气体压强的微观解释.ppt
- 格式:ppt
- 大小:948.50 KB
- 文档页数:6
理想气体的压强及温度的微观解释在普通物理热学的教学中,对理想气体的压强、温度的学习和讨论时,学生对压强、温度的微观实质理解困难,特别是对宏观规律的微观解释与分析问题。
文章从理想气体分子模型的建立和统计假设的提出,对压强、温度的实质进行讨论,从而使学生得到正确理解,并学会用微观理论解释和研究宏观现象和规律的分析方法。
标签:理想气体;微观模型;压强;温度;微观本质在物理的学习和研究中,经常会讨论和分析一些物理现象和规律,很多物理现象和规律,是可以通过实验观察和验证的宏观规律,而表征分子、原子运动性质的微观量,很难用观察或实验直接测定。
宏观量与微观量之间必然存在着联系,要更深入地认识和研究宏观规律,必须对宏观规律的微观本质进行分析。
通过对理想气体的几个宏观规律与微观实质的关系对比和分析,帮助我们认识和理解气体动理论的有关规律,并掌握这一研究方法。
1 理想气体模型及状态方程1.1 理想气体模型。
所谓理想气体是指重力不计,密度很小,在任何温度、任何压强下都严格遵守气体实验定律的稀薄气体。
理想气体是一种理想化的物理模型,是对实际气体的科学抽象。
理想气体的微观特征是:分子间距大于分子直径10倍以上,分子间无相互作用的引力和斥力,分子势能为零,其内能仅由温度和气体的量决定,内能等于分子的总动能。
温度提高,理想气体的内能增大;温度降低,理想气体的内能减小。
实际气体抽象为理想气体的条件:不易被液化的气体,如氢气、氧气、氮气、氦气、空气等,在压强不太大、温度不太低的情况下,所发生的状态变化,可近似地按理想气体处理。
分子本身的线度与分子之间的距离相比可忽略不计,视分子为没有体积的质点;除碰撞瞬间外,分子之间及分子与容器壁之间没有相互作用力,不计分子所受的重力;分子之间及分子与器壁之间作完全弹性碰撞,没有能量损失,气体分子的动能不因碰撞而损失。
容器各部分分子数密度等于分子在容器中的平均密度n=NV,式中,n是气体分子数密度,N是气体的总分子数,V是气体容器的容积;沿空间各个方向运动的分子数目是相等的;气体分子的运动在各个方向机会均等,不应在某个方向更占优势,即全体分子速度分量vx、vy和vz的平均值vx=vy=vz=0。
分子热运动、布朗运动、扩散现象1、做布朗运动实验,得到某个观测记录如图。
图中记录的是( D )A.分子无规则运动的情况B.某个微粒做布朗运动的轨迹C.某个微粒做布朗运动的速度——时间图线D.按等时间间隔依次记录的某个运动微粒位置的连线E.布朗运动是悬浮在液体中固体颗粒的分子无规则运动的反映2、布朗运动虽然与温度有关,但布朗运动不能称为热运动(对)3、空中飞舞的尘埃的运动不是布朗运动经验之谈:布朗运动凭肉眼观察不到,得在光学显微镜下观察分子运动在光学显微镜下观察不到,得在电子显微镜下观察。
布郎运动不会停止,而尘埃的飞扬经过一段时间后,会落回地面4、观察布朗运动时,下列说法正确的是( AB )A.温度越高,布朗运动越明显B.大气压强的变化,对布朗运动没有影响C.悬浮颗粒越大,布朗运动越明显D.悬浮颗粒的布朗运动,就是构成悬浮颗粒的物质的分子热运动5.由分子动理论及能的转化和守恒定律可知…( D )A.扩散现象说明分子间存在斥力B.布朗运动是液体分子的运动,故分子在永不停息地做无规则运动C.理想气体做等温变化时,因与外界存在热交换,故内能改变D.温度高的物体的内能不一定大,但分子的平均动能一定大6.下列关于热运动的说法,正确的是( D )A.热运动是物体受热后所做的运动B.温度高的物体中的分子的无规则运动C.单个分子的永不停息的无规则运动D.大量分子的永不停息的无规则运动物质的量(1)m M v V N A ==即:分子质量摩尔质量=分子体积摩尔体积阿佛加德罗常数=(2)分子的个数 = 摩尔数 ×阿伏加德罗常数(3)摩尔质量摩尔体积=密度1.