的极坐标的表示形式不唯一.当规定ρ≥0,0≤θ<2π,使得平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点.3.进行极坐标方程与直角坐标方程互化时,应注意两点: (1)注意ρ,θ的取值范围及其影响.(2)重视方程的变形及公式的正用、逆用、变形使用.基础巩固题组 (建议用时:60分钟)1.求双曲线C :x 2-y 264=1经过φ:⎩⎨⎧x ′=3x ,2y ′=y变换后所得曲线C ′的焦点坐标.解 设曲线C ′上任意一点P ′(x ′,y ′), 由上述可知,得⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程,可见仍是双曲线,则焦点F 1(-5,0),F 2(5,0)为所求.2.(2018·武汉模拟)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为:x 2+y 2=x +y , 即x 2+y 2-x -y =0, 直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎨⎧x 2+y 2-x -y =0,x -y +1=0,得⎩⎨⎧x =0,y =1,故直线l 与圆O 公共点的一个极坐标为⎝ ⎛⎭⎪⎫1,π2.3.以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程. 解 (1)∵ρ=x 2+y 2,ρsin θ=y , ∴ρ=21-sin θ化为ρ-ρsin θ=2,得ρ2=(2+ρsin θ)2,∴曲线的直角坐标方程为x 2=4y +4. (2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin(θ0+π),解得θ0=π6或θ0=5π6,直线l 的极坐标方程θ=π6(ρ∈R )或θ=5π6(ρ∈R ).4.(2019·安阳二模)在平面直角坐标系xOy 中,已知直线l :x +3y =53,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin θ. (1)求直线l 的极坐标方程和圆C 的直角坐标方程;(2)射线OP :θ=π6与圆C 的交点为O ,A ,与直线l 的交点为B ,求线段AB 的长. 解 (1)因为x =ρcos θ,y =ρsin θ,直线l :x +3y =53, 所以直线l 的极坐标方程为ρcos θ+3ρsin θ=53, 化简得2ρsin ⎝ ⎛⎭⎪⎫θ+π6=53,即为直线l 的极坐标方程.由ρ=4sin θ,得ρ2=4ρsin θ, 所以x 2+y 2=4y ,即x 2+(y -2)2=4, 即为圆C 的直角坐标方程. (2)由题意得ρA =4sin π6=2, ρB =532sin ⎝ ⎛⎭⎪⎫π6+π6=5,所以|AB |=|ρA -ρB |=3.5.(2019·福州四校期末联考)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+cos α,y =2+sin α(α为参数),直线C 2的方程为y =3x .以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 1和曲线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于A ,B 两点,求1|OA |+1|OB |.解 (1)由曲线C 1的参数方程为⎩⎨⎧x =2+cos α,y =2+sin α(α为参数),得曲线C 1的普通方程为(x -2)2+(y -2)2=1,则C 1的极坐标方程为ρ2-4ρcos θ-4ρsin θ+7=0,由于直线C 2过原点,且倾斜角为π3,故其极坐标方程为θ=π3(ρ∈R ).(2)由⎩⎪⎨⎪⎧ρ2-4ρcos θ-4ρsin θ+7=0,θ=π3得ρ2-(23+2)ρ+7=0,设A ,B 对应的极径分别为ρ1,ρ2,则ρ1+ρ2=23+2,ρ1ρ2=7,∴1|OA |+1|OB |=|OA |+|OB ||OA |·|OB |=ρ1+ρ2ρ1ρ2=23+27.6.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos φ,y =sin φ(其中φ为参数),曲线C 2:x 2+y 2-2y =0.