2020年湖北省黄冈中学高考数学冲刺试卷(理科)(二)(附答案解析)
- 格式:docx
- 大小:168.12 KB
- 文档页数:20
2020年湖北省黄冈中学高考数学模拟试卷(理科)(4月份)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知函数2()2f x x x =-,集合{|()0}A x f x =„,{|()0}B x f x '=„,则(A B =I)A .[1-,0]B .[1-,2]C .[0,1]D .(-∞,1][2U ,)+∞2.(5分)设i 是虚数单位,若复数1z i =+,则22||(z z z += )A .1i +B .1i -C .1i --D .1i -+3.(5分)命题“(0,1)x ∀∈,x e lnx ->”的否定是( ) A .(0,1)x ∀∈,x e lnx -„ B .0(0,1)x ∃∈,00x e lnx ->C .0(0,1)x ∃∈,00x e lnx -<D .0(0,1)x ∃∈,00x e lnx -„4.(5分)已知||3a =r ,||2b =r ,若()a a b ⊥-r r r ,则向量a b +r r 在向量b r 方向的投影为() A .12B .72 C .12-D .72-5.(5分)在三角形ABC 中,“sin sin A B >”是“tan tan A B >”的( )条件. A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要6.(5分)阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )A.11 12B.6C.112D.2237.(5分)木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积为()A.2493π+B.4893π+C.48183π+D.144183π+8.(5分)函数cos23sin2([0,])2y x x xπ=∈的单调递增区间是()A.[0,]6πB.[0,]3πC.[6π,]2πD.[3π,]2π9.(5分)在平面直角坐标系中,若不等式组44021005220x yx yx y-+⎧⎪+-⎨⎪-+⎩„„…所表示的平面区域内存在点(x,0)y,使不等式0010x my++„成立,则实数m的取值范围为()A.(-∞,5]2-B.(-∞,1]2-C.[4,)+∞D.(-∞,4]-10.(5分)已知函数1()2xf x e x-=+-的零点为m,若存在实数n使230x ax a--+=且||1m n-„,则实数a的取值范围是()A.[2,4]B.[2,7]3C.7[3,3]D.[2,3]11.(5分)已知双曲线2222:1(0,0)x yE a ba b-=>>满足以下条件:①双曲线E的右焦点与抛物线24y x=的焦点F重合;②双曲线E与过点(4,2)P的幂函数()af x x=的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是() A31+B51+C.32D5112.(5分)已知函数1()xf x xe-=,若对于任意的(0x∈,]e,函数2()()1g x lnx x ax f x=-+-+在(0,]e内都有两个不同的零点,则实数a的取值范围为()A .(1,]eB .2(e e-,]e C .2(e e -,2]e e +D .(1,2]e e-二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.(5分)6(12)(1)x x -+的展开式中2x 的系数为 .14.(5分)我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程2px q =中,p 为“隅”, q 为“实”.即若ABC ∆的大斜、中斜、小斜分别为a ,b ,c ,则22222221[()]42a cb S ac +-=-.已知点D 是ABC ∆边AB 上一点,3AC =,2BC =,45ACD ∠=︒,tan BCD ∠=,则ABC ∆的面积为 . 15.(5分)过直线7y kx =+上一动点(,)M x y 向圆22:20C x y y ++=引两条切线MA ,MB ,切点为A ,B ,若[1k ∈,4],则四边形MACB 的最小面积S ∈的概率为 16.(5分)三棱锥S ABC -中,点P 是Rt ABC ∆斜边AB 上一点.给出下列四个命题: ①若SA ⊥平面ABC ,则三棱锥S ABC -的四个面都是直角三角形;②若4AC =,4BC =,4SC =,SC ⊥平面ABC ,则三棱锥S ABC -的外接球体积为;③若3AC =,4BC =,SC S 在平面ABC 上的射影是ABC ∆内心,则三棱锥S ABC -的体积为2;④若3AC =,4BC =,3SA =,SA ⊥平面ABC ,则直线PS 与平面SBC 所成的最大角为60︒. 其中正确命题的序号是 .(把你认为正确命题的序号都填上)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(12分)已知等差数列{}n a 的前n 项和为n S ,且满足4618a a +=,11121S =. (1)求数列{}n a 的通项公式;(2)设(3)2n n n b a =+,数列{}n b 的前n 项和为n T ,求n T .18.(12分)某小学为了了解该校学生课外阅读的情况,在该校三年级学生中随机抽取了50名男生和50名女生进行调查,得到他们在过去一整年内各自课外阅读的书数(本),并根据统计结果绘制出如图所示的频率分布直方图.。
2020年湖北省黄冈中学高考数学冲刺试卷2(二)一、选择题(本大题共12小题,共60.0分)1.已知集合A={0,1,2,3},B={x|2x2−9x+9≤0},则A∩B=()A. {0,1}B. {1,2}C. {2,3}D. {0,1,2}=()2.已知i为虚数单位,若a为实数,且a≠0,则1−aia+iA. a+iB. a−iC. iD. −i3.已知向量b⃗ =(3,4),a⃗⋅b⃗ =5,|a⃗−b⃗ |=2√5,则|a⃗|=()A. 5B. 25C. 2√5D. √54.已知等差数列{a n}的前n项和为S n,且2a5−a2=10,则S15=()A. 20B. 75C. 150D. 3005.如图是2018年第一季度五省GDP情况图,则下列陈述中不正确的是()A. 2018年第一季度GDP增速由高到低排位第5的是浙江省B. 与2017年同期相比,各省2018年第一季度的GDP总量实现了增长C. 2017年同期河南省的GDP总量不超过4000亿元D. 2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个6.函数y=x2(其中e为自然对数的底数)的图象大致是()e−|x|−1A. B.C. D.7.已知抛物线y2=2px(p>0)的焦点为F,A,B为抛物线上两个不同的点,满足|AF|+|BF|=8,且线段AB的中点坐标为(3,3),则p=()A. 12B. 2C. 4D. 88.抛掷两颗骰子,第一颗骰子向上的点数为x,第二颗骰子向上的点数为y,则“|x−y|>1”的概率为()A. 59B. 49C. 16D. 7129.将函数f(x)=2sin(3x+π3)的图象向右平移θ个单位(θ>0)后,所得图象关于y轴对称,则θ的最小值为()A. 5π6B. 5π18C. π6D. π1810.下列命题正确的是()①如果两个平面有三个公共点,则这两个平面重合;②若③如果直线a,b和平面α满足④若a//α,a//β,且a⊄α,a⊄β, 则α//β.A. ①③B. ②④C. ③D. ①④11.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,点A(2,√2)在双曲线C上,若AF2⊥F1F2,则双曲线C的渐近线方程为()A. y=±xB. y=±√2xC. y=±2xD. y=±√6x12. 体积为18√3的正三棱锥A −BCD 的每个顶点都在半径为R 的球O 的球面上,球心O 在此三棱锥内部,且R :BC =2:3,点E 为线段BD 上一点,且DE =2EB ,过点E 作球O 的截面,则所得截面圆面积的取值范围是( )A. [4π,12π]B. [8π,16π]C. [8π,12π]D. [12π,16π]二、填空题(本大题共4小题,共20.0分)13. 执行如图的程序框图,若输入m 的值为2,则输出的结果i = ______ .14. 计算:sin11π12=____.15. 已知在(1−2x)n 的展开式中,各项的二项式系数之和是64,则(1+2x)n (1−2x 2)的展开式中,x 4项的系数是__________.16. 已知函数f(x)={2−|x +1|,x ≤1,(x −1)2,x >1,函数g(x)=f(x)+f(−x),则不等式g(x)≤2的解集为____.三、解答题(本大题共7小题,共82.0分)17. 