九年级数学正多边形和圆1
- 格式:pdf
- 大小:1.08 MB
- 文档页数:10
初三数学正多边形和圆公式
正多边形和圆是中学数学学习中一个重要的课题,其中正多边形和圆的公式是学生必须掌握的知识点。
一、正多边形的公式
1、行心角公式:Σinterior angles = (n - 2 )×180°
其中,Σinterior angles表示角之和,n表示多边形内角的个数。
2、每内角度数公式:interior angle = (n - 2 )×180°/n
3、外角之和公式:Σexterior angles = 360°
其中,Σexterior angles表示外角之和。
4、外角度数公式:exterior angle= 360°/n
5、正多边形的周长公式:P= a × n
二、圆的公式
1、定义公式:圆:(x-a)^2+(y-b)^2=r^2
其中,a和b表示圆心坐标,r表示圆的半径。
2、圆的周长公式:C=2πr
3、圆的面积公式:S=πr^2
4、弦长公式:L=2πr × 角度
5、弦长公式:A=2πR × (1-cosα)
以上就是高中数学关于正多边形和圆的公式,希望可以帮助到大家学习和掌握。
正多边形和圆 ( 一)素质教育目标1.使学生理解正多边形观点;使学生认识挨次连接圆的n 平分点所得的多边形是正多边形;过圆的n 平分点作圆的切线,以相邻切线的交点为极点的多边形是正多边形.2,经过正多边形定义教课培育学生概括能力;经过正多边形与圆关系定理的教课培育学生察看、猜想、推理、迁徙能力.3,向学生浸透“特别——一般”再“一般——特别”的唯物辩证法思想.教课要点、难点、疑点及解决方法1.要点:正多边形的定义;n 平分圆周 (n ≥ 3) 可得圆的内接正n 边形和圆的外切正n 边形.2.难点:对正n 边形中泛指“n”的理解.3.疑点及解决方法:揭露定理证明的思路和步骤,说明取n=5 的特别状况证明定理具有代表性.教法学法和教具1.教法:指引学生探究研究发现法。
2.学法:学生主动探究研究发现法。
3.教具:三角尺、圆规、投影仪(或小黑板)。
教课步骤复习准备部分同学们思虑以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?[ 安排中下生回答]3.等边三角形与正方形的边、角性质有什么共同点?[ 中上生回答:各边相等、各角相等] .教师:我们今日学习的内容“7.15 正多边形和圆”.讲堂讲练部分一,正多边形的观点教师发问:1,什么是正多边形?[ 安排中下生回答:各边相等、各角也相等的多边形叫做正多边形.]师重申:假如一个正多边形有 n(n ≥ 3) 条边,就叫正 n 边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.[ 教师展现图形]2,上边这些图形都是正几边形?[ 安排中下生回答:正三角形,正四边形,正五边形,正六边形. ]3,矩形是正多边形吗?为何?菱形是正多边形吗?为何?[ 安排中下生回答:矩形不是正多边形,因为边不必定相等.菱形不是正多边形,因为角不必定相等.] 4,哪位同学记得在同圆中,圆心角、弧、弦、弦心距关系定理?[ 安排记起来的学生回答:在同圆中,圆心角、弧、弦、弦心距有一组量相等,那么其他量都相等.] 5,要将圆三平分,那么此中一等份的弧所对圆心角度数是多少?要将圆四平分、五等分、六平分呢?[ 安排中下生回答:将圆三平分,此中每等份弧所对圆心角120°、将圆四平分,每等份弧所对圆心角90°、五平分,圆心角72°、六平分,圆心角60° ] 6,哪位同学能用量角器将黑板上的圆三平分、四平分、五平分、六平分?[ 接排四名上等生上黑板达成,其他学生在下边练习本上用量角器平分圆周.]7,大家挨次连接各分点看所得的圆内接多边形是什么样的多边形?[ 学生答:正多边形.二,平分圆周法定理求证:五边形ABCDE是⊙ O的内接正五边形.教师指引学生剖析:1,以五边形为例,哪位同学能证明这五边形的五条边相等?[ 安排中等生回答:]2,哪位同学能明五形的五个角相等?[ 安排中等生回答:]3,前方的明明“挨次的五平分点所得的内接五形是正五形”的察后的猜想是正确的.假如n 平分周, (n ≥ 3) 、 n=6, n=8⋯⋯能否也正确呢?[ 安排学生充足] .教: 因在同中,弧等弦等,n 平分就获得n 条弦等,也就是n 形的各都相等.