压强和温度的微观解释
- 格式:ppt
- 大小:850.00 KB
- 文档页数:23
1. 理想气体的压强,温度的微观解释2. 理想气体的内能3. 热力学第一定律知识点拨一.理想气体的微观模型先来作个估算:在标准状态下,1mol 气体体积1330104.22--⨯=moI m V ,分子数1231002.6-⨯=moI N A ,若分子直径m d 10100.2-⨯=,则分子间的平均间距m N V L A 93/101034.3)/(-⨯==,相邻分子间的平均间距与分子直径相比17/≈d L 。
由此可知:气体分子间的距离比较大,在处理某些问题时,可以把气体分子视为没有大小的质点;同时可以认为气体分子除了相互碰撞或者跟器壁碰撞之外,分子力也忽略不计,分子在空间自由移动,也没有分子势能。
因此理想气体是指分子间没有相互作用和分子可以看作质点的气体。
这一微观模型与气体愈稀薄愈接近于理想气体的宏观概念是一致的。
1.理想气体的压强宏观上测量的气体施给容器壁的压强,是大量气体分子对器壁不断碰撞的结果。
在通常情况下,气体每秒碰撞21cm 的器壁的分子数可达2310。
在数值上,气体的压强等于单位时间内大量分子施给单位面积器壁的平均冲量。
可以用动量定理推导,其表达式为K n P ε32=设气体分子都以平均速率运动,因沿上下、左右、前后各向运动的机会均等,所以各占总数的.若分子的数密度(即单位体积内气体的分子数)为,则单位时间内碰撞单位面积器壁的分子数应为.每个分子每次与器壁碰撞时将施于器壁的冲量,所以压强,假设每个分子的速率相同.每个分子的平均平动动v 16n 1(1)6n v ×2mv 211(1)263p n v mv nmv ==××知识体系介绍第二讲 理想气体的内能能,所以.,式中n 是单位体积内分子个数,221υεm K=是分子的平均平动动能,n 和K ε增大,意味着单位时间内碰撞单位面积器壁的分子数增多,分子碰撞器壁一次给予器壁的平均冲量增大,因而气体的压强增加。
理想气体的压强及温度的微观解释在普通物理热学的教学中,对理想气体的压强、温度的学习和讨论时,学生对压强、温度的微观实质理解困难,特别是对宏观规律的微观解释与分析问题。
文章从理想气体分子模型的建立和统计假设的提出,对压强、温度的实质进行讨论,从而使学生得到正确理解,并学会用微观理论解释和研究宏观现象和规律的分析方法。
标签:理想气体;微观模型;压强;温度;微观本质在物理的学习和研究中,经常会讨论和分析一些物理现象和规律,很多物理现象和规律,是可以通过实验观察和验证的宏观规律,而表征分子、原子运动性质的微观量,很难用观察或实验直接测定。
宏观量与微观量之间必然存在着联系,要更深入地认识和研究宏观规律,必须对宏观规律的微观本质进行分析。
通过对理想气体的几个宏观规律与微观实质的关系对比和分析,帮助我们认识和理解气体动理论的有关规律,并掌握这一研究方法。
1 理想气体模型及状态方程1.1 理想气体模型。
所谓理想气体是指重力不计,密度很小,在任何温度、任何压强下都严格遵守气体实验定律的稀薄气体。
理想气体是一种理想化的物理模型,是对实际气体的科学抽象。
理想气体的微观特征是:分子间距大于分子直径10倍以上,分子间无相互作用的引力和斥力,分子势能为零,其内能仅由温度和气体的量决定,内能等于分子的总动能。
温度提高,理想气体的内能增大;温度降低,理想气体的内能减小。
实际气体抽象为理想气体的条件:不易被液化的气体,如氢气、氧气、氮气、氦气、空气等,在压强不太大、温度不太低的情况下,所发生的状态变化,可近似地按理想气体处理。
分子本身的线度与分子之间的距离相比可忽略不计,视分子为没有体积的质点;除碰撞瞬间外,分子之间及分子与容器壁之间没有相互作用力,不计分子所受的重力;分子之间及分子与器壁之间作完全弹性碰撞,没有能量损失,气体分子的动能不因碰撞而损失。