已知数列{a n }的前n 项和为S n ,满足a 1=1,S n+1=S n +2a n +5.(1)证明:{a n +5}是等比数列; (2)若S n +5n >128,求n 的最小值.18.如图四棱锥P−ABCD中,底面ABCD是正方形,PD⊥底面ABCD,点E在棱PB上.(1)求证:平面AECM⊥平面PDB.(2)若E是PB的中点,且AE与平面PBD所成的角为45°时,求二面角B−AE−D大小的余弦值.19.已知椭圆M的焦点在x轴上,长轴长为2√2,离心率为√2.2(1)求椭圆M的标准方程;(2)已知直线l1的方程为y=x+2√3.若直线l2与直线l1平行且与椭圆M相切,求直线l2的方程.20.某学校研究性学习小组调查学生使用智能手机对学习成绩的影响,部分统计数据如表:(Ⅰ)根据以上2×2列联表判断,能否在犯错误的概率不超过0.005的前提下认为使用智能手机对学习成绩有影响?(Ⅱ)从学习成绩优秀的12名同学中,随机抽取2名同学,求抽到不使用智能手机的人数X的分布列及数学期望.,其中n=a+b+c+d参考公式:κ2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)参考数据:21.已知函数f(x)=e x(e x−a)−a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.22.在直角坐标系xOy中,直线l的斜率为1,在y轴截距为a−3,圆C的标准方程为(x−3)2+(y−43)2=4.以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求直线l和圆C的极坐标方程;(ρ>0)与直线l的交点为M,与圆C的交点为A,B,且点M恰好为线段AB (Ⅱ)若射线θ=π3的中点,求a的值.23.已知函数f(x)=|2x−1|+|2x+1|,记不等式f(x)<4的解集为M.(1)求M;(2)设a,b∈M,证明:|ab|−|a|−|b|+1>0.-------- 答案与解析 --------1.答案:C解析:解:B={x|32≤x≤3};∴A∩B={2,3}.故选:C.可求出集合B,然后进行交集的运算即可.考查列举法、描述法的定义,一元二次不等式的解法,以及交集的运算.2.答案:D解析:【分析】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.【解答】解:∵a为实数,且a≠0,∴1−aia+i =(1−ai)(a−i)(a+i)(a−i)=a−i−a2i+ai2a2+1=−(a2+1)ia2+1=−i,故选D.3.答案:D解析:【分析】本题考查了向量的数量积性质,属于基础题.利用数量积的运算性质即可得出.【解答】解:∵|a⃗−b⃗ |=2√5,∴a⃗2+b⃗ 2−2a⃗⋅b⃗ =20,∵向量b⃗ =(3,4),a⃗⋅b⃗ =5,∴a⃗2+(√32+42)2−2×5=20,化为a⃗2=5,则|a⃗|=√5.故选:D.4.答案:C解析:【分析】利用等差数列的通项公式以及前n项和公式求解即可.【解答】解:由题意得2(a1+4d)−(a1+d)=10,即a1+7d=a8=10,=15a8=150,所以S15=15(a1+a15)2故选C.5.答案:D解析:【分析】本题考查命题真假的判断,考查折线图、条形统计图等基础知识,考查运算求解能力、数据处理能力,是基础题.由图可知2018年第一季度GDP总量和增速由高到低排位均居同一位的省有江苏和河南,即可得解.【解答】解:由2018年第一季度五省GDP情况图,知:在A中,2018年第一季度GDP增速由高到低排位第5的是浙江省,故A正确.在B中,与去年同期相比,2018年第一季度五个省的GDP增长率都大于0,即总量均实现了增长,故B正确;≈3815.6,不超过4000亿元,故C正确;在C中,去年同期河南省的GDP总量为4067.41+0.066在D中,2018年第一季度GDP总量和增速由高到低排位均居同一位的省有江苏和河南,共2个,故D错误;故选D.6.答案:A解析:【分析】本题考查函数的单调性和奇偶性,以及函数的图象的判断,考查分析问题解决问题的能力,属于基础题.先判断函数的奇偶性,然后用定义法判断函数在(0,+∞)上的单调性,排除选项B,C,D.【解答】解:设函数f(x)=y=x2e−|x|−1,则f(−x)=(−x)2e−|−x|−1==x2e−|x|−1=f(x),所以f(x)为偶函数,排除D选项,设x1>x2>0,f(x1)−f(x2)=(x1)2e−x1−1−(x2)2e−x2−1=(x1)2e x1+1−(x2)2e x2+1,∵x1>x2>0,g(x)=x2e x+1在(0,+∞)上单调递增,∴(x1)2e x1+1−(x2)2e x2+1>0,即f(x1)−f(x2)>0,∴f(x)在(0,+∞)上单调递增,排除B,C,故选A.7.答案:B解析:求得抛物线的焦点坐标和准线方程,设A(x1,y1),B(x2,y2),由抛物线的定义和中点坐标公式,解方程可得p的值.本题考查抛物线的定义、方程和性质,考查中点坐标公式和方程思想,以及运算能力,属于基础题.解:抛物线y2=2px(p>0)的焦点为F(p2,0),准线方程为x=−p2,设A(x1,y1),B(x2,y2),可得|AF|=x1+p2,|BF|=x2+p2,|AF|+|BF|=x1+x2+p=8,又线段AB的中点坐标为(3,3),可得x1+x2=6,即6+p=8,解得p=2.故选:B.8.答案:A解析:解:抛掷两颗骰子,第一颗骰子向上的点数为x,第二颗骰子向上的点数为y,则|x−y|的值的分布表如下:从分布表中知,|x−y|的所有值共有36个,其中“|x−y|>1的有20个,∴|x−y|>1的概率为:p=2036=59.故选:A.列出|x−y|的值的分布表,从分布表中知,|x−y|的所有值共有36个,其中“|x−y|>1的有20个,由此能求出|x−y|>1的概率.本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.9.答案:B解析:解:将函数f(x)=2sin(3x+π3)的图象向右平移θ个单位(θ>0)后,可得y=2sin(3x−3θ+π3)的图象,再根据所得图象关于y轴对称,则−3θ+π3=kπ+π2,k∈Z,即θ=−kπ3−π18,故θ的最小值为5π18,故选:B.利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的奇偶性,求得θ的最小值.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,三角函数的奇偶性,属于基础题.10.答案:C解析:【分析】本题主要考查空间平面与直线的位置关系和命题的真假判断,属于基础题.【解答】解:①如果两个平面有三个不共线的公共点,则这两个平面重合;故错误;②若α与β相交时,a,b可能相交,可能平行,可能重合,可能异面,故错误;③如果直线a,b和平面α,满足正确;④若a//α,a//β,且a⊄α,a⊄β,则α//β或相交;故错误;故选C.11.答案:A解析:【分析】本题考查双曲线的几何性质,属于基础题.由题意得得c=2,b2a =√2,解得a=√2,b=√2,双曲线C的渐近线方程为y=±bax=±x.【解答】解:由点A(2,√2)在双曲线C上,若AF2⊥F1F2,得c=2,b2a=√2,即4−a2a=√2,解得a=√2,b=√2,所以双曲线C的渐近线方程为y=±bax=±x,故选A.12.答案:B解析:【分析】本题考查所得截面圆面积的取值范围,考查体积的计算,考查学生分析解决问题的能力,属于中档题.先求出BC与R,再求出OE,即可求出所得截面圆面积的取值范围.【解答】解:设正三棱锥的高BC=3a,则R=2a,∵体积为18√3的正三棱锥A−BCD的每个顶点都在半径为R的球O的球面上,∴13×√34×9a2ℎ=18√3,∴ℎ=24a2,∵R2=(ℎ−R)2+(√3a)2,∴4a2=(24a2−2a)2+3a2,∴a=2,∴BC=6,R=4,∵点E为线段BD上一点,且DE=2EB,∴△ODB中,OD=OB=4,DB=6,cos∠ODB=34,∴OE=√16+16−2×4×4×34=2√2,截面垂直于OE时,截面圆的半径为√16−8=2√2,截面圆面积为8π,以OE所在直径为截面圆的直径时,截面圆的半径为4,截面圆面积为16π,∴所得截面圆面积的取值范围是[8π,16π].故选:B.13.答案:4解析:【分析】根据框图的流程依次计算程序运行的结果,直到不满足条件A>B,计算输出i的值.本题考查了循环结构的程序框图,根据框图的流程依次计算程序运行的结果是解答此类问题的常用方法.【解答】解:第一次循环,得到i=1,A=2,B=1;第二次循环,得到i =2,A =4,B =2;第三次循环,得到i =3,A =8,B =6;第四次循环,得到i =4,A =16,B =24;不满足A >B ,退出循环;故答案为:4.14.答案:√6−√24解析:【分析】本题考查了诱导公式和两角和与差的三角函数公式,由诱导公式得sin11π12=sin π12,由两角和与差的三角函数公式得sin (π3−π4)=sin π3cos π4−cos π3sin π4,即可得出结果.