初中九年级数学 正多边形和圆
- 格式:doc
- 大小:226.30 KB
- 文档页数:8
人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。
本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。
本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。
二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。
但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。
三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。
2.难点:正多边形和圆的关系,圆的性质和应用。
五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。
3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。
4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。
六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。
2.教学素材:准备相关的实物、图片等教学素材。
3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。
七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。
九年级数学同步辅导与测试——正多边形和圆重点、难点:1. 正多边形的定义:各边相等、各内角也相等的多边形叫正多边形。
2. 正多边形与圆的关系(1)把圆分成n (n ≥3)等份,有如下结论:其一:依次连结各分点所得的多边形是这个圆的内接正n 边形,这圆是正n 边形的外接圆。
其二:经过各分点作圆的切线以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形,这圆是正n 边形的内切圆。
(2)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
3. 有关的概念(1)正多边形的中心 (2)正多边形的半径 (3)正多边形的边心距 (4)正多边形的中心角4. 正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。
这里我们设:正n 边形的中心角为α,半径为R ,边心距为r ,边长为a n ,周长为P n ,面积为S n ,则有();();();();();();136022*********4561212222α=︒=⋅︒=⋅︒=⋅=⋅=⋅⋅=⋅na R nr R nR r a P n a S n r a r P n n n n n n n sin cos()正多边形的每一个内角,内角和721802180=-⋅︒=-⋅︒()().n n n5. 每一个正多边形都是轴对称图形,当边数为偶数时,它还是中心对称图形。
6. 重点和难点:(1)重点是正多边形的计算问题,计算通常是通过解直角三角形来解决的,所以在解这类题时,要尽量创造直角三角形,把所求的问题放到直角三角形中去,尤其是含30°、60°角的直角三角形和等腰直角三角形更重要。
(2)难点是灵活运用正多边形的知识和概念解题。
〖知识总结〗正多边形的定义要理解后记牢,这里各边都相等,各角都相等,缺一不可,边数一样多的正多边形是相似多边形。
对于任意三角形来讲都有外接圆和内切圆,但注意只有正三角形的外接圆和内切圆是同心圆。
有关正多边形的计算实质是把问题转化为解直角三角形的计算,所以这里要用到三角函数及勾股定理等有关知识。
初三数学正多边形和圆公式
正多边形和圆是中学数学学习中一个重要的课题,其中正多边形和圆的公式是学生必须掌握的知识点。
一、正多边形的公式
1、行心角公式:Σinterior angles = (n - 2 )×180°
其中,Σinterior angles表示角之和,n表示多边形内角的个数。
2、每内角度数公式:interior angle = (n - 2 )×180°/n
3、外角之和公式:Σexterior angles = 360°
其中,Σexterior angles表示外角之和。
4、外角度数公式:exterior angle= 360°/n
5、正多边形的周长公式:P= a × n
二、圆的公式
1、定义公式:圆:(x-a)^2+(y-b)^2=r^2
其中,a和b表示圆心坐标,r表示圆的半径。
2、圆的周长公式:C=2πr
3、圆的面积公式:S=πr^2
4、弦长公式:L=2πr × 角度
5、弦长公式:A=2πR × (1-cosα)
以上就是高中数学关于正多边形和圆的公式,希望可以帮助到大家学习和掌握。
人教版数学九年级上册24.3.2《正多边形和圆》教案一. 教材分析《正多边形和圆》是人民教育出版社出版的数学九年级上册第24章第三节的内容。
本节内容主要介绍了正多边形的定义、性质以及与圆的关系。
通过学习正多边形和圆,学生能够理解圆的定义,掌握圆的性质,并能够运用圆的知识解决实际问题。
二. 学情分析九年级的学生已经掌握了多边形的基本概念和性质,具备一定的逻辑思维能力。
但是对于正多边形和圆的关系的理解可能存在一定的困难。
因此,在教学过程中,需要通过实例和图形的演示,帮助学生建立直观的认识,引导学生主动探究正多边形和圆的性质。
三. 教学目标1.知识与技能:–能够理解正多边形的定义和性质。
–能够理解圆的定义和性质。
–能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:–通过观察和操作,培养学生的观察能力和动手能力。
–通过小组合作,培养学生的合作能力和沟通能力。
3.情感态度与价值观:–培养学生对数学的兴趣和好奇心。
–培养学生的自主学习能力和解决问题的能力。
四. 教学重难点•正多边形的定义和性质。
•圆的定义和性质。
•正多边形和圆的关系的理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正多边形和圆的性质。
2.通过实例和图形的演示,帮助学生建立直观的认识。
3.采用小组合作的学习方式,培养学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图形和图片,用于演示和解释正多边形和圆的性质。
2.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)–利用图片和实例,引导学生回顾多边形的基本概念和性质。
–提出问题,引导学生思考正多边形和圆的关系。
2.呈现(15分钟)–通过图形和实例,展示正多边形的定义和性质。
–解释正多边形和圆的关系,引导学生理解圆的定义和性质。
3.操练(15分钟)–学生分组合作,进行实际操作,探究正多边形和圆的性质。
–教师引导学生进行讨论和交流,解答学生的疑问。
2023-2024学年九年级上数学:第24章圆
24.3
正多边形和圆
正多边形和圆
(1)正多边形与圆的关系
只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.
