九年级数学:正多边形和圆(教案设计)
- 格式:docx
- 大小:48.06 KB
- 文档页数:7
3 正多边形和圆一等奖创新教案课题:24.3正多边形和圆学科:备课教师:授课年级:九年级教材分析本节课是新人教版九年级(上)第二十四章第三节的内容。
学生已经学习了圆和正多边形的相关知识,这些知识都将为本节的学习起着铺垫作用。
本课时内容也是将圆及正多边形知识的总结和深化,让学生再次体会了图形之间的密切联系,为以后学习空间与图形知识奠定基础,具有承上启下的作用.《新课标》对数学学习内容的要求是:现实的、有意义的、富有挑战性的.因此教材以生活中的正多边形引出正多边是实际生活的需要,进而由特殊到一般的介绍等分圆周是作正多边形的有效方法,通过练习操作掌握作图方法,符合学生的认知特点.学情分析数学教学活动必须建立在学生认知发展水平和已有的知识经验基础之上。
九年级的学生正处于思维能力培养的重要时期,他们已经具备一定的归纳、猜想能力,但个别学生在理解、应用上还须借助老师、同学的帮助,通过教师的指导和同伴的帮助,也会有所收获。
教师要给予个别关照以及适当的精神激励,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。
九年级学生的思维以形象型为主,具备了抽象思维能力;仍然在一定程度困扰有好奇、好动的习性依存,因此,教学中尽量采用问题诱导和直观演示帮助学生逐步实现“直观感知——操作确认——简单说理——实践应用”的攀升,使学生进一步加深对知识的理解.设计思路学生在前面的学习中已经掌握了圆和正多边形的相关性质,知道了圆和正多边形的关系非常密切.圆和正多边形都是轴对称图形,边数为偶数的正多边形也是中心对称图形,并且以正五边形为例由特殊到一般的证明了将圆分成一些相等弧就可以得到它相应的内接正多边形.而且学生已经学习过用尺规作图的方法作角的平分线和线段的垂直平分线.但此班级的学生的基础薄弱,两极分化比较严重,所以有一些学生在寻求作图的方法、说明作图原理、进而准确作图时还会有一定的困难.教学准备教师:制作PPT学生:复习正多边形的概念,准备圆规、直尺、量角器。
1. 让学生了解正多边形的定义及其性质。
2. 让学生掌握正多边形与圆的关系。
3. 培养学生运用几何知识解决实际问题的能力。
二、教学内容1. 正多边形的定义及性质。
2. 正多边形与圆的关系。
3. 正多边形的计算与应用。
三、教学重点与难点1. 教学重点:正多边形的定义、性质及正多边形与圆的关系。
2. 教学难点:正多边形的计算与应用。
四、教学方法1. 采用问题驱动法,引导学生探究正多边形的性质。
2. 利用几何画板软件,直观展示正多边形与圆的关系。
3. 结合实际例子,让学生运用正多边形的知识解决实际问题。
五、教学过程1. 引入:讲解正多边形的定义,引导学生思考正多边形的性质。
2. 探究:让学生通过观察、操作,发现正多边形与圆的关系。
3. 讲解:讲解正多边形的计算方法,并举例说明。
4. 应用:布置练习题,让学生运用正多边形的知识解决实际问题。
5. 总结:对本节课的内容进行总结,强调正多边形与圆的关系。
6. 作业布置:布置适量作业,巩固所学知识。
1. 通过课堂提问,了解学生对正多边形定义和性质的掌握情况。
2. 通过练习题,评估学生对正多边形与圆的关系的理解程度。
3. 观察学生在实际问题中的应用能力,评估其对正多边形计算方法的掌握。
七、教学资源1. 几何画板软件:用于直观展示正多边形与圆的关系。
2. PPT课件:用于讲解正多边形的性质和计算方法。
3. 练习题:用于巩固学生对正多边形的理解和应用能力。
八、教学进度安排1. 第1周:介绍正多边形的定义及性质。
2. 第2周:讲解正多边形与圆的关系。
3. 第3周:讲解正多边形的计算方法。
4. 第4周:实际问题中的应用练习。
九、教学反思1. 反思教学方法的有效性,根据学生反馈调整教学策略。
2. 考虑如何更好地引导学生发现正多边形与圆的内在联系。
3. 评估作业难度,确保作业能够有效巩固所学知识。
十、拓展与延伸1. 引导学生探究正多边形在现实生活中的应用。
2. 介绍正多边形的相关历史背景和文化意义。
人教版数学九年级上册24.3.2《正多边形和圆》教案一. 教材分析《正多边形和圆》是人民教育出版社出版的数学九年级上册第24章第三节的内容。
本节内容主要介绍了正多边形的定义、性质以及与圆的关系。
通过学习正多边形和圆,学生能够理解圆的定义,掌握圆的性质,并能够运用圆的知识解决实际问题。
二. 学情分析九年级的学生已经掌握了多边形的基本概念和性质,具备一定的逻辑思维能力。
但是对于正多边形和圆的关系的理解可能存在一定的困难。
因此,在教学过程中,需要通过实例和图形的演示,帮助学生建立直观的认识,引导学生主动探究正多边形和圆的性质。
三. 教学目标1.知识与技能:–能够理解正多边形的定义和性质。
–能够理解圆的定义和性质。
–能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:–通过观察和操作,培养学生的观察能力和动手能力。
–通过小组合作,培养学生的合作能力和沟通能力。
3.情感态度与价值观:–培养学生对数学的兴趣和好奇心。
–培养学生的自主学习能力和解决问题的能力。