又n 形的每个内角的(n-2)条弧,而每一内角所的弧都相等,依据弧等、周角相等,了然n 形的各角都相等,所以内接正五形的明拥有代表性.定理:把圆分红 n(n ≥ 3) 等份:(1) 挨次连接各分点所得的多边形是这个圆的内接正n 边形;教:1,何要“挨次” 各分点呢?缺乏“挨次”二字会出什么象?大家看看.2,的五平分点作的切,大家察以相切的交点点的五形能否是正五形?PQ、 QR、 RS、 ST 分是分点A、 B、 C、 D、 E 的⊙ O的切.求:五形PQRST是⊙ O的外切正五形教引学生剖析:1, 由弧等推得弦等、弦切角等,哪位同学能明五形PQRST的各角都相等?[ 安排中上生回答]2, 哪位同学能明五形PQRST的各都相等?[ 安排中等生回答.]教:前方同学的明,明“ 的五平分点作的切,以相切的交点点的多形是个的外切正五形.”同依据弧等弦等、弦切角等便可明的n 平分点作的切,以相切的交点点的n 个等腰三角形全等,进而了然个的以它n 平分点切点的外切n 形是正n 形.(2)经过各分点作圆的切线,以相邻切线的交点为极点的多边形是这个圆的外切正 n 边形.教师重申:定理(2) 中少“相邻”两字行不可以?少“相邻”两字会出现什么现象?同学们相互间议论研究看看.总结、扩展、反省本堂课我们学习的知识:1.学习了正多边形的定义.2. n 平分圆周 (n ≥ 3) 可得圆的内接正n 边形和圆的外切正n 边形.讲堂作业:教材P.143 .练习 2、 3部署作业:P.157 中 2、 3.板书设计教后札记:学生对正多边形的观点能够理解,会用平分圆周法作图,可是,因为对多边形接触较少,应用有难度,解题不周祥,要指导学生对正多边形的观点作图和定理的反省学习。
2023-2024学年九年级上数学:第24章圆
24.3
正多边形和圆
正多边形和圆
(1)正多边形与圆的关系
只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.
一个正多边形的外接圆的圆心叫作这个正多边形的中心,外接圆的半径叫作这个正多边形的半径;正多边形每一边所对的圆心角叫作正多边形的中心角;中心到正多边形的一边的距离叫做正多边形的边心距.
把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
第1页(共15页)。
人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计一. 教材分析《正多边形和圆》是人教版九年级数学上册第24章第三节的第一课时内容,主要介绍了正多边形的定义、性质以及与圆的关系。
本节课的内容是学生对几何图形学习的进一步深化,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
教材通过生活中的实例引入正多边形和圆的概念,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的深度。
但是,对于正多边形和圆的性质和关系,可能还比较陌生。
因此,在教学过程中,需要教师通过生动形象的实例和直观的图形,帮助学生理解和掌握正多边形和圆的概念和性质。
三. 教学目标1.了解正多边形的定义和性质,能够识别和判断正多边形。
2.理解圆的概念,掌握圆的性质。
3.掌握正多边形与圆的关系,能够运用正多边形和圆的知识解决实际问题。
四. 教学重难点1.重难点:正多边形的定义和性质,圆的概念和性质。
2.难点:正多边形与圆的关系的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索,激发学生的学习兴趣和积极性。
2.采用直观演示法,通过实物和图形的展示,帮助学生直观地理解和掌握正多边形和圆的概念和性质。
3.采用归纳总结法,通过总结和归纳,使学生对正多边形和圆的知识有一个系统的认识。
六. 教学准备1.准备相关的图形和图片,如正多边形和圆的实物图片,正多边形和圆的模型等。
2.准备相关的教学PPT,内容包括正多边形和圆的定义、性质和关系等。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学过的几何图形,如三角形、四边形等,激发学生的学习兴趣。