一个正多边形的外接圆的圆心叫作这个正多边形的中心,外接圆的半径叫作这个正多边形的半径;正多边形每一边所对的圆心角叫作正多边形的中心角;中心到正多边形的一边的距离叫做正多边形的边心距.
把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
第1页(共15页)。
24.3正多边形和圆教案一、【教材分析】1.通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;2.通过正多边形有关概念的教学培养学生的阅读理解能力.二、【教学流程】边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点.自主探究问题一、如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、D、E、F都在这个圆上.问题二、我们以圆内接正六边形为例证明.如图所示的圆,把⊙O分成相等的6段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形.问题三总结和归纳问题1.一个正多边形的外接圆的圆心叫做这个多边形的中心.2. 外接圆的半径叫做正多边形的半径.3. 正多边形每一边所对的圆心角叫做正多边形的中心角.4. 中心到正多边形的一边的距离叫做正多边形的边心距.教师提出问题学生相互讨论思考1.如何画这个图形的外接圆?2.圆与正多边形顶点以及位置关系是怎么样的?3.如何利用圆画正多形:作相等的弧外接圆与内接圆的区别和联系?在教师和和学生的探讨中解决问题:在动手操作与实践中认识问题对问题的一种升华认识对问题的梳理认识尝试应用1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积.2.利用正多边形的概念和性质来画正多边形,利用手中的工具画一个边长为3cm的正五边形(1)画法(2)步骤3. 巩固训练教材P106 练习1、2、3 P108 探究题、练习.教师提出问题学生独立思考解答并板书师生探讨分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,应该先求边长为3的正五边形的半径可选做,学生独立完成一种成果的展示探讨正多边形的画法补偿提高1.在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6.(1)求△ABC的边AB上的高h.(2)设DN=x,且h DN NFh AB-=,当x取何值时,水池DEFN的面积最大?(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.让学生课堂讨论分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,应用圆的对称性就能圆满解决此题对不同能力学生的升华认识_h_F_D_E_C_B_A_N_GFDECBAOM解:(1)由AB ·CG =AC ·BC 得h=8610AC BC AB ⨯=g =4.8(2)当x =2.4时,S DEFN 最大(3)当S DEFN 最大时,x =2.4,此时,F 为BC 中点,在Rt △FEB 中,EF =2.4,BF =3. ∴BE =22223 2.4DE EF -=-=1.8 ∵BM =1.85,∴BM >EB ,即大树必位于欲修建的水池边上,应重新设计方案. ∵当x =2.4时,DE =5∴AD =3.2,由圆的对称性知满足条件的另一设计方案,如图所示:小结:三、【板书设计】24.3 正多边形和圆1.一个正多边形的外接圆的圆心叫做这个多边形的中心.2. 外接圆的半径叫做正多边形的半径.3. 正多边形每一边所对的圆心角叫做正多边形的中心角.4. 中心到正多边形的一边的距离叫做正多边形的边心距.四、【教后反思】《正多边形与圆》这一节的教学目标是:让学生能将正多边形的有关计算问题转化为解直角三角形的问题来解决;会用量角器或尺规等分圆、画出正多边形.通过学习使学生能认识到事物之间是普遍联系的,事物之间是可以相互转化的,并培养和训练学生的综合运用知识能力和解决实际问题的能力,渗透数形结合的思想和方法.。
中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。
2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。
②正多边形的半径:外接圆的半径叫做正多边形的半径。
③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。
④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。
练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。
九年级数学正多边形与圆教案(精选多篇)正文第一篇:九年级数学正多边形与圆教案九年级数学正多边形与圆教案学习目标:1、了解正多边形的概念、正多边形和圆的关系;2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;3、能够用直尺和圆规作图,作出一些特殊的正多边形;4、理解正多边形的中心、半径、边心距、中心角等概念。
学习重点:正多边形的概念及正多边形与圆的关系。
学习难点:利用直尺与圆规作特殊的正多边形。
学习过程:一、情境创设:观察下列图形,你能说出这些图形的特征吗?提问:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?二、探索活动:活动一观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念概念:叫做正多边形。
