得∠AOB=∠A′OB′,=''.
相等.
探究点一
圆心角、弧、弦之间的关系
[例 1]如图所示,在☉O 中,=,∠ACB=60°.求证:∠AOB=∠AOC=∠BOC.
[导学探究]
1.由=,可得 AB=AC
,即△ABC 是 等腰 三角形.
2.由∠ACB=60°,可得△ABC 是 等边 三角形,易得∠AOB=∠AOC=∠BOC.
2.圆的对称性
第1课时
圆心角、弧、弦之间的关系
一、圆的对称性
1.圆是旋转对称图形,无论绕
是 圆心 .
圆心
旋转多少度,都能与自身重合,对称中心
2.圆是轴对称图形,任意一条 直径 所在的直线都是它的对称轴.
二、圆心角、弧、弦之间的关系
1.在同一个圆中,如果圆心角相等,那么它们所对的 弧 相等,所对的 弦 相等.
.
证明:如图所示,连结 OC,
因为 C 为的中点,
所以=.
所以∠MOC=∠NOC.
又因为 M,N 分别是 OA,OB 的中点,
所以 OM= OA,ON= OB.
因为 OA=OB,所以 OM=ON.
= ,
在△OMC 和△ONC 中, ∠ = ∠,
= ,
所以△OMC≌△ONC.所以 MC=NC.
圆心角、弧、弦三者之间的关系可以理解为:在同圆或等圆中,(1)圆心角相等;
(2)两条劣弧(或优弧)相等;(3)两条弦相等,三项“知一推二”,即一项相等,
其余两项皆相等.
证明:因为=,所以 AB=AC,
即△ABC 是等腰三角形.
又∠ACB=60°,
所以△ABC 是等边三角形.
所以 AB=BC=CA.