高中物理复习试题:选章专项训练气体压强的计算及微观解释
- 格式:doc
- 大小:43.00 KB
- 文档页数:8
高一物理气体的状态参量、压强的微观解释、单元练习北师大版【本讲教育信息】一. 教学内容:气体的状态参量、压强的微观解释、单元练习[知识归纳与总结]1. 气体的压强:(1)气体分子运动的特点:①气体分子之间有很大的空隙。
②气体分子之间相互作用力十分微弱。
分子间无相互作用力的气体为理想气体,一定质量的理想气体的内能只由温度决定。
③气体分子运动的速率很大。
(2)气体的压强:①压强单位:在国际单位制中,压强的单位是帕斯卡,简称帕,符号是Pa。
②气体压强的微观意义:气体的压强就是大量气体分子对器壁的频繁碰撞而产生,大小等于大量气体分子作用在器壁单位面积上的平均作用力。
2. 气体的压强、体积、温度间的关系:(1)气体压强和体积的关系:在温度不变时:一定质量的气体,体积减小时,压强增大,体积增大时,压强减小。
(2)气体体积、压强和温度的关系:①一定质量的气体,压强不变时,温度升高,体积增大。
②一定质量的气体,体积不变时,温度升高,压强增大。
③气体体积、压强、温度三者之间的关系——理想气体状态方程:【典型例题】例1. 对于一定量的理想气体,下列四个论述中正确的是()A. 当分子热运动剧烈时,压强必变大B. 当分子热运动剧烈时,压强可以不变C. 当分子间的平均距离变大时,压强必变小D. 当分子间的平均距离变大时,压强必变大解析:从微观来说,压强是单位时间内作用在单位面积上的冲量,即压强微观上由分子平均动能和分子数密度决定。
正确答案:B例2. 金属制成的气缸中装有柴油与空气的混合物,有可能使气缸中柴油达到燃点的过程是()A. 迅速向里推活塞B. 迅速向外拉活塞C. 缓慢向里推活塞D. 缓慢向外拉活塞解析:迅速往里推活塞,可使气体温度迅速升高,而来不及与外界热交换。
正确答案:A例3. 一定质量的理想气体处于某一初始状态,若要使它经历两个状态变化过程,压强仍回到初始状态的数值,则下列过程中,可以采用()A. 先经等容降温,再经等温压缩B. 先等容降温,再等温膨胀C. 先等容升温,再等温膨胀D. 先等温膨胀,再等容升温等容降温使压强减小;等温膨胀使压强再次减小,故B选项错误。
高三物理气体的压强试题答案及解析1.(9分)如图,竖直平面内有一直角形内径相同的细玻璃管,A端封闭,C端开口,AB="BC"=l0,且此时A、C端等高。
管内水银总长度为l,玻璃管AB内封闭长为l/2的空气柱。
已知大气压强为l汞柱髙。
如果使玻璃管绕B点在竖直平面内顺时针缓慢地转动至BC管水平,求此时AB 管内气体的压强为多少汞柱高?管内封入的气体可视为理想气体且温度不变。
【答案】【解析】因BC长度为,故顺时针旋转至BC水平方向时水银未流出。
1分设A端空气柱此时长为x,管内横截面积为S,对A内气体:1分1分1分1分对A中密闭气体,由玻意耳定律得2分联立解得 1分即:(汞柱高) 1分【考点】对于封闭气体要先明确初末状态的温度、压强和体积,再选择合适的气体实验定律列式求解;要明确用cmHg作为压强的单位时,计算较为简便.2.(09·全国卷Ⅰ·14)下列说法正确的是()A.气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力B.气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量C.气体分子热运动的平均动能减少,气体的压强一定减小D.单位面积的气体分子数增加,气体的压强一定增大【答案】A【解析】本题考查气体部分的知识.根据压强的定义A正确,B错.气体分子热运动的平均动能减小,说明温度降低,但不能说明压强也一定减小,C错.单位体积的气体分子增加,但温度降低有可能气体的压强减小,D错。
3.如图所示,用一根与绝热活塞棍连的细线将绝热气缸悬挂在某一高度静止不动,气缸开口向上,内封闭”定质量的气体,缸内活塞可以无摩擦移动且不漏气,现将细线剪断,让气缸自由下落,下列说法正确的是A.气体压强减小,气体对外界做功B.气体压强增大,外界对气体做功C.气体体积减小,气体内能增大D.气体体积增大,气体内能减小【答案】BC【解析】在细线剪断前,活塞在绳子的拉力,重力,气体的压强力作用下平衡,即,所以,所以当剪断细线后,下落过程中,活塞相对气缸向下运动,对气体做功,气体压强增大,体积减小,所以内能增加。