(注:各边相等与各角相等必须同时成立)提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.活动二用量角器作正多边形,探索正多边形与圆的内在联系1、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分;2、正多边形的外接圆的圆心叫正多边形的中心。
活动三探索正多边形的对称性问题:正三角形、正方形、正五边形、正六边形、正八边形中,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如果是轴对称图形,画出它的对称轴;如果是中心对称图形,找出它的对称中心。
问题:正多边形与圆有什么关系呢?什么是正多边形的中心?发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.圆心就是正多边形的中心。
分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?你知道为什么吗?思考:任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系?结论:正多边形都是轴对称图形,一个正n边形有条对称轴,每条对称轴都通过正n边形的;一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。
( 数学教案 )学校:_________________________年级:_________________________教师:_________________________教案设计 / 精品文档 / 文字可改九年级数学:正多边形和圆(教案设计)Mathematics is a tool subject, it is the basis for learning other subjects, and it is also a subject that improves people's judgment, analysis, and comprehension abilities.九年级数学:正多边形和圆(教案设计)教学目标:1、使学生理解正多边形概念;2、使学生了解依次连结圆的n等分点所得的多边形是正多边形;过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.3、通过正多边形定义教学培养学生归纳能力;4、通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力.教学重点:(1)正多边形的定义;(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.教学难点:对正n边形中泛指“n”的理解.教学过程:一、新课引入:同学们思考以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?[安排中下生回答] 3.等边三角形与正方形的边、角性质有什么共同点?[安排中上生回答:各边相等、各角相等].各边相等,各角相等的多边形叫做正多边形.这就是我们今天学习的内容“7.15正多边形和圆”.二、新课讲解:正多边形在生产实践中有广泛的应用性,因此,正多边形的知识对学生进一步学习和参加生产劳动都是必要的.因此本节课首先给出正多边形的定义,然后根据正多边形的定义和圆的有关知识推导出正多边形与圆的第一个关系定理,即n等分圆周就可得到圆的内接或外切正n边形,它是正多边形画图的理论依据,因此也是本节课的重点之一.同学回答:什么是正多边形?[安排中下生回答:各边相等、各角也相等的多边形叫做正多边形.]如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.幻灯展示图形:上面这些图形都是正几边形?[安排中下生回答:正三角形,正四边形,正五边形,正六边形.]矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?[安排中下生回答:矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.]哪位同学记得在同圆中,圆心角、弧、弦、弦心距关系定理?[安排记起来的学生回答:在同圆中,圆心角、弧、弦、弦心距有一组量相等,那么其余量都相等.]要将圆三等分,那么其中一等份的弧所对圆心角度数是多少?要将圆四等分、五等分、六等分呢?[安排中下生回答:将圆三等分,其中每等份弧所对圆心角120°、将圆四等分,每等份弧所对圆心角90°、五等分,圆心角72°、六等分,圆心角60°]哪位同学能用量角器将黑板上的圆三等分、四等分、五等分、六等分?[接排四名上等生上黑板完成,其余学生在下面练习本上用量角器等分圆周.]大家依次连结各分点看所得的圆内接多边形是什么样的多边形?[学生答:正多边形.]求证:五边形abcde是⊙o的内接正五边形.以幻灯所示五边形为例,哪位同学能证明这五边形的五条边相等?[安排中等生回答:]哪位同学能证明这五边形的五个角相等?[安排中等生回答:] 前面的证明说明“依次连结圆的五等分点所得的圆内接五边形是正五边形”的观察后的猜想是正确的.如果n等分圆周,(n≥3)、n=6,n=8……是否也正确呢?[安排学生们充分讨论].因为在同圆中,弧等弦等,n等分圆就得到n条弦等,也就是n边形的各边都相等.又n边形的每个内角对圆的(n-2)条弧,而每一内角所对的弧都相等,根据弧等、圆周角相等,证明了n边形的各角都相等,因此圆内接正五边形的证明具有代表性.定理:把圆分成n(n≥3)等份:(1)依次连结各分点所得的多边形是这个圆的内接正n边形;为何要“依次”连结各分点呢?