【解答】解:sin 11π12=sin (π−π12) =sin π12 =sin (π3−π4) =sin πcos π−cos πsin π =√6−√24. 故答案为√6−√24.15.答案:120解析:2n =64,所以n =6.T r+1=C 6r (2x)r =C 6r 2r ⋅x r ,令r =4,则T 5=C 6424⋅x 4=240x 4,令r =2,则T 3=C 6222x 2=60x 2,x 4项为240x 4×1−60x 2×2x 2=120x 4,故x 4项的系数为120.16.答案:[−2,2]解析:解:函数f(x)={2−|x +1|,x ≤1(x −1)2,x >1, 当−1≤x ≤1时,f(x)=1−x ;当x <−1时,f(x)=x +3;当x >1时,f(x)=(x −1)2.①当x >1,即−x <−1,可得g(x)=(x −1)2+3−x =x 2−3x +4,由g(x)≤2,解得1<x ≤2;②当x <−1时,−x >1,则g(x)=x +3+(x +1)2=x 2+3x +4,由g(x)≤2,解得−2≤x <−1;③当−1≤x ≤1时,−1≤−x ≤1,可得g(x)=1−x +1+x =2,由g(x)≤2,解得−1≤x ≤1,综上可得,原不等式的解集为[−2,2].故答案为:[−2,2].讨论当−1≤x ≤1时,当x <−1时,去绝对值,再分别讨论−1≤x ≤1,x <−1,x >1时,求得g(x)的解析式,解不等式求并集,即可得到所求解集.本题考查分段函数的运用:解不等式,考查分类讨论思想方法,以及不等式的解法,考查运算能力,属于中档题.17.答案:解:(1)因为S n+1=S n +2a n +5,所以a n+1=2a n +5,则a n+1+5=2(a n +5),所以a n+1+5a n +5=2a n +10a n +5=2,而a 1+5=6,所以{a n +5}是以6为首项,2为公比的等比数列.(2)由(1)得a n +5=6×2n−1=3×2n ,a n =3×2n −5,∴S n =3×(2+22+23+⋯+2n )−5n=3×2×(1−2n )1−2−5n =6×2n −6−5n ,由S n +5n =6×2n −6>128,得2n >673, 因为25>673>24,所以S n +5n >128时,n 的最小值为5.解析:本题考查数列的递推关系式以及数列求和,考查分析问题解决问题的能力,属于中档题.(1)利用已知条件推出a n+1=2a n +5,然后证明{a n +5}是等比数列;(2)求出数列的通项公式和数列的前n 项和,然后化简不等式求解即可.18.答案:(1)证明:∵PD ⊥面ABCD ,∴PD ⊥AC又∵ABCD 是正方形,∴AC ⊥BD .∴AC ⊥面PBD ,又AC ⊂面EAC ,∴面EAC ⊥面PBD .(2)解:由(1)知AO ⊥面PBD ,OE 是AE 在面PBD 上的射影,∴∠AEO 是AE 与面PBD 所成的角,∵AE 与平面PBD 所成的角为45°,∴∠AEO =45°.设AB =2,则AO =OE =√2,OP =2√2. 以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴,建立空间直角坐标系,则B(2,2,0),A(2,0,0),E(1,1,√2),D(0,0,0),∴AB ⃗⃗⃗⃗⃗ =(0,2,0),AE ⃗⃗⃗⃗⃗ =(−1,1,√2),DA ⃗⃗⃗⃗⃗ =(2,0,0),DE⃗⃗⃗⃗⃗⃗ =(1,1,√2), 设面BAE 的法向量m⃗⃗⃗ =(x,y,z), 则{m ⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =2y =0m ⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =−x +y +√2z =0, 取x =√2,得m ⃗⃗⃗ =(√2,0,1),设面DAE 的法向量n⃗ =(a,b,c), 则{n ⃗ ⋅DA ⃗⃗⃗⃗⃗ =2a =0n ⃗ ⋅DE⃗⃗⃗⃗⃗⃗ =a +b +√2c =0, 取b =√2,得n ⃗ =(0,√2,−1),∴cos <m ⃗⃗⃗ ,n ⃗ >=−13,∴二面角B −AE −D 的余弦值为−13.解析:(1)由已知条件推导出PD ⊥AC ,AC ⊥BD ,由此能证明AC ⊥面PBD ,从而得到面EAC ⊥面PBD .(2)以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角B −AE −D 的余弦值.本题考查平面与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用. 19.答案:解:(1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),c 为半焦距,长轴长为2√2,离心率为√22. 可得a =√2,c =1,则b =1,∴所求椭圆的标准方程为x 22+y 2=1;(2)直线l 1的方程为y =x +2√3.直线l 2与直线l 1平行,设直线l 2的方程为y =x +m ,由{y =x +mx 22+y 2=1,得3x 2+4mx +2m 2−2=0 因为直线l 2与椭圆相切时,所以△=16m 2−4×3×(2m 2−2)=0,解得m =±√3;直线l 2的方程为x −y +√3=0或x −y −√3=0.解析:本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,考查计算能力.(1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),c 为半焦距,长轴长为2√2,离心率为√22.求出a ,c 即可得到椭圆方程;(2)直线l 1的方程为y =x +2√3.直线l 2与直线l 1平行,设直线l 2的方程为y =x +m ,联立直线与椭圆方程,利用判别式为0,求解m ,即可得到直线方程. 20.答案:解:(1)由列联表可得K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=30×(4×2−8×16)212×18×20×10=10>7.879所以能在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.(2)根据题意,X可取的值为0,1,2.P(X=0)=C42C122=111,P(X=1)=C81C41C122=1633,P(X=2)=C82C122=1433,所以X的分布列是:X的数学期望是E(X)=0×111+1×1633+2×1433=43.解析:本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.(1)由列联表求出K2=10>7.879,从而能在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.(2)根据题意,X可取的值为0,1,2.分别求出相应的概率,由此能求出X的分布列和数学期望.21.答案:解:(1)f(x)=e x(e x−a)−a2x,定义域为R,∴f′(x)=(2e x+a)(e x−a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增;②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)在(−∞,lna)单调递减,当x>lna时,f′(x)>0,函数f(x)(lna,+∞)单调递增;③当a<0时,e x−a>0,令f′(x)=0,解得x=ln(−a2),当x<ln(−a2)时,f′(x)<0,函数f(x)在(−∞,ln(−a2))上单调递减,当x>ln(−a2)时,f′(x)>0,函数f(x)在(ln(−a2),+∞)上单调递增.综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(−∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(−∞,ln(−a2))上单调递减,在(ln(−a2),+∞)上单调递增.(2)①当a=0时,f(x)=e2x>0恒成立;②当a>0时,由(1)可得f(x)min=f(lna)=−a2lna≥0,∴lna≤0,∴0<a≤1.③当a<0时,由(Ⅰ)可得:f(x)min=f(ln(−a2))=3a24−a2ln(−a2)≥0,∴ln(−a2)≤34,∴−2e34≤a<0.综上所述,a的取值范围为[−2e34,1].解析:本题考查导数和函数的单调性和函数最值的关系,以及分类讨论的思想,考查了运算能力和化归能力,属于中档题.(1)先求导,再分类讨论,根据导数和函数的单调性即可判断;(2)根据(1)的结论,分别求出函数的最小值,即可求出a的范围.22.答案:解:(Ⅰ)由点斜式方程得直线l的方程为x−y+a−34=0,将x=ρcosθ,y=ρsinθ代入以上方程中,所以,直线l的极坐标方程为ρcosθ−ρsinθa−34=0.