四. 教学重难点•正多边形的定义和性质。
•圆的定义和性质。
•正多边形和圆的关系的理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正多边形和圆的性质。
2.通过实例和图形的演示,帮助学生建立直观的认识。
3.采用小组合作的学习方式,培养学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图形和图片,用于演示和解释正多边形和圆的性质。
2.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)–利用图片和实例,引导学生回顾多边形的基本概念和性质。
–提出问题,引导学生思考正多边形和圆的关系。
2.呈现(15分钟)–通过图形和实例,展示正多边形的定义和性质。
–解释正多边形和圆的关系,引导学生理解圆的定义和性质。
3.操练(15分钟)–学生分组合作,进行实际操作,探究正多边形和圆的性质。
–教师引导学生进行讨论和交流,解答学生的疑问。
正多边形和圆数学教案第一章:正多边形的定义和性质1.1 教学目标了解正多边形的定义及其性质学会计算正多边形的边数和内角大小1.2 教学内容正多边形的定义:所有边相等,所有角相等的多边形正多边形的性质:每个内角等于(180度×(n-2))/n,其中n为边数正多边形的边数和内角大小的计算方法1.3 教学活动引入正多边形的概念,展示图片,让学生感知正多边形的特点讲解正多边形的性质,引导学生进行公式推导举例说明如何计算正多边形的边数和内角大小,让学生进行练习1.4 作业布置请学生绘制一个正五边形,并计算其边数和内角大小第二章:圆的定义和性质2.1 教学目标了解圆的定义及其性质学会计算圆的周长和面积2.2 教学内容圆的定义:平面上所有点到圆心的距离相等点的集合圆的性质:圆的周长等于2πr,其中r为半径;圆的面积等于πr²圆的周长和面积的计算方法2.3 教学活动引入圆的概念,展示图片,让学生感知圆的特点讲解圆的性质,引导学生进行公式推导举例说明如何计算圆的周长和面积,让学生进行练习2.4 作业布置请学生计算一个半径为5cm的圆的周长和面积第三章:正多边形和圆的对比3.1 教学目标理解正多边形和圆的关系学会区分正多边形和圆的特点3.2 教学内容正多边形和圆的定义和性质的对比正多边形和圆的图形特点的对比3.3 教学活动引导学生回顾正多边形和圆的定义和性质展示正多边形和圆的图形,让学生观察其特点讲解正多边形和圆的区别,引导学生进行思考3.4 作业布置请学生举例说明如何区分正多边形和圆第四章:圆的方程4.1 教学目标学习圆的标准方程和一般方程理解圆的方程的含义和应用4.2 教学内容圆的标准方程:(x h)²+ (y k)²= r²,其中(h, k)为圆心坐标,r为半径圆的一般方程:x²+ y²+ Dx + Ey + F = 0,其中D²+ E²4F > 0圆的方程的应用4.3 教学活动讲解圆的标准方程和一般方程的定义和特点引导学生理解圆的方程的含义和应用举例说明如何根据圆的方程画出圆,并让学生进行练习4.4 作业布置请学生根据给定的圆的方程,画出相应的圆,并计算圆的半径和圆心坐标。
九年级数学正多边形与圆教案(精选多篇)正文第一篇:九年级数学正多边形与圆教案九年级数学正多边形与圆教案学习目标:1、了解正多边形的概念、正多边形和圆的关系;2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;3、能够用直尺和圆规作图,作出一些特殊的正多边形;4、理解正多边形的中心、半径、边心距、中心角等概念。
学习重点:正多边形的概念及正多边形与圆的关系。
学习难点:利用直尺与圆规作特殊的正多边形。
学习过程:一、情境创设:观察下列图形,你能说出这些图形的特征吗?提问:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?二、探索活动:活动一观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念概念:叫做正多边形。
(注:各边相等与各角相等必须同时成立)提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.活动二用量角器作正多边形,探索正多边形与圆的内在联系1、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分;2、正多边形的外接圆的圆心叫正多边形的中心。
活动三探索正多边形的对称性问题:正三角形、正方形、正五边形、正六边形、正八边形中,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如果是轴对称图形,画出它的对称轴;如果是中心对称图形,找出它的对称中心。
问题:正多边形与圆有什么关系呢?什么是正多边形的中心?发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.圆心就是正多边形的中心。
