2019最新第八章近代平差理论数学
- 格式:ppt
- 大小:2.24 MB
- 文档页数:92
第一章第一节绪论1、近代测量平差理论的主要内容⑴从独立观测值到相关观测值一相关平差⑵从函数模型和随机模型满秩到函数模型和随机模型奇异一秩亏自由网平差⑶从非随机参数到随机参数以及随机参数与非随机参数一并处理一最小二乘滤波、推估和配置⑷从先验定权到后验定权一随机模型的验后估计⑸从整体解算到分开解算——序贯平差⑹从处理静态数据到处理动态数据一动态测量平差⑺从线性模型的参数估计到非线性模型的参数估计一非线性平差⑻从确定性平差模型到不确定性平差模型一不确定性平差模型的处理⑼从偶然误差的处理到含有系统误差的处理一附加系统参数的平差(10) 从无偏估计到有偏估计(11) 从偶然误差的处理到含有粗差的处理——数据探测法与稳健估计第三节广义逆矩阵1、广义逆g逆:AGA=A解不唯一2、反射g逆:AGA=A, GAG=G解不唯一3、最小范数广义逆AGA=A, (GA T) =GA解不唯一「4、最小二乘广义逆AGA=A, (AG T) =AG解不唯一5、最小二乘最小范数广义逆AGA=A, GAG=G, (GA T) =GA, (AG T) =AG解唯一第二章秩亏自由网平差第一节概述1、平差时必要的起算个数称为基准2、基准数据:测角网d=4测边网、导线网、边角网d=3GPS 网d=5高程网d=l三维控制网d=73、没有足够起算数据的平差问题称为秩亏自由网平差4、秩亏自由网平差类型:普通秩亏自由网平差、拟稳平差、加权秩亏自由网平差例2-2-1课本19页例2-3-1课本27页例2-4-1课本30页第五节控制网附加阵G1 水准网:GT= (1 1 1 ........................ 1)2测边网、导线网、边角网GT=1010 ・・• (10)010 1 ・・• (01)-丫-Y2°X2°•••- -Y m°Xm°3二维测角网G T:第六节1、权逆阵奇异的原因⑴观测值向量中的一些分量是另一些分量的线性组合⑵观测值向量中的一些分量无误差2、权逆阵奇异的平差原则V T PV=V T P*V=V1T P1V1=min第三章最小二乘滤波推估和配置AA- -++-第一"P1、与观测值之间有函数关系的已测点参数称为滤波信号,求定滤波信号最佳估值的过程称为滤波2、与观测值之间没有函数关系的未测点参数称为推估信号,求定推估信号最佳估值的过程称为推估3、配置:最小二乘配置的函数模型L=BX+AY+A⑴当A=0或Y=0时模型变为L=BX+A,即高斯一马尔可夫模型⑵当B=0或X=0时模型变为L= AY+△即滤波和推估模型⑶当;=0时模型变为L=A1S + A即滤波模型第二节1、滤波的函数模型:L=AY+AL为观测向量,Y为随机参数A=[A1 0] Y=[ ]滤波的随机模型:E(A)=0, D(AJ=D A=P A-1,E(L)=U L D(L)=D LE(Y)= D(Y) =Cov(A, S)=D A,C OV(A, S,)=D A2、配置的函数模型:L=BX+AY+AL为观测向量,Y为随机参数A=[A1 0] Y=[ ]滤波的随机模型:E(A)=0, D(AJ=D A=P A-1,E(L)=U L D(L)=D LE(Y)= D(Y) =Cov(A, S)=D A,C OV(A, S,)=D A第五章1、卡尔曼滤波的基本思想:采用信号与噪声的状态空间模型,利用前一时刻的估计值和现时刻的观测值来更新状态变量的估计,求出现时刻的估计值。
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论➢✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。