同理,圆C的极坐标方程为ρ2−6ρcosθ−6ρsinθ+14=0.(Ⅱ)在极坐标系中,由已知可设M(ρ1,π3),A(ρ2,π3),B(ρ3,π3).联立{θ=π3ρ2−6ρcosθ−6ρsinθ+14=0可得ρ2−(3+3√3)ρ+14=0,所以ρ2+ρ3=3+3√3.因为点M恰好为AB的中点,所以ρ1=3+3√32,即M(3+3√32,π3 ).把(3+3√32,π3)代入ρcosθ−ρsinθa−34=0,得3(1+√3)2×1−√32+a−34=0.所以a =94.解析:(Ⅰ)利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(Ⅱ)利用二次方程组和中点坐标求出结果.本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,二次方程的应用. 23.答案:解:(1)f(x)=|2x −1|+|2x +1|,可得x ≥12时,f(x)<4即2x −1+2x +1<4,解得12≤x <1;当x ≤−12时,f(x)<4即1−2x −2x −1<4,解得−1<x ≤−12;当−12<x <12时,f(x)<4即1−2x +2x +1<4,解得−12<x <12;则M =(−1,1);(2)证明:要证|ab|−|a|−|b|+1>0,即证(|a|−1)(|b|−1)>0,由a ,b ∈M ,即−1<a <1,−1<b <1,可得|a|<1,|b|<1,即|a|−1<0,|b|−1<0,可得(|a|−1)(|b|−1)>0,故|ab|−|a|−|b|+1>0成立.解析:(1)由绝对值的意义,去绝对值,解不等式,再求并集可得M ;(2)运用分析法,结合因式分解和不等式的性质,即可得证.本题考查绝对值不等式的解法和绝对值不等式的证明,注意运用分类讨论思想和分析法证明,考查运算能力和推理能力,属于基础题.。
2020年湖北省黄冈中学高考数学模拟试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2﹣x﹣2>0},N={﹣1,0,1,2,3},则M∩N=()A.{0,1}B.{3}C.{﹣1,0,1,2,3}D.{0,1,2,3}2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)甲乙两名同学6次考试的成绩统计如图,甲乙两组数据的平均数分别为m1,m2,标准差分别为n1,n2,则()A.m1<m2,n1<n2B.m1<m2,n1>n2C.m1>m2,n1<n2D.m1>m2,n1>n24.(5分)若tanα=,则cos2α+2sin2α=()A.B.C.1D.5.(5分)运行如图程序框图,则输出框输出的是()A.B.﹣1C.2D.06.(5分)已知双曲线C:=1(a>0,b>0)的两条渐近线均与圆x2+y2﹣6x+5=0相切,且双曲线的右焦点为该圆的圆心,则C的离心率为()A.B.C.D.7.(5分)设函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2]B.[0,2]C.[1,+∞)D.[0,+∞)8.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积9.(5分)广东省2018年新高考方案公布,实行“3+1+2”模式,即“3”是指语文、数学、外语必考,“1”是指物理、历史两科中选考一门,“2”是指生物、化学、地理、政治四科中选考两门,在所有选项中某学生选择考历史和化学的概率为()A.B.C.D.10.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.611.(5分)已知函数f(x)=sin(x﹣φ),且f(x)dx=0,则函数f(x)的图象的一条对称轴是()A.x=B.x=C.x=D.x=12.(5分)定义在R上的函数f(x)满足f(﹣x)=f(x),且对任意的不相等的实数x1,x2∈[0,+∞)有<0成立,若关于x的不等式f(2mx﹣lnx﹣3)≥2f (3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围()A.[,1+]B.[,2+]C.[,2+]D.[,1+]二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)若变量x,y满足约束条件,则z=2x﹣y的最小值等于.14.(5分)已知非零向量,满足4||=3||,若⊥(﹣4+)则,夹角的余弦值为15.(5分)我国古代数学家祖暅提出的祖暅原理:“幂势既同,则积不容异”(“幂”是截面积,“势”是几何体的高),意思是两个同高的几何体,若在等高处截面的面积恒相等,则它们的体积相等.已知某几何体与三视图(如图所示)所表示的几何体满足“幂势既同”,则该几何体的体积为.16.(5分)已知△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且满足2a2+bc=6,则△ABC面积的最大值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{a n}为等差数列,S n为{a n}的前n项和,2a2+a5=a8,S5=25(1)求数列{a n}的通项公式;(2)记,其前项和为T n,求证:.18.(12分)如图,多面体ABCDB1C1为正三棱柱ABC﹣A1B1C1沿平面DB1C1切除部分所得,M为CB1的中点,且BC=BB1=2.(1)若D为AA1中点,求证AM∥平面DB1C1;(2)若二面角D﹣B1C1﹣B大小为,求直线DB1与平面ACB1所成角的正弦值.19.(12分)“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(x i,y i)(i=1,2,…,6),如表所示:试销单价x(元)456789产品销量y(件)q8483807568已知=80.(Ⅰ)求出q的值;(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程;(Ⅲ)用表示用(Ⅱ)中所求的线性回归方程得到的与x i对应的产品销量的估计值.当销售数据(x i,y i)对应的残差的绝对值时,则将销售数据(x i,y i)称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数ξ的分布列和数学期望E(ξ).(参考公式:线性回归方程中,的最小二乘估计分别为,)20.(12分)直线l:y=x+m与曲线C:x2=2py交于A,B两点,A与B的中点N横坐标为2.(1)求曲线C的方程;(2)过A,B两点作曲线C的切线,两切线交于点E,直线VE交曲线C于点M,求证:M是线段NE的中点.21.(12分)已知f(x)=e x﹣ax2(a∈R).(Ⅰ)求函数f'(x)的极值;(Ⅱ)设g(x)=xe x﹣f(x),若g(x)有两个零点,求a的取值范围.选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C1:ρ=2cosθ,曲线.(Ⅰ)求C2的直角坐标方程;(Ⅱ)若直线l与曲线C1,C2分别相交于异于原点的点M,N,求|MN|的最大值.23.已知函数f(x)=|x+a|+|x﹣2|.(Ⅰ)当a=﹣3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.2020年湖北省黄冈中学高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2﹣x﹣2>0},N={﹣1,0,1,2,3},则M∩N=()A.{0,1}B.{3}C.{﹣1,0,1,2,3}D.{0,1,2,3}【解答】解:M={x|x<﹣1,或x>2};∴M∩N={3}.故选:B.2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.3.(5分)甲乙两名同学6次考试的成绩统计如图,甲乙两组数据的平均数分别为m1,m2,标准差分别为n1,n2,则()A.m1<m2,n1<n2B.m1<m2,n1>n2C.m1>m2,n1<n2D.m1>m2,n1>n2【解答】解:由甲、乙两名同学6次考试的成绩统计图,知:甲的平均成绩高于乙的平均成绩,甲的成绩的波动小于乙的成绩的波动,甲乙两组数据的平均数分别为m1,m2,标准差分别为n1,n2,则m1>m2,n1<n2.故选:C.4.(5分)若tanα=,则cos2α+2sin2α=()A.B.C.1D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.5.(5分)运行如图程序框图,则输出框输出的是()A.B.﹣1C.2D.0【解答】解:模拟程序的运行,可得n=1,x=满足条件n≤2020,执行循环体,x=﹣1,n=2满足条件n≤2020,执行循环体,x=2,n=3满足条件n≤2020,执行循环体,x=,n=4…观察规律可得x的取值周期为3,由于2020=673×3,可得n=2020时,满足条件n≤2020,执行循环体,x=,n=2020此时,不满足条件n≤2020,退出循环,输出x的值为.