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l :θ=α(ρ≥0)与曲线C 1,C 2分别交于点A ,B (均异于原点O ). (1)求曲线C 1,C 2的极坐标方程;(2)当0<α<π2时,求|OA |2+|OB |2的取值范围.解 (1)∵⎩⎨⎧x =2cos φ,y =sin φ,∴x 22+y 2=1,由⎩⎨⎧x =ρcos θ,y =ρsin θ,得曲线C 1的极坐标方程为ρ2=21+sin 2 θ;∵x 2+y 2-2y =0,∴曲线C 2的极坐标方程为ρ=2sin θ.(2)设A ,B 对应的极径分别为ρ1,ρ2,则由(1)得|OA |2=ρ21=21+sin 2α,|OB |2=ρ22=4sin 2α, ∴|OA |2+|OB |2=21+sin 2α+4sin 2 α=21+sin 2 α+4(1+sin 2α)-4, ∵0<α<π2,∴1<1+sin 2α<2,∴6<21+sin 2α+4(1+sin 2α)<9, ∴|OA |2+|OB |2的取值范围为(2,5).能力提升题组 (建议用时:20分钟)7.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =3+2cos α,y =1+2sin α(α为参数).以平面直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)过原点O 的直线l 1,l 2分别与曲线C 交于除原点外的A ,B 两点,若∠AOB =π3,求△AOB 的面积的最大值.解 (1)曲线C 的普通方程为(x -3)2+(y -1)2=4, 即x 2+y 2-23x -2y =0,所以,曲线C 的极坐标方程为ρ2-23ρcos θ-2ρsin θ=0,即ρ=4sin ⎝ ⎛⎭⎪⎫θ+π3.(2)不妨设A (ρ1,θ),B ⎝ ⎛⎭⎪⎫ρ2,θ+π3,θ∈⎝ ⎛⎭⎪⎫-π2,π2. 则ρ1=4sin ⎝ ⎛⎭⎪⎫θ+π3,ρ2=4sin ⎝ ⎛⎭⎪⎫θ+2π3,△AOB 的面积S =12|OA |·|OB |sin π3 =12ρ1ρ2sin π3=43sin ⎝ ⎛⎭⎪⎫θ+π3sin ⎝ ⎛⎭⎪⎫θ+2π3=23cos 2θ+3≤3 3.所以,当θ=0时,△AOB 的面积取最大值3 3.8.(2018·厦门外国语中学模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数);在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2 θ=sin θ.(1)求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若射线l :y =kx (x ≥0)与曲线C 1,C 2的交点分别为A ,B (A ,B 异于原点),当斜率k ∈(1,3]时,求|OA |·|OB |的取值范围.解 (1)曲线C 1的直角坐标方程为(x -1)2+y 2=1,即x 2-2x +y 2=0,将⎩⎨⎧x =ρcos θ,y =ρsin θ代入并化简得曲线C 1的极坐标方程为ρ=2cos θ. 由ρcos 2θ=sin θ两边同时乘ρ,得ρ2cos 2θ=ρsin θ,结合⎩⎨⎧x =ρcos θ,y =ρsin θ得曲线C 2的直角坐标方程为x 2=y .(2)设射线l :y =kx (x ≥0)的倾斜角为φ,则射线的极坐标方程为θ=φ,且k =tan φ∈(1,3].联立⎩⎨⎧ρ=2cos θ,θ=φ,得|OA |=ρA =2cos φ,联立⎩⎨⎧ρcos 2θ=sin θ,θ=φ,得|OB |=ρB =sin φcos 2 φ,所以|OA |·|OB |=ρA ·ρB =2cos φ·sin φcos 2 φ=2tan φ=2k ∈(2,23],即|OA |·|OB |的取值范围是(2,23].。
八年级数学上册 各章知识点汇总第十一章 三角形一、知识结构图边与三角形有关的线段 高中线角平分线三角形的内角和 多边形的内角和三角形的外角和 多边形的外角和二、知识定义三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
