问题 1:x有无最大(小)值? 问题2:y有无最大(小)值? 问题3:2x+y有无最大(小)值?
C 设z=2x+y
y=-2x+ z
2x+y=0
o
问题4:z几何意义是:
斜率为-2的直线在y轴上的截距
x-4y=-3
A
3x+5y=25
x B 当直线过点 B(1,1)时,z 最小,即zmin=3 当直线过点A(5,2)时,z最大,即zmax= 2×5+2=12
产安排是什么?
应用举例
【引例】:
某工厂用A、B两种配件生 产甲、乙两种产品,每生 产一件甲产品使用4个A配 件并耗时1h,每生产一件 乙产品使用4个B配件并耗 时2h,该厂每天最多可从 配件厂获得16个A配件和 12个B配件,按每天工作 8h计算,该厂所有可能的 日生产安排是什么?
4 2
2
4
6
8
应用举例
【优化条件】: 若生产一件甲产 品获利2万元,生 产一件乙产品获 利3万元,采用哪 种生产安排获得 利润最大?
4
M(4,2 )
2
2
4
6
8
z y2x2x3yz
33
x -4y≤ - 3
例1、画出不等式组 3x+5y≤ 25 表示的平面区域
x≥1
x-4y≤-3
在该平面区域上
3x+5y≤25 x≥1
y x=1
3
故有四个整点可行解.
2
1
x +4y=11
0 1 2 3 4 5x
3x +2y=10
应用举例
练习5: 某工厂计划生产甲、乙两种产品,这两种产品都需要两