故选:A.6.(5分)已知双曲线C:=1(a>0,b>0)的两条渐近线均与圆x2+y2﹣6x+5=0相切,且双曲线的右焦点为该圆的圆心,则C的离心率为()A.B.C.D.【解答】解:因为圆C:x2+y2﹣6x+5=0⇔(x﹣3)2+y2=4,由此知道圆心C(3,0),圆的半径为2,又因为双曲线的右焦点为圆C的圆心而双曲线C:=1(a>0,b>0),∴a2+b2=9①又双曲线C:=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,而双曲线的渐近线方程为:y=±x⇔bx±ay=0,∴=2 ②连接①②得,可得c=3,所以双曲线的离心率为:=.故选:C.7.(5分)设函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2]B.[0,2]C.[1,+∞)D.[0,+∞)【解答】解:当x≤1时,21﹣x≤2的可变形为1﹣x≤1,x≥0,∴0≤x≤1.当x>1时,1﹣log2x≤2的可变形为x≥,∴x≥1,故答案为[0,+∞).故选:D.8.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积【解答】解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P到平面QEF即到对角面A1B1CD的距离=为定值;D.∵点Q到直线CD的距离是定值a,|EF|为定值,∴△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.综上可得:只有B中的值不是定值.故选:B.9.(5分)广东省2018年新高考方案公布,实行“3+1+2”模式,即“3”是指语文、数学、外语必考,“1”是指物理、历史两科中选考一门,“2”是指生物、化学、地理、政治四科中选考两门,在所有选项中某学生选择考历史和化学的概率为()A.B.C.D.【解答】解:广东省2018年新高考方案公布,实行“3+1+2”模式,即“3”是指语文、数学、外语必考,“1”是指物理、历史两科中选考一门,“2”是指生物、化学、地理、政治四科中选考两门,基本事件总数n==12,在所有选项中某学生选择考历史和化学包含的基本事件总数m=,∴在所有选项中某学生选择考历史和化学的概率为p=.故选:C.10.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.6【解答】解:设椭圆上的点为(x,y),则∵圆x2+(y﹣6)2=2的圆心为(0,6),半径为,∴椭圆上的点(x,y)到圆心(0,6)的距离为==≤5,∴P,Q两点间的最大距离是5+=6.故选:D.11.(5分)已知函数f(x)=sin(x﹣φ),且f(x)dx=0,则函数f(x)的图象的一条对称轴是()A.x=B.x=C.x=D.x=【解答】解:∵函数f(x)=sin(x﹣φ),f(x)dx=﹣cos(x﹣φ)=﹣cos(﹣φ)﹣[﹣cos(﹣φ)]=cosφ﹣sinφ=cos(φ+)=0,∴φ+=kπ+,k∈z,即φ=kπ+,k∈z,故可取φ=,f(x)=sin(x﹣).令x﹣=kπ+,求得x=kπ+,k∈Z,则函数f(x)的图象的一条对称轴为x=,故选:A.12.(5分)定义在R上的函数f(x)满足f(﹣x)=f(x),且对任意的不相等的实数x1,x2∈[0,+∞)有<0成立,若关于x的不等式f(2mx﹣lnx﹣3)≥2f (3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围()A.[,1+]B.[,2+]C.[,2+]D.[,1+]【解答】解:∴定义在R上的函数f(x)的图象关于y轴对称,∴函数f(x)为偶函数,∵函数数f(x)在[0,+∞)上递减,∴f(x)在(﹣∞,0)上单调递增,若不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)对x∈[1,3]恒成立,即f(2mx﹣lnx﹣3)≥f(3)对x∈[1,3]恒成立.∴﹣3≤2mx﹣lnx﹣3≤3对x∈[1,3]恒成立,即0≤2mx﹣lnx≤6对x∈[1,3]恒成立,即2m≥且2m≤对x∈[1,3]恒成立.令g(x)=,则g′(x)=,在[1,e)上递增,(e,3]上递减,∴g(x)max=.令h(x)=,h′(x)=<0,在[1,3]上递减,∴h(x)min=.综上所述,m∈[,].故选:D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)若变量x,y满足约束条件,则z=2x﹣y的最小值等于﹣.【解答】解:由约束条件,作出可行域如图,由图可知,最优解为A,联立,解得A(﹣1,).∴z=2x﹣y的最小值为2×(﹣1)﹣=﹣.故答案为:.14.(5分)已知非零向量,满足4||=3||,若⊥(﹣4+)则,夹角的余弦值为【解答】解:∵非零向量,满足4||=3||,若⊥(﹣4+),∴||=||,且•(﹣4+)=﹣4=0,即=.设,夹角为θ,则cosθ===,故答案为:.15.(5分)我国古代数学家祖暅提出的祖暅原理:“幂势既同,则积不容异”(“幂”是截面积,“势”是几何体的高),意思是两个同高的几何体,若在等高处截面的面积恒相等,则它们的体积相等.已知某几何体与三视图(如图所示)所表示的几何体满足“幂势既同”,则该几何体的体积为.【解答】解:由题意可知加好友是圆柱挖去一个圆锥的几何体,几何体的体积为:=.故答案为:.16.(5分)已知△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且满足2a2+bc=6,则△ABC面积的最大值为1.【解答】解:∵2a2+bc=6,a2=b2+c2﹣2bc cos A,∴6=2(b2+c2﹣2bc cos A)+bc≥5bc﹣4bc cos A,即:bc≤,当且仅当b=c时等号成立,那么=1.其中:3sin A+4cos A=5sin(A+φ).故答案为:1.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{a n}为等差数列,S n为{a n}的前n项和,2a2+a5=a8,S5=25(1)求数列{a n}的通项公式;(2)记,其前项和为T n,求证:.【解答】解:(1)设公差为d,则由2a2+a5=a8,S5=25得,,解得,所以a n=2n﹣1.(2),,易知T n随着n的增大而增大,所以.18.(12分)如图,多面体ABCDB1C1为正三棱柱ABC﹣A1B1C1沿平面DB1C1切除部分所得,M为CB1的中点,且BC=BB1=2.(1)若D为AA1中点,求证AM∥平面DB1C1;(2)若二面角D﹣B1C1﹣B大小为,求直线DB1与平面ACB1所成角的正弦值.【解答】解:(1)取B1C1中点N,连接MN,则MN为△B1C1C的中位线,∴∴MN,∵D为AA1中点∴AD,∴MN AD………………………………………………2′∴四边形ADMN为平行四边形………………………………………………4′∴AM∥DN,∴AM∥平面DB1C1………………………………………………6′(2)由B1C1⊥DN,B1C1⊥MN可得∠DNM二面角D﹣B1C1﹣B平面角,二面角D﹣B1C1﹣B大小为可得………………………………………………8′如图建立空间直角坐标系,C(﹣1,0,0),B1(1,2,0),,∴设平面ACB 1的法向量为,…………………………………………10′………………………………………………11′所以直线DB1与平面ACB1所成角的正弦值为.………………………………………………12′19.(12分)“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(x i,y i)(i=1,2,…,6),如表所示:试销单价x(元)456789产品销量y(件)q8483807568已知=80.(Ⅰ)求出q的值;(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程;(Ⅲ)用表示用(Ⅱ)中所求的线性回归方程得到的与x i对应的产品销量的估计值.当销售数据(x i,y i)对应的残差的绝对值时,则将销售数据(x i,y i)称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数ξ的分布列和数学期望E(ξ).(参考公式:线性回归方程中,的最小二乘估计分别为,)【解答】解:(Ⅰ),可求得q=90.(Ⅱ),,所以所求的线性回归方程为.(Ⅲ)利用(Ⅱ)中所求的线性回归方程可得,当x1=4时,;当x2=5时,;当x3=6时,;当x4=7时,;当x5=8时,;当x6=9时,.与销售数据对比可知满足(i=1,2,…,6)的共有3个“好数据”:(4,90)、(6,83)、(8,75).