容器各部分分子数密度等于分子在容器中的平均密度n=NV,式中,n是气体分子数密度,N是气体的总分子数,V是气体容器的容积;沿空间各个方向运动的分子数目是相等的;气体分子的运动在各个方向机会均等,不应在某个方向更占优势,即全体分子速度分量vx、vy和vz的平均值vx=vy=vz=0。
压强和温度的微观含义
压强(pressure)是指物体上的内部力和外部场作用的总效应,表示物体受到的压力
大小,用“千帕”、“帕”、“毫巴”或“巴”的单位表示。
它的微观含义就是物体内部
充因子(液体,气体)之间的力量准绳,它表明每一个充因子单位(如气体分子)受外场
和内场(如它自身排斥力)影响,外力的大小由它们的数量以及它们的总能量所决定。
从压强的微观角度上讲,它能做的就是衡量充因子的表面是否受到外场的作用。
例如,当小虫子游动在水中上时,它推动着水分子,水分子之间的外场作用便产生了一个推动力。
这种外部场造成的推动力有时也被称为压力,它是一种流体内部物质互相之间作用的总效应,其和温度都很重要。
温度(temperature)是表示物体内部每个分子能量总和的物理学量,用“摄氏度”
把温度值以单位表示,它描述了物质内部分子运动的热能状态,表示热能的多少及物质的
温度。
在微观角度看,温度是物质内部分子能量的总和,也就是分子运动本身所表示的一种
状态。
当温度越高时,分子运动能量也就会越高,产生更多的动能,温度会上升,温度也
可以被视为能量分布上的偏差。
温度受湿度的影响会发生变化,但它们的基本原理是一样的,温度的变化是由分子运
动能量的积累决定的,当温度升高时,分子运动能量增加,温度也会相应增加,这就是温
度的微观含义。
气体压强与温度的关系分析气体是一种物质状态,其分子之间存在着无规则的相对位移和相互碰撞。
这种运动形式的气体分子会不断地产生和传递压强,从而将其施加到容器的壁上,形成气体的压强。
而温度则是衡量气体分子平均运动速度的物理量。
压强与温度之间存在着密切的关系,下面将从微观和宏观两个角度对此进行分析。
从微观角度来看,气体分子的运动轨迹呈现出高度随机性。
在气体容器中,分子以高速无规则地碰撞、运动,产生相应的压强。
此时,气体分子的速度与温度密切相关。
根据理想气体模型,气体分子的平均动能与温度成正比。
也就是说,当温度升高时,气体分子的平均动能也会上升,使得气体分子的速度增加,从而产生更大的压强。
反之,温度的降低会导致气体分子速度的降低,进而降低气体的压强。
从宏观角度来看,可以通过布拉格利西奥方程来进一步解释气体压强和温度的关系。
布约-麦克斯韦方程是热力学中描述理想气体状态的方程,其中包括了温度、压强、体积以及气体分子个数等相关因素。
方程中的温度以开尔文(K)为单位,压强以帕斯卡(Pa)为单位,体积以立方米(m³)为单位。
根据布约-麦克斯韦方程,当其他参数(体积和气体分子个数)固定时,气体的压强与温度成正比。
这意味着,在其他条件相同的情况下,当气体温度升高时,气体的压强也会随之增加。
这是因为温度上升会导致气体分子的动能增加,使得分子运动更加剧烈,产生更多的碰撞力。
这样一来,气体分子对容器壁的压强也会相应增大。
进一步地,根据查理定律,当其他参数固定时,气体的压强与温度的绝对温标(开尔文)的差值成正比。
这意味着气体的温度绝对值越高,压强变化对应的绝对值也越大。
因此,绝对零度是理论上温度最低的点,此时气体的压强为零。
综上所述,在微观和宏观两个角度来看,气体压强与温度存在着密切的关系。
从微观角度来看,温度的升高会使气体分子速度增加,从而产生更大的压强。
而从宏观角度来看,气体压强和温度成正比,当温度升高时,气体压强也会相应增加。