2019最新第八章近代平差理论数学
- 格式:ppt
- 大小:2.24 MB
- 文档页数:92
第一章第一节绪论1、近代测量平差理论的主要内容⑴从独立观测值到相关观测值一相关平差⑵从函数模型和随机模型满秩到函数模型和随机模型奇异一秩亏自由网平差⑶从非随机参数到随机参数以及随机参数与非随机参数一并处理一最小二乘滤波、推估和配置⑷从先验定权到后验定权一随机模型的验后估计⑸从整体解算到分开解算——序贯平差⑹从处理静态数据到处理动态数据一动态测量平差⑺从线性模型的参数估计到非线性模型的参数估计一非线性平差⑻从确定性平差模型到不确定性平差模型一不确定性平差模型的处理⑼从偶然误差的处理到含有系统误差的处理一附加系统参数的平差(10) 从无偏估计到有偏估计(11) 从偶然误差的处理到含有粗差的处理——数据探测法与稳健估计第三节广义逆矩阵1、广义逆g逆:AGA=A解不唯一2、反射g逆:AGA=A, GAG=G解不唯一3、最小范数广义逆AGA=A, (GA T) =GA解不唯一「4、最小二乘广义逆AGA=A, (AG T) =AG解不唯一5、最小二乘最小范数广义逆AGA=A, GAG=G, (GA T) =GA, (AG T) =AG解唯一第二章秩亏自由网平差第一节概述1、平差时必要的起算个数称为基准2、基准数据:测角网d=4测边网、导线网、边角网d=3GPS 网d=5高程网d=l三维控制网d=73、没有足够起算数据的平差问题称为秩亏自由网平差4、秩亏自由网平差类型:普通秩亏自由网平差、拟稳平差、加权秩亏自由网平差例2-2-1课本19页例2-3-1课本27页例2-4-1课本30页第五节控制网附加阵G1 水准网:GT= (1 1 1 ........................ 1)2测边网、导线网、边角网GT=1010 ・・• (10)010 1 ・・• (01)-丫-Y2°X2°•••- -Y m°Xm°3二维测角网G T:第六节1、权逆阵奇异的原因⑴观测值向量中的一些分量是另一些分量的线性组合⑵观测值向量中的一些分量无误差2、权逆阵奇异的平差原则V T PV=V T P*V=V1T P1V1=min第三章最小二乘滤波推估和配置AA- -++-第一"P1、与观测值之间有函数关系的已测点参数称为滤波信号,求定滤波信号最佳估值的过程称为滤波2、与观测值之间没有函数关系的未测点参数称为推估信号,求定推估信号最佳估值的过程称为推估3、配置:最小二乘配置的函数模型L=BX+AY+A⑴当A=0或Y=0时模型变为L=BX+A,即高斯一马尔可夫模型⑵当B=0或X=0时模型变为L= AY+△即滤波和推估模型⑶当;=0时模型变为L=A1S + A即滤波模型第二节1、滤波的函数模型:L=AY+AL为观测向量,Y为随机参数A=[A1 0] Y=[ ]滤波的随机模型:E(A)=0, D(AJ=D A=P A-1,E(L)=U L D(L)=D LE(Y)= D(Y) =Cov(A, S)=D A,C OV(A, S,)=D A2、配置的函数模型:L=BX+AY+AL为观测向量,Y为随机参数A=[A1 0] Y=[ ]滤波的随机模型:E(A)=0, D(AJ=D A=P A-1,E(L)=U L D(L)=D LE(Y)= D(Y) =Cov(A, S)=D A,C OV(A, S,)=D A第五章1、卡尔曼滤波的基本思想:采用信号与噪声的状态空间模型,利用前一时刻的估计值和现时刻的观测值来更新状态变量的估计,求出现时刻的估计值。
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论➢✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
测量平差绪论说在学习前面的话:测量平差是测绘专业一门重要的技术基础课,主要讲授数据处理的基本理论和方法,为今后专业学习打基础。
测量过程是由我们测量人员使用测量仪器在野外完成的,测量不可避免存在误差。
为了检验测量成果的准确性和提高可靠性,还需要进行多余观测。
一、平差的任务和内容任务:处理有观测误差的数据,估计带求量的最佳估值并评定精度。
内容:建立观测误差的统计理论,研究误差的统计分布;研究衡量观测成果质量的精度指标;建立观测值和待求值的函数模型;结合实践研究平差的各种方法;研究预报和质量控制问题。
二、平差的理论支撑和学好的方法理论支撑:数理统计,线性代数,高等数学。
方法:上课认真听讲,理解老师讲解的内容,做笔记,做习题。
三、误差的来源水准测量中架设偶数站是为了消除什么误差?水准尺零点误差水准测量中前后视距相等是为了消除什么误差?i角误差、大气折光差、地球曲率影响1、测量仪器:由于每一种仪器都具有一定限度的精密度,因而使观测值的精密度受到了一定的限制。
例如,在用只刻有厘米分划的普通水准尺进行水准测量时,就难以保证在估读厘米以下的尾数时完全正确无误;同时,仪器本受制造工艺的限制也有一定的误差,因此,使用这样的水准仪和水准尺进行观测,就会使水准测量的结果产生误差。
同样,经纬仪、测距仪、接收机等仪器的观测结果也会有误差的存在。
2、观测者:由于观测者的感觉器官的鉴别能力有一定的局限性,所以在仪器的安置、照准、读数方面都会产生误差。
同时,观测者的工作态度和技术水平,也是对观测成果质量有直接影响的重要因素。
3、外界环境:观测时所处的外界条件,如温度、湿度、压强、风力、大气折光、电离层等因素都会对观测结果直接产生影响;随着这些因素的变化,它们对观测结果的影响也随之不同,因此观测结果产生误差是必然的。
反之,观测条件差一些,观测成果的质量就会相对低一些。
如果观测条件相同,观测成果的质量也就可以说是相同的。
但是,不管观测条件如何,观测的结果都会产生这样或那样的误差,测量中产生误差是不可避免的。