从下列哪一组数据可以算出阿伏加德罗常数( C )A.水的密度和水的摩尔质量B.水的摩尔质量和水分子的体积C.水的摩尔质量和水分子的质量D.水分子的体积和水分子的质量2.已知铜的摩尔质量为M (kg/mol ),铜的密度为ρ(kg/m 3),阿伏加德罗常数为 N A (mol - 1).下列说法不正确的是( B )A.1 kg 铜所含的原子数为MN A B.1 m 3铜所含的原子数为ρA MN 个铜原子的质量为A N M kg 个铜原子所占的体积为A N M ρ m 3 3. 利用单分子油膜法可以粗测分子的大小和阿伏加德罗常数.如果已知体积为V 的一滴油在水面上散开形成的单分子油膜的面积为S ,这种油的密度为ρ,摩尔质量为M ,则阿伏加德罗常数的表达式为( )答案:336VMS πρ 4.已知铜的密度为×103 kg/m3,相对原子质量为64,通过估算可知铜中每个铜原子所占 的体积为(B )×10-6 m 3×10-29 m 3 ×10-26 m 3 ×10-24 m5.某物质的摩尔质量为M ,密度为ρ,设阿伏加德罗常数为N A ,则每个分子的质量和单位体积所含的分子数分别是(D ) A.MN A M N ρ⋅A B.A N M ρM N A C.M N A ρ⋅A N M D.A N M M N ρ⋅A6 .一热水瓶水的质量约为m=2.2 kg,它所包含的水分子数目为_________.(取两位有效数字,阿伏加德罗常数取×1023 mol -1) ×1025个)7.某同学采用了油膜法来粗略测定分子的大小:将1 cm 3油酸溶于酒精,制成1 000 cm 3 的溶液.已知1 cm 3酒精油酸溶液有100滴,在一塑料盘内盛水,使盘内水深约为1 cm ,将1滴溶液滴在水面上,由于酒精溶于水,油酸在水面上形成一层单分子油膜,测得这一油膜层的面积为90 cm 2,由此可估计油酸分子的直径为多少 (答案:×10-9m )气体压强的微观解释影响气体压强的因素有两个:(1)单位面积上,单位时间内,气体分子对容器壁的碰撞次数从宏观来看,决定于分子的浓度(单位体积内分子的个数)或对一定量的气体来说,压强的大小决定于分子的体积。
气体压强微观解释
气体压强是指气体分子对容器壁的撞击所产生的压力。
在微观层面上,气体是由大量的分子组成的,它们以高速无规则地运动着。
当气体分子与容器壁碰撞时,它们会传递动量给壁面,产生一个力,即气体分子对壁面的撞击力。
气体分子的撞击力可以通过分子的动能来解释。
根据动能定理,分子的动能与其速度的平方成正比。
由于气体分子的速度是随机分布的,因此每个分子的动能也不相同。
当气体分子与容器壁碰撞时,动能较大的分子会给壁面传递更大的力,而动能较小的分子则传递较小的力。
因此,整体上来看,气体分子对壁面的撞击力是不均匀的。
气体压强的大小取决于气体分子对容器壁的平均撞击力。
当气体分子的速度分布更加均匀时,撞击力的差异会减小,从而使平均撞击力更接近于真实值。
此外,气体分子的数量和速度也会对压强产生影响。
当气体分子数量增加或者平均速度增加时,撞击力的总和也会增加,从而导致更高的压强。
除了速度和数量,分子之间的相互作用也会影响气体压强。
在理想气体模型中,分子之间不存在相互作用,因此气体分子与容器壁的碰撞仅与分子的速度和数量有关。
然而,在实际气体中,分子之间可能存在各种各样的相互作用,如分子之间的引力或排斥力。
这些相互作用
会改变分子的运动方式,从而影响气体的压强。
总而言之,气体压强是由气体分子对容器壁的撞击力产生的。
分子的速度、数量和相互作用都会对压强产生影响。
微观解释揭示了气体压强背后的分子动力学原理,帮助我们更好地理解气体行为和性质。
分子热运动、布朗运动、扩散现象1、做布朗运动实验,得到某个观测记录如图。