缺少“依次”二字会出现什么现象?大家讨论讨论看看.经过圆的五等分点作圆的切线,大家观察以相邻切线的交点为顶点的五边形是不是正五边形?pq、qr、rs、st分别是经过分点a、b、c、d、e的⊙o的切线.求证:五边形pqrst是⊙o的外切正五边形.由弧等推得弦等、弦切角等,哪位同学能说明五边形pqrst的各角都相等?[安排中上生回答]哪位同学能证明五边形pqrst的各边都相等?[安排中等生回答.]前面同学的证明,说明“经过圆的五等分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正五边形.”同样根据弧等弦等、弦切角等就可证明经过圆的n等分点作圆的切线,以相邻切线的交点为顶点的n个等腰三角形全等,从而证明了这个圆的以它n等分点为切点的外切n边形是正n边形.(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.定理(2)中少“相邻”两字行不行?少“相邻”两字会出现什么现象?同学们相互间讨论研究看看.三、课堂小结:本堂课我们学习的知识:1.学习了正多边形的定义.2.n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.四、布置作业教材p.147.练习2、3;p.172中2、3、4(1).可在这填写你的名称YOU CAN FILL IN THE NAME Here。
专题18 正多边形与圆【重点突破】知识点一正多边形和圆正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形.正多边形的相关概念:➢正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.➢正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.➢正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.➢正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.半径、边心距,边长之间的关系:画圆内接正多边形方法(仅保留作图痕迹):1)量角器(作法操作复杂,但作图较准确)2)量角器+圆规(作法操作简单,但作图受取值影响误差较大)3)圆规+直尺(适合做特殊正多边形,例如正四边形、正八边形、正十二边形…..)【考查题型】考查题型一求正多边形的中心角典例1.(2019·南京市期末)若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A.45°B.60°C.72°D.90°【答案】B【提示】利用正多边形的边长与半径相等得到正多边形为正六边形,然后根据正多边形的中心角定义求解.【详解】解:因为正多边形的边长与半径相等,所以正多边形为正六边形,因此这个正多边形的中心角为60°.故选B.【名师点拨】本题主要考查的是正多边形的中心角的概念,正确的理解正多边形的边长与半径相等得到正多边形为正六边形是解决问题的关键.变式1-1.(2020·淮安市期末)如图,正六边形ABCDEF内接于圆O,圆O半径为2,则六边形的边心距OM 的长为()A.2 B.3C.4 D3【答案】D【提示】连接OB、OC,证明△OBC是等边三角形,得出3=OM OB即可求解.【详解】解:连接OB、OC,如图所示:则∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM为30°、60°、90°的直角三角形,∴333 OM故选:D.【名师点拨】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键.变式1-2.(2019·宿迁市期末)正六边形的周长为6,则它的面积为()A.93B.332C3D.33【答案】B【提示】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为6,即可求得BC 的长,继而求得△OBC的面积,则可求得该六边形的面积.【详解】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=16×360°=60°, ∵OB=OC ,∴△OBC 是等边三角形,∵正六边形ABCDEF 的周长为6, ∴BC=6÷6=1, ∴OB=BC=1, ∴BM=12BC=12, ∴2222131()22OB BM -=-=, ∴S △OBC =12×BC×OM=1331224⨯⨯= , 3336=. 故选:B . 【名师点拨】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.变式1-3.(2020·东台市期末)在一块半径为2cm 的圆形钢板中裁出一个最大的等边三角形,此等边三角形的边长( ) A .1cm B 3cm C .2cm D .3cm【答案】D 【提示】画出图形,作OC AB ⊥于点C ,利用垂径定理和等边三角形的性质求出AC 的长即可得出AB 的长. 【详解】解:依题意得3603120AOB ∠=︒÷=︒, 连接OA ,OB ,作OC AB ⊥于点C , ∵OA OB =,∴2AB AC =,60AOC ∠=︒, ∴sin 603cm AC OA =⋅︒=, ∴223cm AB AC ==. 故选:D .【名师点拨】本题考查了圆的内接多边形,和垂径定理的使用,弄清题意准确计算是关键.变式1-4.(2019·宿迁市期中)如图,已知正六边形ABCDEF ,则∠ADF =_____度.【答案】30 【提示】找到AD 的中点O ,连接OF ,由多边形是正六边形可求出∠AOF 的度数,再根据圆周角定理即可求出∠ADF 的度数. 