分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?你知道为什么吗?思考:任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系?结论:正多边形都是轴对称图形,一个正n边形有条对称轴,每条对称轴都通过正n边形的;一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。
人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计一. 教材分析《正多边形和圆》是人教版九年级数学上册第24章第三节的第一课时内容,主要介绍了正多边形的定义、性质以及与圆的关系。
本节课的内容是学生对几何图形学习的进一步深化,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
教材通过生活中的实例引入正多边形和圆的概念,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的深度。
但是,对于正多边形和圆的性质和关系,可能还比较陌生。
因此,在教学过程中,需要教师通过生动形象的实例和直观的图形,帮助学生理解和掌握正多边形和圆的概念和性质。
三. 教学目标1.了解正多边形的定义和性质,能够识别和判断正多边形。
2.理解圆的概念,掌握圆的性质。
3.掌握正多边形与圆的关系,能够运用正多边形和圆的知识解决实际问题。
四. 教学重难点1.重难点:正多边形的定义和性质,圆的概念和性质。
2.难点:正多边形与圆的关系的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索,激发学生的学习兴趣和积极性。
2.采用直观演示法,通过实物和图形的展示,帮助学生直观地理解和掌握正多边形和圆的概念和性质。
3.采用归纳总结法,通过总结和归纳,使学生对正多边形和圆的知识有一个系统的认识。
六. 教学准备1.准备相关的图形和图片,如正多边形和圆的实物图片,正多边形和圆的模型等。
2.准备相关的教学PPT,内容包括正多边形和圆的定义、性质和关系等。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学过的几何图形,如三角形、四边形等,激发学生的学习兴趣。
然后,展示一些生活中的实例,如五角星、车轮等,引导学生思考这些图形的共同特征。
2.呈现(10分钟)教师展示正多边形和圆的实物图片和模型,引导学生观察和描述正多边形和圆的特征。
然后,教师通过PPT呈现正多边形和圆的定义和性质,让学生初步了解和掌握。
教案:正多边形与圆一、教学目标:1.知识与技能:了解正多边形的定义和性质,掌握计算正多边形的内角和外角的方法。
了解圆的定义和性质,掌握计算圆的周长和面积的方法。
2.过程与方法:通过让学生观察、归纳和分析,培养他们的逻辑思维和数学推理能力。
3.情感、态度和价值观:培养学生对数学的兴趣和热爱,激发他们的创造力和思维能力。
二、教学重难点:1.正多边形的定义与性质2.圆的定义与性质三、教学过程:1.正多边形的定义与性质1.1导入新知:教师以图片展示不同的多边形,引导学生观察、分析和归纳,了解正多边形的特点。
1.2引入新知:教师给出正多边形的定义,并解释其中的相关概念:边、顶点、内角、外角等。
1.3学生探究:学生利用教师提供的直尺和量角器,自行绘制正三边形、正四边形、正五边形等,并测量和计算多边形的内角和外角。
1.4解决问题:教师给出一道与正多边形相关的问题,要求学生分析并解答。
例如:一个正多边形的内角和为1080°,那么这个多边形有几条边?2.圆的定义与性质2.1导入新知:教师以实物展示不同的圆形物体,引导学生观察、分析和归纳,了解圆的特点。
2.2引入新知:教师给出圆的定义,并解释其中的相关概念:圆心、半径、直径、弧、弦等。
2.3学生探究:学生利用教师提供的圆规、直尺等工具,自行绘制圆,并测量和计算圆的周长和面积。
2.4 解决问题:教师给出一道与圆相关的问题,要求学生分析并解答。
例如:一个圆的半径为5cm,那么这个圆的周长和面积分别是多少?四、教学资源:1.图片、实物:用于展示正多边形和圆形物体。
2.工具:直尺、量角器、圆规、直尺等。
五、教学评价:1.课堂练习:通过课堂练习,检测学生对正多边形与圆的理解程度。
2.小组合作:让学生分成小组进行讨论和解决问题,培养他们的合作意识和团队精神。
3.个人作业:通过个人作业,巩固学生对正多边形与圆的知识掌握程度。
4.教学反馈:通过课后讲解和解答学生提出的问题,及时了解和纠正学生的错误,提高教学效果。
( 数学教案 )
学校:_________________________
年级:_________________________
教师:_________________________
教案设计 / 精品文档 / 文字可改
九年级数学:正多边形和圆(教
案设计)
Mathematics is a tool subject, it is the basis for learning other subjects, and it is also a subject that improves people's judgment, analysis, and comprehension abilities.