图中记录的就是( D )A.分子无规则运动的情况B.某个微粒做布朗运动的轨迹C.某个微粒做布朗运动的速度——时间图线D.按等时间间隔依次记录的某个运动微粒位置的连线E.布朗运动就是悬浮在液体中固体颗粒的分子无规则运动的反映2、布朗运动虽然与温度有关,但布朗运动不能称为热运动(对)3、空中飞舞的尘埃的运动不就是布朗运动经验之谈:布朗运动凭肉眼观察不到,得在光学显微镜下观察分子运动在光学显微镜下观察不到,得在电子显微镜下观察。
布郎运动不会停止,而尘埃的飞扬经过一段时间后,会落回地面4、观察布朗运动时,下列说法正确的就是( AB )A 、温度越高,布朗运动越明显B 、大气压强的变化,对布朗运动没有影响C 、悬浮颗粒越大,布朗运动越明显D 、悬浮颗粒的布朗运动,就就是构成悬浮颗粒的物质的分子热运动5、由分子动理论及能的转化与守恒定律可知…( D )A 、扩散现象说明分子间存在斥力B 、布朗运动就是液体分子的运动,故分子在永不停息地做无规则运动C 、理想气体做等温变化时,因与外界存在热交换,故内能改变D 、温度高的物体的内能不一定大,但分子的平均动能一定大6.下列关于热运动的说法,正确的就是( D )A 、热运动就是物体受热后所做的运动B 、温度高的物体中的分子的无规则运动C 、单个分子的永不停息的无规则运动D 、大量分子的永不停息的无规则运动物质的量 (1)m M v V N A ==即:分子质量摩尔质量=分子体积摩尔体积阿佛加德罗常数=(2)分子的个数 = 摩尔数 ×阿伏加德罗常数 (3)摩尔质量摩尔体积=密度1.从下列哪一组数据可以算出阿伏加德罗常数( C )A 、水的密度与水的摩尔质量B 、水的摩尔质量与水分子的体积C 、水的摩尔质量与水分子的质量D 、水分子的体积与水分子的质量2、已知铜的摩尔质量为M(kg/mol),铜的密度为ρ(kg/m 3),阿伏加德罗常数为 N A (mol - 1)、下列说法不正确的就是( B )A 、1 kg 铜所含的原子数为MN A B 、1 m 3铜所含的原子数为ρA MN C 、1个铜原子的质量为A N M kg D 、1个铜原子所占的体积为A N M ρ m 3 3、 利用单分子油膜法可以粗测分子的大小与阿伏加德罗常数、如果已知体积为V 的一滴油在水面上散开形成的单分子油膜的面积为S,这种油的密度为ρ,摩尔质量为M,则阿伏加德罗常数的表达式为( )答案:336VMS πρ 4、已知铜的密度为8、9×103 kg/m3,相对原子质量为64,通过估算可知铜中每个铜原子所占的体积为(B )A 、7×10-6 m 3B 、1×10-29 m 3C 、1×10-26 m 3D 、8×10-24m 5、某物质的摩尔质量为M ,密度为ρ,设阿伏加德罗常数为N A ,则每个分子的质量与单位体积所含的分子数分别就是(D )A 、MN A M N ρ⋅A B 、A N M ρM N A C 、M N A ρ⋅A N M D 、A N M MN ρ⋅A 6 .一热水瓶水的质量约为m=2、2 kg,它所包含的水分子数目为_________、(取两位有效数字,阿伏加德罗常数取6、0×1023 mol -1) (7、3×1025个)7.某同学采用了油膜法来粗略测定分子的大小:将1 cm 3油酸溶于酒精,制成1 000 cm 3 的溶液、已知1 cm 3酒精油酸溶液有100滴,在一塑料盘内盛水,使盘内水深约为1 cm, 将1滴溶液滴在水面上,由于酒精溶于水,油酸在水面上形成一层单分子油膜,测得这 一油膜层的面积为90 cm 2,由此可估计油酸分子的直径为多少? (答案:1、1×10-9m )气体压强的微观解释影响气体压强的因素有两个:(1) 单位面积上,单位时间内,气体分子对容器壁的碰撞次数从宏观来瞧,决定于分子的浓度(单位体积内分子的个数)或对一定量的气体来说,压强的大小决定于分子的体积。