【详解】解:由题意知:AD 是正六边形的外接圆的直径, 找到AD 的中点O ,连接OF , ∵六边形ABCDEF 是正六边形,∴∠AOF =3606︒=60°, ∴∠ADF =12∠AOF =12×60°=30°.故答案为:30.【名师点拨】此题考查的是圆与正六边形,掌握圆的内接正六边形的性质和同弧所对的圆周角是圆心角的一半是解决此题的关键.变式1-5 (2019·房县期末)若用αn表示正n边形的中心角,则边长为4的正十二边形的中心角是____.【答案】30º【提示】根据正多边形的中心角的定义,可得正十二边形的中心角是:360°÷12=30°.【详解】正十二边形的中心角是:360°÷12=30°.故答案为:30º.【名师点拨】此题考查了正多边形的中心角.此题比较简单,注意准确掌握定义是关键.考查题型二已知正多边形的中心角求边数典例2.(2018·东台市期末)如果一个正多边形的中心角为72,那么这个正多边形的边数是().A.4B.5C.6D.7【答案】B【解析】÷=.试题提示:根据正多边形的中心角与边数的关系,其边数为360725变式2-1.(2020·宿豫区期末)如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.12【答案】D【提示】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【名师点拨】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.变式2-2.(2019·赣榆区期中)如图,AC是⊙O的内接正六边形的一边,点B在弧AC上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=____ .【答案】15.【提示】连接OB,先求得∠AOB的度数,然后利用360°除以∠AOB度数,根据所得的结果进行提示即可得. 【详解】连接OB,∵AC是⊙O的内接正六边形的一边,∴∠AOC=360°÷6=60°,∵BC是⊙O的内接正十边形的一边,∴∠BOC=360°÷10=36°,∴∠AOB=60°-36°=24°,即360°÷n=24°,∴n=15,故答案为:15.【名师点拨】本题考查了正多边形和圆,中心角等知识,熟练掌握相关知识是解题的关键.注意把圆周等分,然后顺次连接各个分点就会得到正多边形.考查题型三正多边形和圆典例3.(2020·浔阳区期末)如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是23cm,则这个正六边形的周长是()A.12 B.63C.36 D.123【答案】D【提示】由正六边形的性质证出△AOB是等边三角形,由等边三角形的性质得出AB=OA,即可得出答案【详解】设正六边形的中心为O,连接AO,BO,如图所示:∵O是正六边形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=23cm,∴△AOB是等边三角形,∴AB=OA=23cm,∴正六边形ABCDEF的周长=6AB=123cm.故选D【名师点拨】此题主要考查了正多边形和圆、等边三角形的判定与性质;根据题意得出△AOB是等边三角形是解题关键. 变式3-1.(2018·射阳县期末)正多边形的中心角与该正多边形一个内角的关系是()A.互余B.互补C.互余或互补D.不能确定【答案】B【解析】设正多边形的边数为n,则正多边形的中心角为360n︒,正多边形的一个外角等于360n︒,所以正多边形的中心角等于正多边形的一个外角,而正多边形的一个外角与该正多边形相邻的一个内角的互补,所以正多边形的中心角与该正多边形一个内角互补.故选B.变式3-2.(2018·合肥市期末)如图,已知⊙O 是正方形ABCD 的外接圆,点E 是弧AD 上任意一点,则∠BEC 的度数为()A.30°B.45°C.60°D.90°【答案】B【提示】首先连接OB,OC,由O是正方形ABCD的外接圆,即可求得∠BOC的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BEC的度数.【详解】连接OB,OC,∵⊙O是正方形ABCD的外接圆,∴∠BOC=90°,∴∠BEC=12∠BOC=45°.故选B.变式3-3(2020·泉州市期中)如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A.6 B.7 C.8 D.9【答案】B【提示】延长正五边形的相邻两边交于圆心,求得该圆心角的度数后,用360°除以该圆心角的度数即可得到正五边形的个数,减去3后即可得到本题答案.【详解】解:延长正五边形的相邻两边,交于圆心,∵正五边形的外角等于360°÷5=72°,∴延长正五边形的相邻两边围成的角的度数为:180°﹣72°﹣72°=36°,∴360°÷36°=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故选:B.【名师点拨】本题考查了正五边形与圆的有关运算,属于层次较低的题目,解题的关键是正确地构造圆心角.变式3-4.(2020无锡市期中)如图,边长为a的正六边形内有两个三角形(数据如图),则SS阴影空白的值为()A.3 B.4 C.5 D.6 【答案】C【详解】解:因为是正六边形,所以△OAB是边长为a的等边三角形,即两个空白三角形面积为S△OAB,即SS阴影空白=5.故选C.【名师点拨】本题考查正多边形和圆.变式3-5.(2019·临川市期中)如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.14【答案】C【提示】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1.