然后,展示一些生活中的实例,如五角星、车轮等,引导学生思考这些图形的共同特征。
2.呈现(10分钟)教师展示正多边形和圆的实物图片和模型,引导学生观察和描述正多边形和圆的特征。
然后,教师通过PPT呈现正多边形和圆的定义和性质,让学生初步了解和掌握。
人教版九年级数学上册24.3.1《正多边形和圆(1)》说课稿一. 教材分析《正多边形和圆》是人民教育出版社九年级数学上册第24章第3节的一个内容。
本节课主要介绍正多边形的定义、性质以及与圆的关系。
通过学习本节课,学生能够理解正多边形的定义,掌握正多边形的性质,以及了解正多边形与圆的密切关系。
二. 学情分析九年级的学生已经具备了一定的几何图形的基础知识,对图形的性质和概念有一定的了解。
但是,对于正多边形的定义和性质,以及与圆的关系,可能还比较陌生。
因此,在教学过程中,我需要根据学生的实际情况,逐步引导学生理解和掌握这些概念和性质。
三. 说教学目标1.知识与技能:理解正多边形的定义,掌握正多边形的性质,了解正多边形与圆的关系。
2.过程与方法:通过观察、思考、交流等方法,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.重点:正多边形的定义和性质,以及正多边形与圆的关系。
2.难点:正多边形与圆的关系的推导和理解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等教学方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、几何画板等教学手段,直观展示正多边形的性质和与圆的关系,帮助学生理解和掌握。
六. 说教学过程1.导入:通过展示一些生活中的正多边形图片,如正方形、正三角形等,引导学生思考什么是正多边形,激发学生的学习兴趣。
2.新课导入:正式引入正多边形的定义和性质,引导学生通过观察、思考、交流等方法,探索正多边形的性质。
3.知识拓展:引导学生思考正多边形与圆的关系,通过几何画板等教学手段,直观展示正多边形与圆的关系。
4.课堂练习:设计一些相关的练习题,让学生巩固所学知识,提高解题能力。
5.总结:对本节课的内容进行总结,强调正多边形的定义和性质,以及与圆的关系。
七. 说板书设计板书设计主要包括正多边形的定义、性质,以及与圆的关系。
九年级上册数学正多边形和圆正多边形和圆(人教版九年级上册)一、正多边形的概念。
1. 定义。
- 各边相等,各角也相等的多边形叫做正多边形。
例如,等边三角形是正三角形,正方形是正四边形。
2. 正多边形与圆的关系。
- 把一个圆分成n(n≥slant3)等份:- 依次连接各分点所得的多边形是这个圆的内接正n边形。
- 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
二、正多边形的有关计算。
1. 正多边形的中心、半径、边心距、中心角。
- 中心:正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心。
- 半径:外接圆的半径叫做正多边形的半径,通常用R表示。
- 边心距:内切圆的半径叫做正多边形的边心距,通常用r表示。
- 中心角:正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形的中心角α=frac{360^∘}{n}。
2. 正多边形的有关计算。
- 设正n边形的边长为a_n,半径为R,边心距为r。
- 在由半径R、边心距r和边长的一半frac{a_n}{2}所构成的直角三角形中,根据勾股定理有R^2=r^2+(frac{a_n}{2})^2。
- 正n边形的周长C = n× a_n,面积S=(1)/(2)C× r=(1)/(2)n× a_n× r。
三、正多边形的画法。
1. 用量角器等分圆。
- 先用量角器画一个等于frac{360^∘}{n}的圆心角,这个圆心角所对的弧就是圆的(1)/(n),然后在圆上依次截取这条弧的等弧,就可以得到圆的n等分点,从而画出正n边形。
2. 用尺规等分圆(特殊正多边形)- 正六边形:- 由于正六边形的中心角为60^∘,所以在圆中,以半径为弦长,在圆上依次截取六段相等的弧,就可以得到正六边形。
- 正四边形(正方形):- 先作圆的两条互相垂直的直径,再连接直径与圆的四个交点,就得到正方形。