高二物理气体的压强试题答案及解析1.如图封闭在气缸内一定质量的理想气体,如果保持气体体积不变,当温度升高时,以下说法正确的是A.气体的密度增大B.所有气体分子的运动速率一定增大C.气体的压强增大D.每秒撞击单位面积器壁的气体分子数增多【答案】CD【解析】质量一定的气体,体积不变,当温度升高时,是一个等容变化,压强变大。
压强变大的原因是:(1)温度升高:气体的平均动能增加;(2)单位时间内撞击单位面积器壁的分子数增多。
质量一定,体积一定,所以气体的密度不变.故A错误.温度升高,气体分子的平均动能增加,但不一定每个分子的运动速率都增大,故B错误。
质量一定的气体,体积不变,当温度升高时,是一个等容变化.压强变大.故C正确.变化为等容变化,温度升高,分子密度不变但分子平均动能增大,故每秒撞击单位面积器壁的分子数增多.故D正确。
【考点】本题考查了理想气体状态方程、气体压强的微观解释。
2.一定质量的理想气体,状态变化过程如P-T图上abcd图线所示,其中bc⊥ab,cd∥ab,由图线可知A.ab过程,气体不做功B.bc过程气体膨胀对外做功C.cd过程,外界压缩气体做功D.da过程,气体膨胀对外做功【答案】AD【解析】ab为等容线.故不做功;选项A正确;连接oc和ob可知,状态C的体积较小,因此bc过程体积减小,外界对气体做功,选项B错误;连接oc和od可知状态d的体积较大,因此选项C错误;同理选项D正确;故选AD【考点】考查气体状态方程点评:本题难度中等,理解图线斜率的物理意义,掌握状态参量变化特别是体积变化是关键3.如图所示,竖直放置的弯曲管A端开口,B端封闭,密度为ρ的液体将两段空气封闭在管内,管内液面高度差分别为h1、h2和h3,则B端气体的压强为(已知大气压强为p)()A.p0-ρg(h1+h2-h3)B.p0-ρg(h1+h3)C.p0-ρg(h1+h3-h2)D.p0-ρg(h1+h2)【答案】B【解析】根据压强的计算特点,相同高度出的压强处处相等,则,,,上述三式联立化简则pB =p-ρg(h1+h3)【考点】压强点评:本题考查了压强的计算方式。
2023高考一轮知识点精讲和最新高考题模拟题同步训练第十九章热学专题113 气体第一部分知识点精讲1.气体压强(1)产生的原因由于大量气体分子无规则运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强。
(2)决定因素①宏观上:决定于气体的温度和体积。
②微观上:决定于分子的平均动能和分子的密集程度。
2.气体压强的求解方法(1)平衡状态下气体压强的求法(2)加速运动系统中封闭气体压强的求法恰当地选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,然后依据牛顿第二定律列式求封闭气体的压强,把压强问题转化为力学问题求解。
2.典例分析汽缸开口向上对活塞,p汽缸开口向下对活塞,受力平衡:p汽缸开口水平对活塞,受力平衡:活塞上放置物以活塞为研究对象,受力如图乙所示。
由平衡条件(M+m)g开口向对水银柱,mgmg开上压强:向对水银柱,又由:开下压强:放对水银柱,受力平衡,类似开口水平的汽缸:柱气同种液体在同一深度的压强相等,在连通器中,灵活选取等压面,利用两侧压强相等求解气体压强。
如图所示,处压强相等。
管沿斜面方向:p2.理想气体(1)宏观上讲,理想气体是指在任何温度、任何压强下都遵从气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体。
(2)微观上讲,理想气体的分子间除碰撞外无其他作用力,所以理想气体无分子势能。
[注4][注4] 理想气体是理想化的物理模型,一定质量的理想气体,其内能只与气体温度有关,与气体体积无关。
3.气体实验定律4.理想气体的状态方程一定质量的理想气体的状态方程:p 1V 1T 1 =p 2V 2T 2 或pVT =C 。
5.气体的分子动理论(1)气体分子间的作用力:气体分子之间的距离远大于分子直径,气体分子之间的作用力十分微弱,可以忽略不计,气体分子间除碰撞外无相互作用力。
(2)气体分子的速率分布:表现出“中间多,两头少”的统计分布规律。
高中压强练习题及讲解及其答案### 高中压强练习题及讲解#### 练习题一:气体定律题目:一个密闭容器内装有1摩尔的理想气体,初始压强为1大气压,体积为22.4升。
当压强增加到2大气压时,求气体的最终体积。