三、公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形对角线的条数:(1)从n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n 边形共有23)-n(n 条对角线。
第十二章 全等三角形一、全等三角形角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4.证明两个三角形全等的基本思路:多边形的角和:多边形的外角和为360°。
多边形内角和公式: n 边形的内角和等于(n-2)·180°角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)边边边:三边对应相等的两个三角形全等(可简写成“SSS”)3.全等三角形的判定③全等三角形的对应边上的对应中线、角平分线、高线分别相等。
第十三章:数学方程一、方程的概念及解法1. 方程的概念方程是含有未知数的等式,用来表示两个式子之间的关系。
一般形式为: ax+b=0(a≠0),其中a、b为已知数,x为未知数。
2. 方程的解法(1)方程两边加减同一个数或同一个式子,不改变方程的解;(2)方程两边乘除同一个不为零的数,不改变方程的解;(3)开平方、立方,对称等运算不改变方程的解。
二、一元一次方程1. 一元一次方程的概念一元一次方程是指一个未知数的一次方程,其一般形式为:ax+b=0(a≠0),其中a、b为已知数,x为未知数。
2. 一元一次方程的解法(1)解一元一次方程的基本步骤是“去括号、去分母、合并同类项、移项”。
三、一元一次方程的应用1. 模型建立利用一元一次方程解决实际问题时,首先要建立数学模型,把实际问题中的已知条件和未知量用一个方程表示出来。
2. 问题求解根据数学模型,利用一元一次方程解决实际问题时,可以通过逐步推进的方式,逐步求解出未知量的值。
四、一元一次方程组1. 一元一次方程组的概念一元一次方程组是由若干个未知数的一次方程组成的集合。
它的一般形式为:{ax+by=mcx+dy=n(a、b、c、d、m、n为已知数)2. 一元一次方程组的解法(1)加法消元法(2)减法消元法(3)代入法五、实际问题中的一元一次方程组1. 模型建立在实际问题中,通过观察问题,建立对应的一元一次方程组模型。
2. 问题求解根据数学模型,利用一元一次方程组解决实际问题时,可以通过逐步推进的方式,逐步求解出未知量的值。
结语:通过本章的学习,相信大家对方程及其解法有了更深入的了解,能够灵活运用于实际问题中。
希望大家在学习的过程中能够多加练习,不断巩固知识,提高解题能力。
一、二元一次方程组1. 二元一次方程组的概念二元一次方程组是由两个未知数的一次方程组成的集合。
它的一般形式为:{ax+by=mcx+dy=n(a、b、c、d、m、n为已知数)2. 二元一次方程组的解法(1)加法消元法加法消元法是指通过两个方程相加或相减来消去其中一个未知数的系数得到一个新的方程,从而解得一个未知数的值,再代回原方程组求解另一个未知数。
八年级第13章数学知识点
八年级的第13章主要包含了三大数学知识点:圆的相关概念、圆的面积和周长、相交弧与相交角。
以下将分别进行介绍。
一、圆的相关概念
圆是平面上所有离圆心距离相等的点的集合。
其中,离圆心最
远的距离称为半径,离圆心距离相等的圆上任意两点之间的距离
称为直径,直径等于半径的两倍。
此外,圆心到圆上任意一点的
距离称为弦长。
常见的圆的相关概念还包括切线和弦。
切线是与圆相切且垂直
于半径的直线,其在切点处与圆的交点为切点;弦是连接圆上任
意两点的线段。
二、圆的面积和周长
圆的周长和面积是圆的重要属性,其计算公式如下:
周长:C = 2πr 或C = πd(其中,r为半径,d为直径)
面积:S = πr²
其中,π为一个无理数,最常使用3.14来近似表示。
三、相交弧与相交角
当两个圆相交时,所得到的弦称为相交弦,而两个相交弦所对
应的弧则称为相交弧。
此外,两个圆相交所成的角被称为相交角。
在计算相交角时,我们可以利用相交弦所对应的弧的夹角来推导。
设两个圆相交于点A、B,各自的弦AB长为a、b,且它们夹角的度数为θ,则有:
θ = (a + b) ÷ 2r
其中,r为两个圆的半径之和。
以上就是八年级第13章数学知识点的全部内容。