于是ξ的所有可能取值为0,1,2,3.;;;,∴ξ的分布列为:ξ0123P于是.20.(12分)直线l:y=x+m与曲线C:x2=2py交于A,B两点,A与B的中点N横坐标为2.(1)求曲线C的方程;(2)过A,B两点作曲线C的切线,两切线交于点E,直线VE交曲线C于点M,求证:M是线段NE的中点.【解答】解:(1)设A(x1,y1),B(x2,y2),则,于是直线AB的斜率所以曲线C的方程为x2=4y.(2)抛物线在A(x1,y1)点处的切线方程为:,整理得:,同理:抛物线在点B(x2,y2)处的切线方程为:联立方程组解得:,解得:,即E(2,﹣m).而N(2,2+m),所以直线NE的方程为:x=2;与抛物线方程联立可得M(2,1)由N(2,2+m),M(2,1),E(2,﹣m),可得M是线段NE的中点.21.(12分)已知f(x)=e x﹣ax2(a∈R).(Ⅰ)求函数f'(x)的极值;(Ⅱ)设g(x)=xe x﹣f(x),若g(x)有两个零点,求a的取值范围.【解答】解:(Ⅰ)f’(x)=e x﹣2ax,f’’(x)=e x﹣2a(1)若a≤0,显然f’’(x)>0,所以f’(x)在(﹣∞,+∞)上是增函数所以,函数f(x)没有极值,(2)若a>0,则由f’’(x)<0可得x<ln2a,f''(x)>0可得x>ln2a,所以f’(x)在(﹣∞,ln2a)上是减函数,在(ln2a,+∞)上是增函数.所以f’(x)在x=ln2a处取极小值,极小值为f’(ln2a)=2a(1﹣ln2a).(Ⅱ)g(x)=xe x﹣f(x)=(x﹣1)e x+ax2,函数g(x)的定义域为R,且g'(x)=xe x+2ax=x(e x+2a),(1)若a>0,则由g’(x)<0可得x<0,由g(x)>0可得x>0.所以g(x)在(﹣∞,0)上是减函数,在(0,+∞)上是增函数.所以g(x)的最小值为g(0)=﹣1.令h(x)=(x﹣1)e x,则h’(x)=xe x.显然由h’(x)<0可得x<0,所以h(x)=(x﹣1)e x在(﹣∞,0)上是减函数,又函数y=ax2在(﹣∞,0)上是减函数,取实数,则,又g(0)=﹣1<0,g(1)=a>0,g(x)在(﹣∞,0)上是减函数,在(0,+∞)上是增函数.由零点存在性定理,g(x)在上各有一个唯一的零点.所以a>0符合题意.(2)若a=0,则g(x)=(x﹣1)e x.显然g(x)仅有一个零点1,所以a=0不符合题意,(3)若a<0,则g′(x)=x[e x﹣e ln(﹣2a)],①若ln(﹣2a)=0,则.而由g'(x)>0可得x<0,或x>0,所以g(x)在R上是增函数.所以g(x)最多有一个零点.所以不符合题意.②若ln(﹣2a)<0,则,由g'(x)>0可得x<ln(﹣2a),或x>0,由g’(x)<0可得ln(﹣2a)<x<0.所以g(x)在(﹣∞,ln(﹣2a))上是增函数,在(ln(﹣2a),0)上是减函数,在(0,+∞)上是增函数.所以g(x)在x=ln(﹣2a)处取极大值,且极大值为:g(ln(﹣2a))=a[ln2(﹣2a)﹣2ln(﹣2a)+2]=a{[ln(﹣2a)﹣1]2+1}<0,所以g(x)最多有一个零点,所以不符合题意.③若ln(﹣2a)>0,则,由g'(x)>0可得x<0,或x>ln(﹣2a),由g’(x)<0可得0<x<ln(﹣2a),所以g(x)在(﹣∞,0)上是增函数,在(0,ln(﹣2a)上是减函数,在(ln(﹣2a),+∞)上是增函数.所以g(x)在x=0处取极大值,且极大值为g(0)=﹣1<0,所以g(x)最多有一个零点,所以不符合题意,综上,a的取值范围是(0,+∞).选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C1:ρ=2cosθ,曲线.(Ⅰ)求C2的直角坐标方程;(Ⅱ)若直线l与曲线C1,C2分别相交于异于原点的点M,N,求|MN|的最大值.【解答】解:(Ⅰ)极坐标方程可化为………(2分)等价于,将x=ρcosθ,y=ρsinθ,x2+y2=ρ2代入,所以曲线C2的直角坐标方程为.………………(5分)(Ⅱ)不妨设0≤α<π,点M,N的极坐标分别为(ρ1,α),(ρ2,α)所以|MN|=|ρ1﹣ρ2|===所以当时,|MN|取得最大值.………………………………(10分)23.已知函数f(x)=|x+a|+|x﹣2|.(Ⅰ)当a=﹣3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③;解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].。
2020年湖北省黄冈中学高考数学适应性试卷(理科)(6月份)一、选择题(共12小题).1.设集合A={x|x2﹣4x+3<0},B={x|22x﹣3<1},则A∩B=()A.B.C.D.2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.已知数列{a n}的前n项和为S n,满足S n=2a n﹣1,则a5的值为()A.8B.16C.32D.814.在同一直角坐标系中,函数y=,y=1og a(x+)(a>0且a≠1)的图象可能是()A.B.C.D.5.某校甲、乙、丙、丁四位同学参加了第34届全国青少年科技创新大赛,老师告知只有一位同学获奖,四人据此做出猜测:甲说:“丙获奖”;乙说:“我没获奖”;丙说:“我没获奖”;丁说:“我获奖了”.若四人中只有一人判断正确,则判断正确的是()A.甲B.乙C.丙D.丁6.陀螺是中国民间较早的体育活动工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的体积为()A.B.C.D.20π7.若(1+x)(1﹣2x)7=a0+a1x+a2x2+…+a8x8,则a0+a1+a2+…+a7的值是()A.﹣1B.﹣2C.126D.﹣1308.已知a=0.20.2,b=0.20.3,c=log20.3,d=log0.30.2,则执行如图所示的程序框图,输出的x值等于()A.a B.b C.c D.d9.已知向量、、满足,,,E、F分别是线段BC、CD的中点.若,则向量与向量的夹角为()A.B.C.D.10.已知函数,若存在实数x1,x2,x3,x4,满足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,则x1x2x3x4的取值的范围是()A.(40,64)B.(40,48)C.(20,32)D.(20,36)11.函数的部分图象如图中实线所示,图中圆C与f(x)的图象交于M,N两点,且M在Y轴上,下列说法:①函数f(x)的最小正周期是2π;②函数f(x)的图象关于点成中心对称;③点M的坐标是,其中正确结论的个数是()A.0B.1C.2D.312.在棱长为1的正方体ABCD﹣A1B1C1D1中,点A关于平面BDC1对称点为M,则M到平面A1B1C1D1的距离为()A.B.C.D.二、填空题(共4小题).13.已知抛物线C:y2=4x的焦点为F,O是坐标原点.点A在抛物线C上,且|AO|=|AF|,则线段|AF|的长是.14.已知函数,则曲线y=f(x)在(0,0)处的切线方程为.15.已知双曲线C的中心在原点,F(﹣2,0)是一个焦点,过F的直线l与双曲线C交于A,B两点,且AB的中点为N(﹣3,﹣1),则C的方程是.16.在△ABC中,若,则cos C的最小值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必做考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某花圃为提高某品种花苗质量,开展技术创新活动,分别用甲、乙两种方法培育该品种花苗.为比较两种培育方法的效果,选取了40棵花苗,随机分成两组,每组20棵.第一组花苗用甲方法培育,第二组用乙方法培育.培育完成后,对每棵花苗进行综合评分,绘制了如图茎叶图:(1)分别求两种方法培育的花苗综合评分的中位数.你认为哪一种方法培育的花苗综合评分更高?并说明理由.(2)综合评分超过80的花苗称为优质花苗,填写如表的列联表,并判断是否有99.5%的把握认为优质花苗与培育方法有关?优质花苗非优质花苗合计甲培育法乙培育法合计附:.P(K2≥k0)0.0100.0500.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.828 18.如图,在三棱锥P﹣ABC中,PA⊥平面ABC,△ABC是等边三角形,点E,F分别为AC,PC的中点,PA=1,AB=2.(1)求证:平面BEF⊥平面PAC;(2)在线段PB上是否存在点G,使得直线AG与平面PBC所成角的正弦值为?若存在,确定点G的位置;若不存在,请说明理由.19.如图,已知椭圆过点,其左、右顶点分别是A,B,下、上顶点分别是C,D,P是椭圆上第一象限内的一点,直线PA,PB的斜率k1,k2满足.(1)求椭圆C的方程;(2)过P点的直线PO交椭圆于另一点Q,求四边形APCQ面积的取值范围.20.今年上半年“新冠肺炎”全球大爆发.