解答:根据玻意耳定律,即在恒定温度下,理想气体的压强和体积成反比,公式为:\[ PV = \text{常数} \]初始状态下:\[ P_1 = 1 \text{ atm} \]\[ V_1 = 22.4 \text{ L} \]最终状态下:\[ P_2 = 2 \text{ atm} \]\[ V_2 = ? \]将已知数值代入玻意耳定律:\[ P_1V_1 = P_2V_2 \]\[ 1 \times 22.4 = 2 \times V_2 \]\[ V_2 = \frac{22.4}{2} = 11.2 \text{ L} \]答案:最终体积为11.2升。
#### 练习题二:液体压强题目:一个水槽中装有水,水槽底部的面积为0.1平方米。
当水深为2米时,求水槽底部受到的水压。
解答:水压的计算公式为:\[ P = \rho g h \]其中,\( \rho \) 是水的密度,\( g \) 是重力加速度,\( h \) 是水的高度。
水的密度 \( \rho \) 约为 1000 kg/m³,重力加速度 \( g \) 约为9.8 m/s²,水深 \( h \) 为 2 米。
代入公式计算水压:\[ P = 1000 \times 9.8 \times 2 \]\[ P = 19600 \text{ Pa} \]答案:水槽底部受到的水压为19600帕斯卡。
#### 练习题三:气体压强与体积的关系题目:一个气球在标准大气压下,其体积为500立方厘米。
当气球被带到高山上,压强降低到0.8标准大气压时,气球的体积会如何变化?解答:根据查理定律,即在恒定体积下,理想气体的压强和温度成正比,公式为:\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \]假设温度不变,则有:\[ \frac{P_1}{P_2} = \frac{V_2}{V_1} \]初始状态下:\[ P_1 = 1 \text{ atm} \]\[ V_1 = 500 \text{ cm}^3 \]最终状态下:\[ P_2 = 0.8 \text{ atm} \]\[ V_2 = ? \]代入公式计算体积变化:\[ \frac{1}{0.8} = \frac{V_2}{500} \]\[ V_2 = \frac{500 \times 1}{0.8} \]\[ V_2 = 625 \text{ cm}^3 \]答案:气球的体积变为625立方厘米。
气体压强的微观解释类比推理:高压采煤水枪出水口的截面积为S,水的射速为v,射到煤层上后,水的速度为零,若水的密度为ρ,求水对煤层的冲力。
关于气体压强:①p=2n₀Ek/3(微观表达式)压强取决于分子数密度和分子的平均动能.②p=nRT/V=mRT/M₀V(状态、宏观表达式)压强取决于物质的量、温度和体积.③p=p₁+p₂+…(混合气体道尔顿分压定律)④p₁V₁/T₁+p₂V₂/T₂+…=pV/T(物质的量表达式)⑤单位面积内的力p=F/S⑥单位时间单位面积上力的冲量p=I/S·t⑦单位时间单位面积上碰撞次数由平均速率、分子数密度共同决定N=n₀v/6.【简单推导】一个分子碰撞一次,碰撞次数就是分子个数,分子个数为n₀lS/6.所用的时间为l/v,单位时间单位面积上碰撞次数为n₀lS/6/S/t=n₀v/6.1.下列说法正确的是(A)。
A:气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力B:气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量C:气体分子热运动的平均动能减小,气体的压强一定减小D:单位体积的气体分子数增加,气体的压强一定增大2.一密闭气球中装有一定质量的理想气体,现使环境压强不变、气体温度缓慢升高.对于气体在此过程中的下列说法正确的是(C)A.气球中气体分子间的作用力增大B.气球中气体每个分子的速率都增大C.气球内壁单位面积上受到的压力不变D.气球中气体吸收的热量等于气体增加的内能☞对理想气体来讲,分子间只有消耗碰撞的力,没有分子间的相互作用力.单位面积上受到的压力就是气体对气球内壁的压强,根据热力学第一定律方向做功和内能的变化.3.在一定温度下,当气体的体积减小时,气体的压强增大,这是由于()A.每个分子对器壁的平均撞击力变大B.单位体积内的气体分子数变大,分子对器壁的吸引力变大C.单位体积内的气体分子数变大,单位体积内分子的重量变大D.单位体积内的气体分子数变大,单位时间内对器壁碰撞的次数增多☞正确答案:D.