圆的直径正好是大正方形边长,∴根据勾股定理,其小正方形对角线为2,即圆的直径为2,∴大正方形的边长为2,则大正方形的面积为222⨯=,则小球停在小正方形内部(阴影)区域的概率为12.故选:C.【名师点拨】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.变式3-6.(2020·吴江区期末)若正方形的外接圆半径为2,则其内切圆半径为()A.22B.2C.22D.1【答案】B【解析】试题解析:如图所示,连接OA、OE,∵AB 是小圆的切线,∴OE ⊥AB ,∵四边形ABCD 是正方形,∴AE =OE ,∴△AOE 是等腰直角三角形, 2 2.2OE OA ∴== 故选B. 变式3-7.(2019·徐州市期末)已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .43 B .23 C .33 D .322【答案】C【提示】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO ,∴1DO 2=,32AD =, ∴223BD 2OB OD =-=, ∴BC 3=∴13333224ABC S =⨯=. 故选:C .【名师点拨】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.考查题型四利用尺规作正多边形典例4.(2019·扬州市期中)尺规作图:如图,AD为⊙O的直径。
九年级上册数学正多边形和圆正多边形和圆(人教版九年级上册)一、正多边形的概念。
1. 定义。
- 各边相等,各角也相等的多边形叫做正多边形。
例如,等边三角形是正三角形,正方形是正四边形。
2. 正多边形与圆的关系。
- 把一个圆分成n(n≥slant3)等份:- 依次连接各分点所得的多边形是这个圆的内接正n边形。
- 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
二、正多边形的有关计算。
1. 正多边形的中心、半径、边心距、中心角。
- 中心:正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心。
- 半径:外接圆的半径叫做正多边形的半径,通常用R表示。
- 边心距:内切圆的半径叫做正多边形的边心距,通常用r表示。
- 中心角:正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形的中心角α=frac{360^∘}{n}。
2. 正多边形的有关计算。
- 设正n边形的边长为a_n,半径为R,边心距为r。
- 在由半径R、边心距r和边长的一半frac{a_n}{2}所构成的直角三角形中,根据勾股定理有R^2=r^2+(frac{a_n}{2})^2。
- 正n边形的周长C = n× a_n,面积S=(1)/(2)C× r=(1)/(2)n× a_n× r。
三、正多边形的画法。
1. 用量角器等分圆。
- 先用量角器画一个等于frac{360^∘}{n}的圆心角,这个圆心角所对的弧就是圆的(1)/(n),然后在圆上依次截取这条弧的等弧,就可以得到圆的n等分点,从而画出正n边形。
2. 用尺规等分圆(特殊正多边形)- 正六边形:- 由于正六边形的中心角为60^∘,所以在圆中,以半径为弦长,在圆上依次截取六段相等的弧,就可以得到正六边形。
- 正四边形(正方形):- 先作圆的两条互相垂直的直径,再连接直径与圆的四个交点,就得到正方形。
人教版数学九年级上册24.3.2《正多边形和圆》教学设计一. 教材分析《正多边形和圆》是人教版数学九年级上册第24章第三节的内容。
本节内容是在学生掌握了圆的概念、圆的性质、弧、弦、圆心角的基础上进行的。
本节主要介绍正多边形的定义、性质及正多边形与圆的关系。
教材通过生活中的实例引入正多边形和圆的概念,引导学生探究正多边形的性质,从而发现正多边形与圆的内在联系。
二. 学情分析初三学生已经具备了一定的几何基础知识,对圆的概念、性质有所了解。
但是,对于正多边形的定义、性质以及与圆的关系可能还比较模糊。
因此,在教学过程中,需要引导学生通过观察、操作、思考、探究等活动,自主发现正多边形的性质,理解正多边形与圆的关系。
三. 教学目标1.了解正多边形的定义、性质及正多边形与圆的关系。
2.能运用正多边形的性质解决实际问题。
3.培养学生的观察能力、操作能力、思考能力和探究能力。
四. 教学重难点1.正多边形的定义、性质。
2.正多边形与圆的关系。
五. 教学方法采用问题驱动法、探究法、合作学习法等,引导学生通过观察、操作、思考、探究等活动,自主发现正多边形的性质,理解正多边形与圆的关系。
六. 教学准备1.准备一些正多边形的图片,如正三角形、正方形、正五边形等。
2.准备一些圆的图片,如圆桌、轮子等。
3.准备黑板、粉笔。
七. 教学过程1.导入(5分钟)利用多媒体展示一些正多边形的图片,如正三角形、正方形、正五边形等,引导学生观察这些图形的特点。
同时,展示一些圆的图片,如圆桌、轮子等,引导学生思考圆的特点。
2.呈现(10分钟)教师在黑板上画出一个正三角形,提问:“这个图形是什么?”学生回答:“正三角形。
”教师继续提问:“正三角形有哪些性质?”学生回答:“正三角形的三个角都相等,三条边都相等。
”教师引导学生观察正三角形的特点,然后引入正多边形的定义:“像正三角形这样的图形,所有的边都相等,所有的角都相等,我们称之为正多边形。
”3.操练(10分钟)教师发放一些正多边形的卡片,让学生分组讨论,找出正多边形的性质。
24.3 正多边形和圆
教学任务分
板书设
课后反
问题与情境
师生行为
设计意图
活动一:复习提问
1.什么样的图形叫做正多边形?