在某个时间点,某城市从有人发病到发现人传人时,已有发病人数a0=0.3(千人),从此时起,每周新增发病人数a t(单位:千人)与时间t(单位:周)之间近似地满足a t=e(t∈N*),且当t=2时,a2=2(千人).为阻止病毒蔓延,该城市第3周后果断采取了封城的隔离措施,再经过2周后隔离措施产生了效果,新增发病人数.(1)求该城市第5,6,7周新增发病人数;(2)该城市从发现人传人时,就不断加大科技投入,第t周治愈人数b t(单位:千人)与时间t(单位:周)存在关系,为了保障每一位“新冠肺炎”病人能及时入院治疗,该城市前9周(不考虑死亡人数的前提下)至少需准备多少张床位?(注:出院人数不少于新增发病人数时,总床位不再增加)21.已知函数f(x)=axlnx﹣(a+1)lnx,f(x)的导数为f'(x).(1)当a>﹣1时,讨论f'(x)的单调性;(2)设a>0,方程有两个不同的零点x1,x2(x1<x2),求证:.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的普通方程为,曲线C1的参数方程为(θ为参数),若将曲线C1上的点的横坐标不变,纵坐标变为原来的倍得曲线C2.(1)求直线l的斜率和曲线C2的普通方程;(2)设点P(0,2),直线l与曲线C2的两个交点分别为A,B,求的值.[选修4-5:不等式选讲]23.设a,b,c>0,且ab+bc+ca=1,求证:(1)a+b+c≥;(2)++≥(++).参考答案一、选择题(共12小题).1.设集合A={x|x2﹣4x+3<0},B={x|22x﹣3<1},则A∩B=()A.B.C.D.【分析】先求出集合A,B,进而可求.解:,所以.又A=(1,4),故选:C.2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【分析】根据复数的几何意义求出z2,即可得到结论.解:z1=2+i对应的点的坐标为(2,6),∵复数z1,z2在复平面内的对应点关于虚轴对称,则对应的复数,z2=﹣5+i,故选:A.3.已知数列{a n}的前n项和为S n,满足S n=2a n﹣1,则a5的值为()A.8B.16C.32D.81【分析】分别把1,2,3,4,5代入S n=2a n﹣1,即可求解结论.解:因为S n=2a n﹣1,∴S1=2a1﹣1⇒a1=1,S3=4a3﹣1=a5+a2+a3⇒a3=4,S5=7a5﹣1=a6+a2+a3+a4+a5⇒a5=16,故选:B.4.在同一直角坐标系中,函数y=,y=1og a(x+)(a>0且a≠1)的图象可能是()A.B.C.D.【分析】对a进行讨论,结合指数,对数的性质即可判断;解:由函数y=,y=1og a(x+),当a>2时,可得y=是递减函数,图象恒过(0,1)点,当1>a>0时,可得y=是递增函数,图象恒过(6,1)点,∴满足要求的图象为:D故选:D.5.某校甲、乙、丙、丁四位同学参加了第34届全国青少年科技创新大赛,老师告知只有一位同学获奖,四人据此做出猜测:甲说:“丙获奖”;乙说:“我没获奖”;丙说:“我没获奖”;丁说:“我获奖了”.若四人中只有一人判断正确,则判断正确的是()A.甲B.乙C.丙D.丁【分析】由题得到甲和丙中有1人说法正确,进而可判断每个人的说法解:因为只有1人判断正确,而甲和丙说法矛盾,故两人中有1人判断正确,故乙和丁都判断错误,则乙获奖,故丙没获奖,即丙判断正确,故选:C.6.陀螺是中国民间较早的体育活动工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的体积为()A.B.C.D.20π【分析】首先把三视图转换为几何体的直观图,进一步求出几何体的体积.解:由三视图知该几何体是上部为圆锥,中部为圆柱,下部为圆锥的组合体.其中,上部圆锥的底面半径为2,高为2;中部圆柱的底面半径为2,高为1;下部的圆锥的底面半径为4,高为3,所以该陀螺模型的体积为.故选:B.7.若(1+x)(1﹣2x)7=a0+a1x+a2x2+…+a8x8,则a0+a1+a2+…+a7的值是()A.﹣1B.﹣2C.126D.﹣130【分析】先令x=1求出系数和,再根据二项式系数的特点求出a8,即可求出a0+a1+a2+…+a7.解:令x=1,得﹣2=a0+a1+a5+…+a8.又,故选:C.8.已知a=0.20.2,b=0.20.3,c=log20.3,d=log0.30.2,则执行如图所示的程序框图,输出的x值等于()A.a B.b C.c D.d【分析】模拟程序的运行,可得程序中输出的x的值是a,b,c,d中的最大值,利用指数函数,对数函数的图象和性质即可比较大小即可.解:程序中输出的x的值是a,b,c,d中的最大值.因为a=0.20.2,b=2.20.3,c=log20.3,d=log6.30.2,所以a,b,c,d中d最大.故选:D.9.已知向量、、满足,,,E、F分别是线段BC、CD的中点.若,则向量与向量的夹角为()A.B.C.D.【分析】由题意画出图形,结合求得,从而向量与向量的夹角为.解:如图=.∴cos=,则,故选:A.10.已知函数,若存在实数x1,x2,x3,x4,满足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,则x1x2x3x4的取值的范围是()A.(40,64)B.(40,48)C.(20,32)D.(20,36)【分析】做出函数f(x)的图象,结合函数图象的性质,找到x1、x2,x3、x4之间的关系,将x1x2x3x4转化为关于x3的函数,求值域即可.解:函数f(x)的图象如下图所示.点(x3,t),(x4,t),关于直线x=6对称,所以x5=12﹣x3.而x3∈(2,4),故x1x2x3x4=x3x4∈(20,32).故选:C.11.函数的部分图象如图中实线所示,图中圆C与f(x)的图象交于M,N两点,且M在Y轴上,下列说法:①函数f(x)的最小正周期是2π;②函数f(x)的图象关于点成中心对称;③点M的坐标是,其中正确结论的个数是()A.0B.1C.2D.3【分析】①根据函数f(x)=2sin(ωx+φ)的图象以及圆C的对称性,转化求解函数的周期,判断①.②通过函数图象关于点对称,求出函数图象的对称中心为.判断②.③求出函数的解析式,然后求解M的坐标,判断③.解:①根据函数f(x)=2sin(ωx+φ)的图象以及圆C的对称性,可得M,N两点关于圆心C(c,0)对称,所以函数的周期为T=π,所以①错误.②由函数图象关于点对称,及周期T=π知,函数图象的对称中心为.③由ω=2及的相位为0,得,从而,所以③正确.故选:B.12.在棱长为1的正方体ABCD﹣A1B1C1D1中,点A关于平面BDC1对称点为M,则M到平面A1B1C1D1的距离为()A.B.C.D.【分析】以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,求出平面BDC1的法向量=(1,﹣1,1),从而平面BDC1的方程为x﹣y+z=0,进而过点A(1,0,0)且垂直于平面BDC1的直线方程为(x﹣1)=﹣y=z,推导出过点A(1,0,0)且垂直于平面BDC1的直线方程与平面BDC1的交点为(,,﹣),得到点A关于平面BDC1对称点M(,,﹣),由此能求出M到平面A1B1C1D1的距离.解:以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,D(0,0,0),B(1,8,0),C1(0,1,1),A(1,0,7),A1(1,0,3),设平面BDC1的法向量=(x,y,z),∴平面BDC1的方程为x﹣y+z=0,(x﹣1)=﹣y=z,代入平面方程x﹣y+z=0,得t+1+t+t=0,解得t=﹣,∴点A关于平面BDC3对称点M(,,﹣),∴M到平面A1B1C1D1的距离为d==.故选:D.二、填空题:本题有4小题,每小题5分,共20分.13.已知抛物线C:y2=4x的焦点为F,O是坐标原点.点A在抛物线C上,且|AO|=|AF|,则线段|AF|的长是.【分析】不妨设点A在x轴上方,求出A的坐标,然后求解线段|AF|的长即可.解:不妨设点A在x轴上方,则由|OF|=1知,,所以,即,故答案为:.14.已知函数,则曲线y=f(x)在(0,0)处的切线方程为y=x.【分析】求出原函数的导函数,得到函数在x=0处的导数,再由直线方程的斜截式得答案.解:∵,∴,则f'(0)==2,∴曲线y=f(x)在(0,0)处的切线方程为y=x.故答案为:y=x.15.已知双曲线C的中心在原点,F(﹣2,0)是一个焦点,过F的直线l与双曲线C交于A,B两点,且AB的中点为N(﹣3,﹣1),则C的方程是﹣y2=1.【分析】先利用点F,N的坐标求出直线AB的斜率,再利用点差法得到a2=3b2,结合a2+b2=4求出a,b的值,从而得到双曲线C的方程.解:因为F(﹣2,0),N(﹣3,﹣1),所以直线AB的斜率k l=1,设双曲线方程为,则a2+b2=4,由,,得,于是a2=3,b2=1,所以C的方程为.16.在△ABC中,若,则cos C的最小值为.【分析】由已知即正弦定理可得c2=,进而由余弦定理,基本不等式可得cos C 的最小值.