单位体积内的气体分子数变大,单位时间内对器壁碰撞的次数增多一定质量的气体温度不变时,体积减小,压强增大;温度不变说明气体分子运动平均动能不变;体积减小说明相同体积内分子数变多;故相同时间内单位面积上碰撞的气体分子增加了,故压力变大,压强变大;故选:D.☞温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度的反映,从分子运动论观点看,温度是物体分子运动平均动能的标志,温度是大量分子热运动的集体表现,含有统计意义,对于个别分子来说,温度是没有意义的;大量做无规则热运动的分子对器壁频繁、持续地碰撞产生了气体的压强单个分子碰撞器壁的冲力是短暂的,但是大量分子频繁地碰撞器壁,就对器壁产生持续、均匀的压力,所以从分子动理论的观点来看,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力.4.对于一定量的理想气体,下列四个论述中正确的是()A.当分子热运动剧烈时,压强必变大B.当分子热运动剧烈时,压强可以不变C.当分子间的平均距离变大时,压强必变小D.当分子间的平均距离变大时,压强必变大解析:从微观来说,压强是单位时间内作用在单位面积上的冲量,即压强微观上由分子平均动能和分子数密度决定。
高中物理选修3-3气体压强专项练习题(附答案)选修3-3 气体压强计算专项练1.一定质量的理想气体从状态A变化到状态B再变化到状态C,其状态变化过程的p-V图象如图所示。
已知该气体在状态A时的温度为27℃。
求:①该气体在状态B和C时的温度分别为多少℃?②该气体从状态A经B再到C的全过程中是吸热还是放热?传递的热量是多少?2.一定质量理想气体经历如图所示的A→B、B→C、C→A三个变化过程,TA=300K,气体从C→A的过程中做功为100J,同时吸热250J,已知气体的内能与温度成正比。
求:i)气体处于C状态时的温度TC;ii)气体处于C状态时内能UC。
3.如图所示,一个内壁光滑的导热气缸竖直放置,内部封闭一定质量的理想气体,环境温度为27℃。
现将一个质量为m=2kg的活塞缓慢放置在气缸口,活塞与气缸紧密接触且不漏气。
已知活塞的横截面积为S=4.0×10^-4m^2,大气压强为P=1.0×10^5Pa,重力加速度g取10m/s,气缸高为h=0.3m,忽略活塞及气缸壁的厚度。
i)求活塞静止时气缸内封闭气体的体积。
ii)现在活塞上放置一个2kg的砝码,再让周围环境温度缓慢升高,要使活塞再次回到气缸顶端,则环境温度应升高到多少摄氏度?4.如图所示,一汽缸固定在水平地面上,通过活塞封闭有一定质量的理想气体,活塞与缸壁的摩擦可忽略不计,活塞的截面积S=100cm^2.活塞与水平平台上的物块A用水平轻杆连接,在平台上有另一物块B,A、B的质量均为m=62.5kg,物块与平台间的动摩擦因数μ=0.8.两物块间距为d=10cm。
开始时活塞距缸底L1=10cm,缸内气体压强p1等于外界大气压强p=1×10^5Pa,温度t1=27℃。
现对汽缸内的气体缓慢加热,g=10m/s。
求:①物块A开始移动时,汽缸内的温度;②物块B开始移动时,汽缸内的温度。
5.如图所示,一导热性能良好、内壁光滑的气缸水平放置,横截面积为S=2×10^-3m^2,质量为m=4kg厚度不计的活塞与气缸底部之间封闭了一部分气体,此时活塞与气缸底部之间的距离为24cm,在活塞的右侧12cm处有一对与气缸固定连接的卡环,气体的温度为300K,大气压强P=1.0×10^5Pa。
高三物理气体试题及答案一、选择题(每题3分,共30分)1. 气体压强的微观解释是气体分子对器壁的频繁碰撞产生的,下列关于气体压强的描述正确的是:A. 气体压强与气体分子的平均动能成正比B. 气体压强与气体分子的密度成正比C. 气体压强与气体分子的碰撞频率成正比D. 气体压强与气体分子的质量成正比答案:C2. 根据理想气体状态方程,当温度升高时,理想气体的压强和体积将如何变化?(假设气体分子数不变)A. 压强和体积都增加B. 压强和体积都减少C. 压强增加,体积减少D. 压强减少,体积增加答案:A3. 以下哪项不是理想气体状态方程的变量?A. 温度B. 体积C. 压强D. 气体的质量答案:D4. 气体分子的平均自由程是指气体分子在两次碰撞之间能够自由移动的平均距离,以下关于平均自由程的描述正确的是:A. 气体分子的平均自由程与气体的压强成正比B. 气体分子的平均自由程与气体的温度成反比C. 