展示图片(课本P 113页图片),你还能举出一些这样的例子吗?
2.正多边形与圆有什么关系呢? (引出课题)
活动二:等分圆周
问题:为什么等分圆周就能得到正多边形呢?
教师提出问题,学生进行回答:各边相等,各角相等的多边形叫做正多边形.并举出
生活中的例子.
教师可再展示一些图片让学生欣赏.
学生根据教师提出的问题进行思考,回忆圆的有关知识,进而回答教师提出的问题.即等分圆周,就可以得到圆内接正多边形,这个圆叫做这个正多边形的外接圆. 教师提出问题后,学生认真思考、交流,充分发表自己的见解,并互相补充.教师在
学生归纳的基础上进行补充,并以正五边形为例进行证明. 复习正多边形的概念,为今天的课程做准备.
激发学生的学习兴趣.
培养学生的思维品质,将正多边形与圆联系起来.并由此引出今天的课题.
问题与情境 师生行为 设计意图
活动三:如何等分圆周呢? 问题: 已知⊙O 的半径为2cm ,求作圆的内接正三角形.
教师在学生思考、交流的基础上板书证明过程: 如图, ∵AB BC CD DE EA ====
∴AB BC CD DE EA ====
3BAD CAE AB ==
∴ C D ∠=∠
同理可证:A B C D E ∠=∠=∠=∠=∠
∴ 五边形ABCDE 是正五边形.
∵A 、B 、C 、D 、E 在⊙O 上,
∴五边形ABCDE 是圆内接正五边形.
教师提出问题后,学生思考、交流自己
的见解,教师组织学生进行作图,方法不限.
以下为解决问题的参考方案:(上课时
教师归纳学生的方法)
(1)度量法:①用量角器或30°角的三角板度量,使∠BAO =∠CAO =30°,如图1.
②用量角器度量,使∠AOB =∠BOC =∠COA =120°,如图2.
(2)尺规作图:用圆规在⊙O 上截取长度等
于半径(2cm )的弦,连结AB 、BC 、
CA 即可,如图3.
(3)计算与尺规作图结合法:由正三
角形的半径与边长的关系可得,正三角形的边长=3 R=23(cm ),用圆规在⊙O
使学生理
解、体会圆与正多边形的内在联系.
充分发
展学生的发散思维.
让学生充
分利用手中
的工具,实际
操作,认真思
考,从而培养学生的动手能力.
O
E
D
C
B
A
B
O
C A
O B
A
C
O C
A
B
图1 图2 图3
教学过程设计
在师生共同作图的基础上,归纳出:正多边形与圆有着密切的联系.如:圆既是轴对称图形,又是中心对称图形,且它的每一条直径所在的直线都是它的对称轴,圆具有旋转不变性.正多边形也是轴对称图形,正n 边形有n 条对称轴,当n 为偶数时,它也是中心对称图形,且绕中
心旋转360n
,都能
和原来的图形重合.结合图4,给出正多边形的中心、半径、中心角、边心距等概念.
同样说明正多边形与圆有着很多内在的联系.
活动四:实际应用
参照图5,按照一定比例,画一个停车让行的交通标志的外缘. 在学生作图的基础上,教师归纳出等分圆周的方法:
1.用量角器等分圆:
依据:同圆中相等的圆心角所对应的弧相等.
操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大. 2.用尺规等分圆:
(1)作正四边形、正八边形.
教师组织学生,分析、作图.归纳:只要做出已知⊙O 的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O 相交,或作各中心角的角平分线与⊙O 相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形…… (2)作正六、三、十二边形. 教师组织学生,分析、作图.
