⌒
⌒
可推出
┏ A′ D′ B′ ①∠AOB=∠A′O′B′
③AB=A′B′ ④ OD=O′D′
推论
• 在同圆或等圆中,如果①两个圆心角,②两条 弧,③两条弦,④两条弦心距中,有一组量相等, 那么它们所对应的其余各组量都分别相等.
A
●
D
D O
A
●
B
B
O
●
O′
┏ A′ D′ B′
如由条件: ③AB=A′B′
O B C
已知AB是⊙O的直径,M.N是AO.BO的中点。 CM⊥AB,DN⊥AB,分别与圆交于C.D点。求 证:⌒ ⌒ AC=BD
D A M o N C B
下面的说法正确吗?为什么?
如图,因为 AOB AOB, 根据圆心角、弧、弦、
弦心距的关系定理可知:
O ⌒ ⌒
AB AB
A
A
B
B
例题与练习
• 如图:已知OA.OB是⊙O中的两条半径,且 OA⊥OB,D是弧AB上的一点,AD的延长线 交OB延长线于C。已知∠ C=250,求圆心 角∠DOB的度数, A D
o
C
D
A B
o
C
D
A B
o
C
D
A B
C
o
D
A B
o
C
D
A B
o
C
D
A B
o
C
D
A B
o
C
D
A B
o
C
D
A B
o
C
D
A B
o
C
D
A B
o
C
D