气体分子的平均自由程与气体分子的密度成反比D. 气体分子的平均自由程与气体分子的质量成正比答案:C5. 气体扩散现象说明了什么?A. 气体分子在不停地做无规则运动B. 气体分子间存在相互作用力C. 气体分子的质量非常小D. 气体分子间没有相互作用力答案:A6. 气体分子的动能与下列哪项因素有关?A. 气体分子的质量B. 气体分子的速度C. 气体分子的密度D. 气体分子的体积答案:B7. 气体分子的势能与下列哪项因素有关?A. 气体分子的质量B. 气体分子之间的距离C. 气体分子的速度D. 气体分子的密度答案:B8. 气体的内能是指气体分子的总动能和总势能之和,以下关于气体内能的描述正确的是:A. 气体的内能与气体的温度无关B. 气体的内能与气体的体积无关C. 气体的内能与气体分子的平均动能成正比D. 气体的内能与气体分子的平均势能无关答案:C9. 气体的绝热过程是指没有热量交换的过程,以下关于绝热过程的描述正确的是:A. 绝热过程中气体的温度不变B. 绝热过程中气体的压强不变C. 绝热过程中气体的体积不变D. 绝热过程中气体的内能不变答案:D10. 根据查理定律,当一定质量的理想气体体积保持不变时,其压强与温度的关系是:A. 压强与温度成正比B. 压强与温度成反比C. 压强与温度无关D. 压强与温度的对数成正比答案:A二、填空题(每题2分,共20分)1. 理想气体状态方程为_______,其中P表示压强,V表示体积,n表示气体分子数,R表示气体常数,T表示温度。
考点2气体压强的计算和微观说明(实力考点·深度研析)1.活塞模型如图所示是最常见的封闭气体的两种方式。
求气体压强的基本方法:先对活塞进行受力分析,然后依据平衡条件或牛顿其次定律列方程。
图甲中活塞的质量为m ,活塞横截面积为S ,外界大气压强为p 0。
由于活塞处于平衡状态,所以p 0S +mg =pS ,则气体的压强为p =p 0+mg S 。
图乙中的液柱也可以看成“活塞”,由于液柱处于平衡状态,所以pS +mg =p 0S ,则气体压强为p =p 0-mg S=p 0-ρ液gh 。
2.连通器模型如图所示,U 形管竖直放置,同一液体中的相同高度处压强确定相等,所以气体B 和A 的压强关系可由图中虚线联系起来。
则有p B +ρgh 2=p A ,而p A =p 0+ρgh 1,所以气体B 的压强为p B =p 0+ρg (h 1-h 2)。
(1)若已知大气压强为p 0,图甲、乙、丙中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强;(2)如图丁、戊中两个汽缸质量均为M ,内部横截面积均为S ,两个活塞的质量均为m ,左边的汽缸静止在水平面上,右边的活塞和汽缸竖直悬挂在天花板下。
两个汽缸内分别封闭有确定质量的空气A 、B ,大气压为p 0,求封闭气体A 、B 的压强;(3)如图己所示,光滑水平面上放有一质量为M 的汽缸,汽缸内放有一质量为m 的可在汽缸内无摩擦滑动的活塞,活塞面积为S 。
现用水平恒力F 向右推汽缸,最终汽缸和活塞达到相对静止状态,求此时缸内封闭气体的压强p 。
(已知外界大气压为p 0)[解析] (1)在题图甲中,以高为h 的液柱为探讨对象,由二力平衡知p 甲S +ρghS =p 0S所以p 甲=p 0-ρgh在题图乙中,以B 液面为探讨对象,由平衡方程F 上=F 下有p 乙S +ρghS =p 0Sp 乙=p 0-ρgh在题图丙中,仍以B 液面为探讨对象,有p 丙+ρgh sin 60°=p 0所以p 丙=p 0-32ρgh 。
专项训练气体压强的计算及微观解释一、计算的知识储备(1)液面下h深处由液体重量产生的压强p=ρgh.(注意:h是液柱的竖直高度,不一定等于液柱的长度)(2)若液面与外界大气相接触,则液面下h处的压强为p=p0+ρgh,p0为外界大气压强.(3)帕斯卡定律(液体传递压强的规律):加在密闭静止液体上的压强,能够大小不变地由液体向各个方向传递.(4)连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平面上的压强是相等的.【说明】计算的主要依据是静力学知识.