气体的压强与体积的关系一、知识要点:1.知道体积、温度和压强是描述气体状态的三个参量;知道气体的压强产生的原因;知道热力学温标,知道绝对零度的意义,知道热力学温标与摄氏温标间的关系及其两者间的换算.气体的三个状态参量(1).温度:温度在宏观上表示物体的冷热程度;在微观上是分子平均动能的标志。
热力学温度是国际单位制中的基本量之一,符号T,单位K(开尔文);摄氏温度是导出单位,符号t,单位℃(摄氏度)。
关系是t=T-T0,其中T0=273.15K。
两种温度间的关系可以表示为:T = t+273.15K和ΔT =Δt,要注意两种单位制下每一度的间隔是相同的。
0K是低温的极限,它表示所有分子都停止了热运动。
可以无限接近,但永远不能达到。
(2).体积:气体总是充满它所在的容器,所以气体的体积总是等于盛装气体的容器的容积。
(3).压强:气体的压强是由于气体分子频繁碰撞器壁而产生的.压强的大小取决于单位体积内的分子数和分子的平均速率。
若单位体积内分子数增大,分子的平均速率也增大,则气体的压强也增大。
一般情况下不考虑气体本身的重量,所以同一容器内气体的压强处处相等。
但大气压在宏观上可以看成是大气受地球吸引而产生的重力而引起的。
压强的国际单位是帕,符号Pa,常用的单位还有标准大气压(atm)和毫米汞柱(mmHg)。
它们间的关系是:1 atm=1.013×105Pa=760 mmHg; 1 mmHg=133.3Pa。
2.会计算液体产生的压强以及活塞对封闭气体产生的压强.例如:(1)液体产生的压强的几种图形(2)活塞对封闭气体产生的压强的几种图形气缸内气体的压强(大气压P0活塞重量为G ,砝码重量G1,汽缸重量G2)P1=P0+G /S P2=P0+(G+G1)/S P3= P0+(G-F )/SP= P 0 - pgh0 +pghP= P 0 - pghcos θP= P 0P= P 0 - pgh P= P 0 +pghP= P 0-pgHP4=P0 P5=P0-G /S P6=P0+(F-G)/S P7=P0-G2/S3.学生实验:探究“用DIS 研究在温度不变时,一定质量的气体压强与体积的关系”(1). 主要器材:注射器、DIS(压强传感器、数据采集器、计算机等). (2)实验目的:探究一定质量的气体在温度不变的条件下的压强与体积的关系 (3).注意事项:①本实验应用物理实验中常用的控制变量法,探究在气体质量和温度不变的情况下(即等温过程),气体的压强和体积的关系.②为保持等温变化,实验过程中不要用手握住注射器有气体的部位.同时,改变体积过程应缓慢,以免影响密闭气体的温度.为保证气体密闭,应在活塞与注射器壁问涂上润滑油,注射器内外气体的压强差不宜过大.③实验中所用的压强传感器精度较高,而气体体积是直接在注射器上读出的,其误差会直接影响实验结果.④在等温过程中,气体的压强和体积的关系在P —V 图像中呈现为双曲线.处理实验数据时,要通过变换,即画P 一1/V 图像,把双曲线变为直线,说明P 和V 成反比.这是科学研究中常用的数据处理的方法,因为一次函数反映的物理规律比较直接,容易得出相关的对实验研究有用的参数.(4)实验结论:一定质量的某种气体,在温度不变的情况下,压强p 与体积v 成反比,所以p-v 图线是双曲线,但不同温度下的图线是不同的。
气体压强是热学部分的重要概念,也是学习中的难点,从微观和宏观两个角度正确地理解气体压强的概念是解决问题的关键。
一、微观方面气体压强是由大量气体分子碰撞器壁产生的,在数值上等于垂直作用于器壁单位面积上的平均冲击力,或者说等于单位时间内器壁单位面积上所受气体分子碰撞的总冲量。