归纳:先做出正六边形,则可作正三角形,正十二边形,正二十四边形……理论上我们可以一直画下去,但大家不难发现,随着边数的增加,正多边形越来越接近于圆,正多边形将越来越难画.
教师提出问题后,学生认真思考,并在笔记本上试着作图,再与同学进行交流.
教给学生等分圆周的方法,尤其是尺规作正方形、正六边形.
使学生体会随着正多边形边数的增多,正多边形越来越接近圆.
问题与情境
师生行为 设计意图
教学过程设计
边心距r 半径R 中心角F O E D C
B A 图4
扩展资料:
活动五:方案设计
某学校在教学楼前的圆形广场中,准备建造一个花园,并在花园内分别种植牡丹、月季和杜鹃三种花卉。
为了美观,种植要求如下:
(1)种植4块面积相等的牡丹、4块面积相等的
月季和一块杜鹃。
(注意:面积相等必须由数学知识作保证)
(2)花卉总面积等于广场面积
(3)花园边界只能种植牡丹花,杜鹃花种植在花园中间且与牡丹花没有公共边。
请你设计种植方案:(设计的方案越多越好;不同的方案类型不同.)
活动六:课堂小结
1.本节课中,你有什么收获与大家交流?
2. 布置作业:P 116页:练习;P 117页:2,4.并与大家交流.
教师要关注学生对问题的理解,对等分圆周方法的掌握程度.
教师提出
问题后,让学生认真思考
后,设计出最美的图案,并用实物投影展示自己的作
品. 要求①尺规作图;②说
明画法;③指出作图依据;
④学生独立完
成. 教师巡视,对画的好的学生给予表扬,对有问题的学生给予指导.
学生归纳总结本节课的内容,教师作补充.
教师布置作业,学生记录.
应用等分圆周的方法作图.
发展学生作图的能力,对学生进行美的教育,发展学生作图能力.
巩固本节课所学的内容.
停
图5
1.我国民间相传有五边形的近似画法,画法口诀是:“九五顶五九,八五两边分”,它的意义如图:如果正五边形的边长为10,作它的中垂线AF ,取AF =15.4,在AF 上取FM =9.5,则AM =5.9,过点M 作BE AF ,在BE 上取BM =ME =8.连结AB 、BC 、DE 、EA 即可.
例:用民间相传画法口诀,画边长为20mm 的正五边形.
分析:要画边长20mm 的正五边形,关键在于计算出口诀中各部分的尺寸,由于要画的正五边形与口诀正五边形相似,所以要画的正五边形的各部分应与口诀正五边形各部分对应成比例.由已知知道要画正五边形的边CD =20mm .请同学们算出各部分的尺寸,并按口诀画出正五边形ABCDE .
2.尺规作正五边形
(1) 在⊙O 中作互相垂直的两条直径AB 和CD ;
(2) 取半径OB 的中点F ,以点F 为圆心,AF 为半径作弧,
交OA 于点E ;
(3) 以点D 为圆心,AE 为半径作弧,交⊙O 于M 、N ; (4) 分别心M 、N 为圆心,以AE 为半径作弧,交⊙O 于P 、
Q .
则D 、M 、P 、Q 、N 就是⊙O 的五等分点.
3. 小圆覆盖大圆
“覆盖问题”在实际中经常遇到,如三颗同步通信卫星就可以覆盖整个地球,一个物体能否覆盖住另一个物体等等.下面举一个日常生活中的问题:在一场演出中,根据需要必须用灯光照亮舞台中一个半径为2米的圆形区域,但不巧,当时没有这样的灯,舞台监督要求用另一种可照半径l 米的灯光代替,使其灯光照到指定区域的每一点.那么这样至少需几盏代用灯?
我们用数学语言叙述即最少需要几个半径为l 的圆才能完全覆盖半径为2的圆?(各圆可相互叠放)
设半径为2的圆的圆心是O ,在圆周上作正六边形ABCDEF ,其边长都是2.再分别以各边中点为圆心作六个半径为l 的圆(见图)各圆的圆周除相交于A ,B ,C ,D ,E ,F
O
E
M P
Q
F
各点外,还相交于A l,B l,C l,D l,E l,F l各点并构成边长为l的正六边形的顶点.涂线部分只要以O为圆心并以半径l作圆即可覆盖,一共要七个圆.
不难看出只用六个小圆是不行的.大圆的圆周必需有六个小圆才能盖满,这时中央的小圆是不可缺少的.。