【例1】如图所示,竖直放置的弯曲管A端开口,B端封闭,密度为ρ的液体将两段空气封闭在管内,管内液面高度差分别为h1、h2和h3,则B端气体的压强为(已知大气压强为p0)()A.p0-ρg(h1+h2-h3)B.p0-ρg(h1+h3)C.p0-ρg(h1+h3-h2) D.p0-ρg(h1+h2)【解析】由图中液面的高度关系可知,p0=p2+ρgh3和p2=p1+ρgh1,由此解得p1=p0-ρg(h1+h3)【答案】 B【易错点】很多学生会错误认为p0<p2和p2<p1,此外图中h2是一个干扰条件,而实际上中间气体的压强与中间两液面的高度差无关.二、压强计算的基本方法基本方法,实质为受力分析,即受力分析的三种表现.1.液面法选取一个假想的液体薄面(其自重不计)为研究对象;分析液面两侧受力情况,建立力的平衡方程;消去横截面积,得到液面两侧的压强平衡方程;求得气体压强.【例2】如图所示,在竖直平面内倾斜放置的U形管,管的一端封闭,内有一段空气柱,U形管的倾角为θ,U形管内水银柱长度L1、L2,如图所示,已知水银密度为ρ,大气压强为p0,则封闭段空气柱的压强为________.【解析】本题若选取如图所示的AB作为等压强的液面,从理论上来说是可以的,但是B至右管液面的高度差不知,无法求出.若选取C 作为液面,则左右两侧的压强应该相等,即有p +ρga sin θ+ρgL 2cos θ=p 0+ρgL 1sin θ+ρga sin θ,解得p =p 0+ρg (L 1sin θ-L 2cos θ).【答案】 p 0+ρg (L 1sin θ-L 2cos θ)2.平衡法欲求用固体(如活塞等)封闭在静止容器中的气体压强,应对固体(如活塞等)进行受力分析,然后根据力的平衡条件求解.【例3】 如图所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为m ,不计圆板与容器内壁的摩擦,若大气压强为p 0,则被圆板封闭在容器中的气体的压强等于( )A .p 0+mg cos θSB.p 0cos θ+mg S cos θC .p 0+mg cos 2θSD .p 0+mg S【解析】 为求气体的压强,应以封闭气体的圆板为研究对象,圆板受力如图所示,封闭气体对圆板的压力垂直圆板的下表面.由竖直方向合力为零,得p S cos θ·cos θ=mg +p 0S 得p =p 0+mg S【答案】 D3.动力学法当封闭气体所在的系统处于力学非平衡状态时,欲求封闭气体的压强,首先要恰当地选择对象(如与气体相关联的液柱、固体等),并对其进行正确的受力分析(特别注意分析内、外气体的压力),然后应用牛顿第二定律列方程求解.【例4】 试管内封有一定质量的气体,静止时气柱长为L 0,大气压强为p 0,其他尺寸如图所示.当试管绕竖直轴以角速度ω在水平面内匀速转动时气柱长变为L ,设温度不变,管横截面积为S ,水银密度为ρ, 则转动时管内被封气体的压强为( )A .p 0+ρL 1ω2(L 2+L 0-L +L 12) B .p 0+ρL 1ω2(L 2+L 12) C .p 0+ρgL 1D.L 0Lp 0 【解析】 以水银柱为研究对象,水平方向受力为向右的p 0S ,向左的pS ,由牛顿第二定律,知pS -p 0S =ma =mω2(L 1+L 2+L 0-L -L 12),p =p 0+ρL 1ω2(L 2+L 0-L +L 12);若以被封闭气体为研究对象,由等温变化可知,p 0L 0S =pLS ,解得p =L 0Lp 0. 【答案】 AD三、压强的微观解释1.决定压强的两个微观因素p =23n E k 为理想气体对器壁的压强公式,其揭示出压强这一宏观量的微观本质.压强公式表明,气体的压强决定于分子的数密度n 和分子的平均平动动能E k ,并与二者的乘积成正比.【例5】 喷雾器内有10 L 水,上部封闭有1 atm 的空气2 L .如图所示,关闭喷雾阀门,用打气筒向喷雾器内再充入1 atm 的空气3 L(设外界环境温度一定,空气可看作理想气体).(1)当水面上方气体温度与外界温度相等时,求气体压强,并从微观上解释气体压强变化的原因.(2)打开喷雾阀门,喷雾过程中封闭气体可以看成等温膨胀,此过程气体是吸热还是放热?简要说明理由.【解析】 (1)设气体初态压强为p 1=1 atm ,体积为V 1=2 L +3 L =5 L ;末态压强为p 2,体积为V 2=2 L ,由玻意耳定律p 1V 1=p 2V 2 ,代入数据得p 2=2.5 atm微观解释:温度不变,分子平均动能不变,单位体积内分子数增加,所以压强增加.(2)吸热.气体对外做功而内能不变,根据热力学第一定律,可知气体吸热.