气体分子质量越大,速度越大,即分子的平均动能越大,每个气体分子撞击一次器壁的作用力越大,而单位时间内气体分子撞击的次数越多,对器壁的总压力越大,而这一次数又取决于单位体积内的分子数(分子的密集程度)和平均动能(分子在容器中往返运动着,其平均动能越大,分子平均速率也越大,连续两次碰撞某器壁的时间间隔越短,即单位时间内撞击次数越多),可见,从微观角度看,气体的压强取决于气体分子的平均动能和密集程度。
例1:下列说法正确的是()a.气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力。
b.气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量。
c.气体分子热运动的平均动能减少,气体的压强一定减小。
d.单位体积的气体分子数增加,气体的压强一定增大。
答案:a二、宏观方面教材中对气体压强做了如下的定义:容器中的大量气体分子对器壁的频繁碰撞,就对器壁产生一个持续的、均匀的压力,而器壁单位面积上受到的压力就是气体的压强。
对于质量一定的某种气体,气体的体积越小密度越大,单位体积内分子数就越多,单位时间碰撞气壁单位面积分子数越多,气体的压强越大;气体的温度越高,分子的平均速率越大,单位时间碰撞气壁单位面积分子数越多并且每次碰撞作用力越大,气体的压强越大;所以从宏观上说,一定质量气体压强的大小是由气体的体积和温度共同决定的。
一定质量的气体体积越小,温度越高,气体的压强就越大。
例2:如下图所示,水平放置的密封气缸内的气体被一竖直隔板分隔为左右两部分,隔板可在气缸内无摩擦滑动,右侧气体内有一电热丝。
气缸壁和隔板均绝热。
初始时隔板静止,左右两边气体温度相等。
考点2气体压强的计算和微观说明(实力考点·深度研析)1.活塞模型如图所示是最常见的封闭气体的两种方式。
求气体压强的基本方法:先对活塞进行受力分析,然后依据平衡条件或牛顿其次定律列方程。
图甲中活塞的质量为m ,活塞横截面积为S ,外界大气压强为p 0。
由于活塞处于平衡状态,所以p 0S +mg =pS ,则气体的压强为p =p 0+mg S 。
图乙中的液柱也可以看成“活塞”,由于液柱处于平衡状态,所以pS +mg =p 0S ,则气体压强为p =p 0-mg S=p 0-ρ液gh 。
2.连通器模型如图所示,U 形管竖直放置,同一液体中的相同高度处压强确定相等,所以气体B 和A 的压强关系可由图中虚线联系起来。
则有p B +ρgh 2=p A ,而p A =p 0+ρgh 1,所以气体B 的压强为p B =p 0+ρg (h 1-h 2)。
(1)若已知大气压强为p 0,图甲、乙、丙中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强;(2)如图丁、戊中两个汽缸质量均为M ,内部横截面积均为S ,两个活塞的质量均为m ,左边的汽缸静止在水平面上,右边的活塞和汽缸竖直悬挂在天花板下。
两个汽缸内分别封闭有确定质量的空气A 、B ,大气压为p 0,求封闭气体A 、B 的压强;(3)如图己所示,光滑水平面上放有一质量为M 的汽缸,汽缸内放有一质量为m 的可在汽缸内无摩擦滑动的活塞,活塞面积为S 。
现用水平恒力F 向右推汽缸,最终汽缸和活塞达到相对静止状态,求此时缸内封闭气体的压强p 。
(已知外界大气压为p 0)[解析] (1)在题图甲中,以高为h 的液柱为探讨对象,由二力平衡知p 甲S +ρghS =p 0S所以p 甲=p 0-ρgh在题图乙中,以B 液面为探讨对象,由平衡方程F 上=F 下有p 乙S +ρghS =p 0Sp 乙=p 0-ρgh在题图丙中,仍以B 液面为探讨对象,有p 丙+ρgh sin 60°=p 0所以p 丙=p 0-32ρgh 。
第1节大气压强图2-1大气压强大气对浸在它里面的物体产生的压强叫大气压强,简称大气压或气压。