对于这些知识点,我们需要不断地进行实践及练习,加深理解,提高自己的数学能力,以便在日后的学习和生活中能够灵活应用。
数学十三章知识点总结一、图形的旋转在十三章中,我们学习了图形的旋转,这是一个非常重要的概念。
当我们将一个图形绕着一个点旋转一定的角度时,我们可以得到一个新的图形,它与原来的图形相似,但位置不同。
图形的旋转可以用旋转矩阵来表示,利用矩阵可以方便地计算出旋转后的图形的坐标。
二、相似性与全等相似性是指两个图形的形状相似,但大小不同。
全等是指两个图形的形状和大小都相同。
我们学习了如何判断两个图形是否相似或全等,以及如何利用相似性和全等来解决与图形相关的各种问题。
三、三角形的面积在十三章中,我们学习了如何计算三角形的面积。
根据三角形的底和高的关系,我们可以很容易地计算出三角形的面积。
此外,我们还学习了如何利用海伦公式来计算任意三角形的面积。
四、多边形的面积在十三章中,我们学习了如何计算各种多边形的面积。
对于正多边形,我们可以利用正多边形的面积公式来计算其面积。
对于不规则多边形,我们可以将其分解成若干个正多边形,然后分别计算出每个正多边形的面积,再将它们相加即可得到整个多边形的面积。
五、立体图形的表面积和体积在十三章中,我们学习了如何计算各种立体图形的表面积和体积。
对于各种立体图形,我们可以利用它们各自的公式来计算其表面积和体积。
此外,我们还学习了如何将立体图形分解成若干个平面图形,然后再计算出每个平面图形的面积,再将它们相加即可得到整个立体图形的表面积。
同样地,对于立体图形的体积,我们也可以将其分解成若干个平面图形,然后再计算出每个平面图形的面积,再将它们相加即可得到整个立体图形的体积。
六、平面几何与立体几何在十三章中,我们学习了平面几何和立体几何的知识。
平面几何是指在平面上进行的几何研究,主要涉及到各种图形的性质和计算面积等问题。
立体几何是指对立体图形进行的几何研究,主要涉及到各种立体图形的表面积和体积等问题。
这些知识点对我们理解和运用数学知识都有很大的帮助。
七、数学实践在十三章中,我们还学习了如何将数学知识应用到实际生活中。
八上数学公式:第十一章:三角形1、三角形两边之和大于第三边;三角形两边之差小于第三边;(注:只要最短的两边之和大于最长边,则可围成三角形)2、两边之差<第三边<两边之和,即:第三边c 的取值范围是:a-b <c <a+b;3、锐角:大于0°小于90°的角,钝角:大于90°小于180°的角,4、锐角三角形的三条高交于三角形内部一点;钝角三角形的三条高不相交于一点,但三条高所在直线交于外部一点;直角三角形的三条高交于直角顶点;(注:三角形三条高所在直线交于一点)D DB图3图4A∵AD 是高: ∴∠ADB=∠ADC=90°5、三角形三条中线相交于三角形内一点,且把三角形分成面积相等的两部分; 三角形三条中线的交点叫做三角形的重心。
:如图3:∵AD 是△ABC 的中线,∴1;222BD DC BC BC BD DC ==== 6、三角形三条角平分线相交于三角形内一点,且这点到三角形三边的距离相等;如图4: ∵AD 是△ABC 角平分线,∴1222BAD CAD BAC BAC BAD CAD ∠=∠=∠∠=∠=∠,; 7、三角形的高、中线、与角平分线都是线段;8、三角形具有稳定性,而四边形没有稳定性。
9、三角形三个内角的和等于180°;10、正北与正北平行,正南与正南平行;11、直角三角形的两个锐角互余,即相加等于90°;有两个角互余的三角形是直角三角形;12、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
13、三角形的外角等于与它不相邻的两个内角和;∴∠ACD=∠A+∠B14、过多边形的一个顶点出发作它的对角线,可以作出(n -3)条对角线;15、多边形的对角线总数=12()3n n -条; 16、正多边形:边和角都相等的多边形;正三角形也就是等边三角形,正四边形也就是正方形;17、n 边形内角和等于(n -2)×180°;多边形外角和都等于360°;正n 边形每个内角的度数=2180n n ⨯︒(-);正n 边形每个外角的度数=360n︒ ; (注:内角相等,则外角也相等,因为外角与相邻内角的和等于180°)18、一个多边形的边都相等,则它的内角不一定都相等;反之,一个多边形的内角都相等,则它的边不一定都相等;多边形最多有3个锐角;19、只有正三角形、正四边形、正六边形可以一种镶嵌。