【名师点拨】 本题对压强的微观解释是从分子的数密度n 和分子的平均平动动能E k (即温度)两个方面解释的,有些考生在回答时,找不出答题要点,是对压强的微观因素的两个原因不知,不知道为什么要从这两个方面解释.2.分子速率是从双重意义上来影响碰撞效果的p =23n E k ,p =13nm v 2为理想气体对器壁的压强公式,它们揭示出压强这一宏观量的微观本质.压强公式表明,气体的压强决定于分子的数密度n 和分子的平均平动动能E k ,并与二者的乘积成正比.这一结论,是根据分子动理论,从压强是大量分子对器壁碰撞的平均效果这一基本分析得出的,当然很容易从分子与器壁碰撞的角度来理解它.p =23n E k 表明当分子平均平动动能一定时,数密度n 越大则压强p 越大,这是因为n 越大时,单位时间内撞击到器壁上的分子数越多,故器壁受到的压强越大;当n 一定时,E k 越大则p 越大,这是因为E k 越大,v 2越大,从而使器壁所受压强p 越大.可见分子速率是从双重意义上来影响碰撞效果的:一方面分子运动越快,单位时间内分子碰撞器壁的次数越多;另一方面,分子运动越快,每次碰撞时施于器壁的冲量也越大.【例6】 下列说法正确的是( )A .气体的内能是分子热运动的动能和分子间的势能之和B .气体的温度变化时,其分子平均动能和分子间势能也随之改变C .功可以全部转化为热,但热量不能全部转化为功D .热量能够自发地从高温物体传递到低温物体,但不能自发地从低温物体传递到高温物体E .一定量的气体,在体积不变时,分子每秒平均碰撞次数随着温度降低而减小F .一定量的气体,在压强不变时,分子每秒对器壁单位面积平均碰撞次数随着温度降低而增加【答案】 ADEF四、压强的产生与理解1.源于压强的基本概念压强的基本概念为p =F S,大气压从压强定义出发可理解为大气自身重力产生的. 【例7】 已知地球半径约为6.4×106m ,空气的摩尔质量约为29×10-3kg/mol ,一个标准大气压约为 1.0×105Pa ,利用以上数据可估算出地球表面大气在标准状况下的体积为( )A .4×1016 m 3B .4×1018 m 3C .4×1020 m 3D .4×1022 m 3【解析】 大气压是由大气重量产生的.大气压强p =F S =mg S =mg 4πR 2,带入数据可得地球表面大气质量m =5.2×1018kg.标准状态下1 mol 气体的体积为V 0=22.4×10-3m 3,故地球表面大气体积为V =m m 0V 0=5.2×101829×10-3×22.4×10-3m 3=4×1018 m 3,B 项对. 【答案】 B【名师点拨】 本题源于1984年全国普通高等学校招生统一考试物理试题原题如下:估算地球大气层空气的总重量.(最后结果取1位有效数字),(答案:5×1019N).可谓老题新编.2.从分子动理论的角度理解大气压强前面说大气压是大气自身重力产生的,这与在地球表面任取一部分气体的压强约为1.013×105Pa是不矛盾的,这时的压强是大气压的一部分,已经具有由重力产生压强的属性,不可再由取出部分的气体重力产生的.这个压强可从分子动理论的角度理解,即气体分子的碰撞产生的.【例8】一位质量为60 kg的同学为了表演“轻功”,他用打气筒给4只相同的气球充以相等质量的空气(可视为理想气体),然后将这4只气球以相同的方式放在水平放置的木板上,在气球的上方放置一轻质塑料板,如图所示.(1)关于气球内气体的压强,下列说法正确的是()A.大于大气压强B.是由于气体重力而产生的C.是由于气体分子之间的斥力而产生的D.是由于大量气体分子的碰撞而产生的(2)在这位同学慢慢站上轻质塑料板中间位置的过程中,球内气体温度可视为不变.下列说法正确的是()A.球内气体体积变大B.球内气体体积变小C.球内气体内能变大D.球内气体内能不变(3)为了估算气球内气体的压强,这位同学在气球的外表面涂上颜料,在轻质塑料板面和气球一侧表面贴上间距为2.0 cm的方格纸.表演结束后,留下气球与方格纸接触部分的“印迹”如图所示.若表演时大气压强为1.013×105Pa,取g=10 m/s2,则气球内气体的压强为________ Pa.(取4位有效数字)气球在没有贴方格纸的下层木板上也会留下“印迹”,这一“印迹”面积与方格纸上留下的“印迹”面积存在什么关系?【解析】(1)由于气球对球内气体的作用,球内气体压强大于大气压强,A选项正确,B选项错误;根据气体的压强的微观理论,可知C选项错误,D选项正确.(2)由于可视为理想气体,则pVT=C,T不变,p增大,V减小,A选项错误,B选项正确;理想气体的内能只与温度有关,C选项错误,D选项正确.