1654年格里克在德国马德堡作了著名的马德堡半球实验,有力地证明了大气压强的存在,这让人们对大气压有了深刻的认识。
地球周围包着一层厚厚的空气,它主要是由氮气、氧气、二氧化碳、水蒸气和氦、氖、氩等气体混合组成的,通常把这层空气的整体称之为大气层.它上疏下密地分布在地球的周围,总厚度达1000千米,所有浸在大气里的物体都要受到大气作用于它的压强,就像浸在水中的物体都要受到水的压强一样。
大气压产生的原因可以从不同的角度来解释。
从宏观上讲,空气受重力的作用,空气又有流动性,因此向各个方向都有压强。
讲得细致一些,由于地球对空气的吸引作用,空气压在地面上,就要靠地面或地面上的其他物体来支持它,这些支持着大气的物体和地面,就要受到大气压力的作用。
单位面积上受到的大气压力,就是大气压强;从微观上讲,可以用分子运动的观点解释因为气体是由大量的做无规则运动的分子组成,而这些分子必然要对浸在空气中的物体不断地发生碰撞。
每次碰撞,气体分子都要给予物体表面一个冲击力,大量空气分子持续碰撞的结果就体现为大气对物体表面的压力,从而形成大气压。
若单位体积中含有的分子数越多,则相同时间内空气分子对物体表面单位面积上碰撞的次数越多,因而产生的压强也就越大。
神奇的杯子我们在端水时,一般都要杯口朝上,并且杯子不能倾斜,这样水才不会洒出来。
如果我们将装满水的杯子倒过来,杯子里的水却不会流出来,你会不会觉得很神奇呢?活动1:器材:一个玻璃杯、一张纸版、一瓶水、一个水桶过程:(1)先将水桶放在地上(防止水溅到地上),然后拿出一只玻璃杯,往杯子里倒入半杯水,接下来用纸板盖住杯口。
(2)用一只手紧紧按住杯口的纸板,另一只手将水杯翻转过来。
注意,在将水杯完全翻转过来之前,另一只手要始终紧紧按住杯口的纸板。
如果中途松手,杯图2-2吸管吸饮料图2-3神奇的杯子里的水便会流出来。
contents •气体压强的微观解释•理想气体压强公式•实际气体压强与温度的关系•气体压强在生活中的应用•气体压强与流体的关系•气体压强在科技领域的应用目录气体压强的微观解释0102气体压强的定义压强是矢量,其方向垂直于器壁,其大小反映单位面积上所受的平均作用力气体压强是大量气体分子频繁地碰撞器壁产生的平均作用力气体分子的无规则运动01气体分子不断进行无规则运动,与器壁不断碰撞02分子运动速度越大,碰撞频率越高,压强越大03温度越高,分子运动速度越快,压强越大01分子数密度是指在单位体积内所含有的分子数02平均动能是指所有分子动能的平均值03分子数密度越大,平均动能越大,压强越大04温度越高,分子平均动能越大,即使分子数密度不变,压强也会增大分子数密度和平均动能理想气体压强公式理想气体状态方程•理想气体状态方程是描述理想气体状态变化关系的方程。
根据理想气体假设,理想气体的压强是大量气体分子对容器壁的碰撞产生的。
当温度不变时,理想气体的压强与气体的体积成反比;当体积不变时,理想气体的压强与温度成正比。
理想气体压强公式推导•理想气体压强公式是根据理想气体状态方程推导而来的。
根据理想气体假设,气体分子的平均动能与温度成正比。
因此,当温度不变时,气体分子的平均动能保持恒定。
由于气体分子对容器壁的碰撞是随机的,因此气体的压强与气体分子的平均动能成正比。
因此,理想气体压强公式为:$p =\frac{nRT}{V}$,其中$n$为气体分子的摩尔数,$R$为气体常数,$T$为气体的绝对温度,$V$为气体的体积。
理想气体压强公式的应用理想气体压强公式可以应用于许多领域,例如空气动力学:在空气动力学中,理想气体压强公式可以用于计算空气在高速流动时的压强变化。
热力学:在热力学中,理想气体压强公式可以用于研究热力学系统中的压力和温度之间的关系。
化学反应动力学:在化学反应动力学中,理想气体压强公式可以用于研究化学反应过程中气体压力的变化。