九年级数学:正多边形和圆(教案设计)
教学目标:
1、使学生理解正多边形概念;
2、使学生了解依次连结圆的n等分点所得的多边形是正多边形;过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.
3、通过正多边形定义教学培养学生归纳能力;
4、通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力.
教学重点:
(1)正多边形的定义;
(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边
形.
教学难点:
对正n边形中泛指“n”的理解.
教学过程:
一、新课引入:
同学们思考以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?[安排中下生回答] 3.等边三角形与正方形的边、角性质有什么共同点?[安排中上生回答:各边相等、各角相等].
各边相等,各角相等的多边形叫做正多边形.这就是我们今天学习的内容“7.15正多边形和圆”.
二、新课讲解:
正多边形在生产实践中有广泛的应用性,因此,正多边形的知识对学生进一步学习和参加生产劳动都是必要的.因此本节课首先给出正多边形的定义,然后根据正多边形的定义和圆的有关知识推导出正多边形与圆的第一个关系定理,即n等分圆周就可得到圆的
内接或外切正n边形,它是正多边形画图的理论依据,因此也是本节课的重点之一.
同学回答:什么是正多边形?[安排中下生回答:各边相等、各角也相等的多边形叫做正多边形.]
如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.
幻灯展示图形:
上面这些图形都是正几边形?[安排中下生回答:正三角形,正四边形,正五边形,正六边形.]
矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?[安排中下生回答:矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.]
哪位同学记得在同圆中,圆心角、弧、弦、弦心距关系定理?[安排记起来的学生回答:在同圆中,圆心角、弧、弦、弦心距有一组量相等,那么其余量都相等.]
要将圆三等分,那么其中一等份的弧所对圆心角度数是多少?
要将圆四等分、五等分、六等分呢?[安排中下生回答:将圆三等分,其中每等份弧所对圆心角120°、将圆四等分,每等份弧所对圆心角90°、五等分,圆心角72°、六等分,圆心角60°]
哪位同学能用量角器将黑板上的圆三等分、四等分、五等分、六等分?[接排四名上等生上黑板完成,其余学生在下面练习本上用量角器等分圆周.]
大家依次连结各分点看所得的圆内接多边形是什么样的多边形?[学生答:正多边形.]
求证:五边形abcde是⊙o的内接正五边形.
以幻灯所示五边形为例,哪位同学能证明这五边形的五条边相等?[安排中等生回答:]
哪位同学能证明这五边形的五个角相等?[安排中等生回答:] 前面的证明说明“依次连结圆的五等分点所得的圆内接五边形是正五边形”的观察后的猜想是正确的.如果n等分圆周,(n≥3)、n=6,n=8……是否也正确呢?[安排学生们充分讨论].
因为在同圆中,弧等弦等,n等分圆就得到n条弦等,也就是n
边形的各边都相等.又n边形的每个内角对圆的(n-2)条弧,而每一内角所对的弧都相等,根据弧等、圆周角相等,证明了n边形的各角都相等,因此圆内接正五边形的证明具有代表性.
定理:把圆分成n(n≥3)等份:
(1)依次连结各分点所得的多边形是这个圆的内接正n边形;
为何要“依次”连结各分点呢?缺少“依次”二字会出现什么现象?大家讨论讨论看看.
经过圆的五等分点作圆的切线,大家观察以相邻切线的交点为顶点的五边形是不是正五边形?
pq、qr、rs、st分别是经过分点a、b、c、d、e的⊙o的切线.求证:五边形pqrst是⊙o的外切正五边形.
由弧等推得弦等、弦切角等,哪位同学能说明五边形pqrst的各角都相等?[安排中上生回答]哪位同学能证明五边形pqrst的各边都相等?[安排中等生回答.]
前面同学的证明,说明“经过圆的五等分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正五边形.”同样根据
弧等弦等、弦切角等就可证明经过圆的n等分点作圆的切线,以相邻切线的交点为顶点的n个等腰三角形全等,从而证明了这个圆的以它n等分点为切点的外切n边形是正n边形.
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.
定理(2)中少“相邻”两字行不行?少“相邻”两字会出现什么现象?同学们相互间讨论研究看看.
三、课堂小结:
本堂课我们学习的知识:
1.学习了正多边形的定义.
2.n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.
四、布置作业
教材p.147.练习2、3;p.172中2、3、4(1).
可在这填写你的名称
YOU CAN FILL IN THE NAME Here。