(3)人作用在气球上的力F=mg=600 N,“印迹”的面积为4S,S为每个“印迹”的面积(大于半格的算一格,小于半格的去掉),得S=354×10-4m2,人作用在气球上的压强.可以以其中一个球的接触薄层为研究对象,薄层受到向上的压力pS ,向下的压力p 0S ,每个球承受人体重力的14,即14mg ,由平衡关系,可知p =p 0+14mg S=1.013×105 Pa +14×600354×10-4 Pa =1.053×105 Pa 气球内部气体压强处处相等,气球上下两部分形变一样,面积相同.【答案】 (1)AD (2)BD (3)1.053×105Pa 面积相同五、浮力的实质浮力产生的原因是压力差,推导如下:如图所示,物块浮在液体中,物块受到向下的p 0S ,向上的pS ,两侧均有对称的作用力,即两侧的合力为零.故压力差ΔF =pS -p 0S =(p 0+ρgh )S -p 0S =ρghS =ρgV 排=F 浮,即浮力的实质为上下的压力差.【例9】 在天花板上用轻弹簧悬挂一支平底试管,将试管口向下竖直插入水银槽中,当处于如图所示的静止状态时,不计管壁厚度,关于弹簧秤对试管作用力的大小,下列正确的说法是( )A .大小等于试管重力B .大小等于试管重力减去水银对试管的浮力C .大小等于试管重力减去管内h 高度部分相当的水银的重力D .大小等于试管重力减去内部气体与外界大气对试管压力之差【解析】 以试管为研究对象,对试管进行受力分析如图所示,试管受到向下的重力mg 、大气的向下的压力p 0S 、试管内被封闭的气体的向上的压力pS 、弹簧向上的拉力F ,pS +F =mg +p 0S ,所以F =mg +p 0S -pS =mg -(pS -p 0S )=mg -F 浮=mg -ρgV 排,故选B 、C 、D 三项.【答案】 BCD六、自由落体下的压强变化分析气体压强是大量气体分子频繁碰撞容器壁的结果,在完全失重的情况下,气体对器壁仍产生同样的碰撞结果,温度变化,压强变化.如2013全国新课标Ⅱ33C 选项“在完全失重的情况下,气体对容器壁的压强为零”,此选项错误.【例10】 如图所示,一定质量的空气被水银封闭在静置于竖直平面的U 型玻璃管内,右管上端开口且足够长,右管内水银面比左管内水银面高h ,能使h 变大的原因是( )A .环境温度升高B .大气压强升高C .沿管壁向右管内加水银D .U 型玻璃管自由下落【解析】 以左端被封闭气体为研究对象,假设被封闭气体压强不变,温度升高,必然导致被封闭体积的增加,则两侧水银柱长度h 增加,A 选项正确;大气压升高,暗含温度不变,即导致体积减小,h 减小,B 选项错误;沿管壁向右管内加水银,使被封闭气体的压强增加,而被封闭气体的压强p =p 0+ρgh ,故两侧水银柱长度h 增加,C 选项正确;U 型玻璃管自由下落,水银处于完全失重状态,故被封闭气体的压强等于外界大气压p =p 0,压强减小了,被封闭气体的体积增大,两侧水银柱长度h 增加,D 选项正确.【答案】 ACD七、活塞与弹簧结合问题【例11】 如图所示,竖直放置在水平面上的汽缸,其中缸体质量M =10 kg ,活塞质量m =5 kg ,横截面积S =2×10-3 m 2,活塞上部的汽缸里封闭一部分理想气体,下部有气孔a 与外界相通,大气压强p 0=1.0×105Pa ,活塞的下端与劲度系数为k =2×103 N/m 的弹簧相连.当汽缸内气体温度为127 ℃时,弹簧的弹力恰好为零,此时缸内气柱长为L =20 cm.求:当缸内气体温度升高到多少度时,汽缸对地面的压力为零?(g 取10 m/s 2,活塞不漏气且与汽缸壁无摩擦)【解析】 缸内气体初态:V 1=LS =20Sp 1=p 0-mg S=0.75×105 Pa T 1=(273+127) K =400 K末态:p 2=p 0+Mg S =1.0×105 Pa +10×102×10-3Pa =1.5×105Pa 系统受力平衡:kx =(m +M )g则x =?m +M ?g k =?5+10?×102×103m =0.075 m =7.5 cm 缸内气体体积V 2=(L +x )S =27.5S对缸内气体建立状态方程p 1V 1T 1=p 2V 2T 2即0.75×105×20 S 400=1.5×105×27.5 S T 2解上式,可得T 2=1 100 K ,即t =T 2-273 ℃=827 ℃【答案】827 ℃。