解:因为,所以,即,即,即,由正弦定理得c2=ab cos C.当且仅当a=b时等号成立,所以cos C的最小值为.故答案是:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必做考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某花圃为提高某品种花苗质量,开展技术创新活动,分别用甲、乙两种方法培育该品种花苗.为比较两种培育方法的效果,选取了40棵花苗,随机分成两组,每组20棵.第一组花苗用甲方法培育,第二组用乙方法培育.培育完成后,对每棵花苗进行综合评分,绘制了如图茎叶图:(1)分别求两种方法培育的花苗综合评分的中位数.你认为哪一种方法培育的花苗综合评分更高?并说明理由.(2)综合评分超过80的花苗称为优质花苗,填写如表的列联表,并判断是否有99.5%的把握认为优质花苗与培育方法有关?优质花苗非优质花苗合计甲培育法乙培育法合计附:.P(K2≥k0)0.0100.0500.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.828【分析】(1)根据题意计算中位数或平均数、分布等,从某一角度说明即可.(2)填写列联表,计算观测值,对照临界值得出结论.解:(1)第一组花苗综合评分的中位数为;第二组花苗综合评分的中位数为,(2)列联表如表所示.所以有99.5%的把握认为优质花苗与培育方法有关.18.如图,在三棱锥P﹣ABC中,PA⊥平面ABC,△ABC是等边三角形,点E,F分别为AC,PC的中点,PA=1,AB=2.(1)求证:平面BEF⊥平面PAC;(2)在线段PB上是否存在点G,使得直线AG与平面PBC所成角的正弦值为?若存在,确定点G的位置;若不存在,请说明理由.【分析】(1)证明平面PAC⊥平面ABC,推出BE⊥AC,然后证明BE⊥平面PAC,得到平面BEF⊥平面PAC.(2)以E为坐标原点,分别以,,方向为x,y,z轴正方向建立如图坐标系,求出平面PBC的法向量,求出,利用空间向量的数量积推出结果即可.解:(1)证明:∵PA⊥平面ABC,PA⊂平面PAC,∴平面PAC⊥平面ABC.又平面PAC∩平面ABC=AC,BE⊂平面ABC,∴平面BEF⊥平面PAC.又点E,F分别为AC,PC的中点,又由于BE⊥平面PAC,∴BE⊥AC,BE⊥EF,以E为坐标原点,分别以,,方向为x,y,z轴正方向建立如图坐标系.由于A(0,﹣1,0),P(0,﹣1,4),,C(0,1,2),设平面PBC的法向量,则,于是.,则.故存在满足条件的G点,G点是线段PB的中点.19.如图,已知椭圆过点,其左、右顶点分别是A,B,下、上顶点分别是C,D,P是椭圆上第一象限内的一点,直线PA,PB的斜率k1,k2满足.(1)求椭圆C的方程;(2)过P点的直线PO交椭圆于另一点Q,求四边形APCQ面积的取值范围.【分析】(1)设P(x0,y0),则.通过.结合椭圆C过点,列出方程求解a,b,即可得到椭圆方程.(2)设直线PQ的方程为y=kx(k>0),求出点A,C到直线P,Q的距离,联立求出|PQ|.表示四边形APQC的面积表达式,然后四边形APCQ面积的取值范围.解:(1)设P(x0,y0),则.又,所以.①由①②得a=2,b=7,故椭圆方程为.设直线PQ的方程为y=kx(k>2),又由得,所以.由得.故四边形APCQ面积的取值范围是.20.今年上半年“新冠肺炎”全球大爆发.在某个时间点,某城市从有人发病到发现人传人时,已有发病人数a0=0.3(千人),从此时起,每周新增发病人数a t(单位:千人)与时间t(单位:周)之间近似地满足a t=e(t∈N*),且当t=2时,a2=2(千人).为阻止病毒蔓延,该城市第3周后果断采取了封城的隔离措施,再经过2周后隔离措施产生了效果,新增发病人数.(1)求该城市第5,6,7周新增发病人数;(2)该城市从发现人传人时,就不断加大科技投入,第t周治愈人数b t(单位:千人)与时间t(单位:周)存在关系,为了保障每一位“新冠肺炎”病人能及时入院治疗,该城市前9周(不考虑死亡人数的前提下)至少需准备多少张床位?(注:出院人数不少于新增发病人数时,总床位不再增加)【分析】(1)根据a2=2计算e,再计算a5,a6,a7;(2)判断a t﹣b t﹣1的单调性,得出床位需求量达到最大时的时间,再计算床位总数.解:(1),当3≤t≤5时,;∴,,.(2).当2≤t≤9时,,至少需准备的床位数为a0+a1+a2+…+a6﹣(b1+b5+…+b5)故该城市前9周至少需准备23.55千张床位.21.已知函数f(x)=axlnx﹣(a+1)lnx,f(x)的导数为f'(x).(1)当a>﹣1时,讨论f'(x)的单调性;(2)设a>0,方程有两个不同的零点x1,x2(x1<x2),求证:.【分析】(1)求导得f′(x),再对f′(x)求导,讨论a的范围,确定导数的正负,然后结合导数与单调性的关系,可求f'(x)的单调性;(2)令,则g'(x)=f'(x)+1.由结合导数与单调性的关系可得g (x)的单调区间,计算g()>0,g(1)<0,g(e)>0,可得,x2<e,即可得证.【解答】(1)解:,.若﹣1<a<0,则当时,f''(x)>0,f'(x)单调递增;当时,f''(x)<0,f'(x)单调递减.故当﹣1<a<0时,在上f'(x)在(0,+∞)上单调递增;在上单调递减.当a≥0时,在(0,+∞)上f'(x)单调递增.由(1)知,在(0,+∞)上,g'(x)单调递增.又,,,所以,x2<e,故.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的普通方程为,曲线C1的参数方程为(θ为参数),若将曲线C1上的点的横坐标不变,纵坐标变为原来的倍得曲线C2.(1)求直线l的斜率和曲线C2的普通方程;(2)设点P(0,2),直线l与曲线C2的两个交点分别为A,B,求的值.【分析】(1)结合直线的直角坐标方程可求直线的斜率,再求出直线的倾斜角,然后结合直线过的定点及普通方程与参数方程的互化,求解即可;(2)联立直线与曲线方程,然后结合直线的参数方程的几何意义,求解即可.解:(1)直线l的斜率为.曲线C2的参数方程为,化为直角坐标方程为.将l的参数方程代入,并整理得.则,,所以t1<2,t2<0,故.[选修4-5:不等式选讲]23.设a,b,c>0,且ab+bc+ca=1,求证:(1)a+b+c≥;(2)++≥(++).【分析】(1)运用分析法证明.要证a+b+c≥,结合条件,两边平方,可得a2+b2+c2≥1,运用重要不等式,累加即可得证.(2)问题转化为证明a+b+c≤1,根据基本不等式的性质证明即可.【解答】证明:(1)运用分析法证明.要证a+b+c≥,由a,b,c均为正实数,且ab+bc+ca=1,即为a2+b2+c2≥5,①相加可得a2+b2+c2≥zb+bc+ca=1,综上可得,原不等式成立.而由(1)a+b+c≥,故只需≥++,即:a+b+c≤ab+bc+ac,∴a+b+c≤ab+bc+ac=4成立,(当且仅当a=b=c=时).。
湖北省黄冈中学2020年高考适应性考试模拟卷(二)数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数1z i =+(i 是虚数单位),则22z z+在复平面内对应的点在第 象限 A.一 B.二 C.三 D.四2.已知集合{}1,0,1,2M =-,{}2,N x x a a M ==∈,则集合M N =I ( )A.{}0B. {}0,2-C. {}2,0,2-D. {}0,23.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞ ⎪⎝⎭4.对于问题“已知关于x 的不等式20ax bx c ++>的解集为()2,5,解关于x 的不等式20cx bx a ++>”,给出如下一种解法:由20ax bx c ++>的解集为()2,5,得2110a b c x x ⎛⎫⎛⎫++> ⎪ ⎪⎝⎭⎝⎭的解集为11,52⎛⎫ ⎪⎝⎭,即关于x 的不等式20cx bx a ++>的解集为11,52⎛⎫⎪⎝⎭.类比上述解法,若关于x 的不等式0x a x b +<+的解集为()1,3,则关于x 的不等式1log 301log 3x x a b +<+的解集为( )A .()3,27B .()3,9C .()1,27D .()1,95.新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为A 、B 、C 、D 、E 五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是( ) A .获得A 等级的人数减少了 B .获得B 等级的人数增加了1.5倍 C .获得D 等级的人数减少了一半 D .获得E 等级的人数相同6.函数()()2244log xxf x x-=-的图象大致为A .B .C .D .7.G 是ABC △的重心,a 、b 、c 分别是角A 、B 、C 的对边,若aGA bGB +=0u u u r u u u r u u ur,则角A =A .90°B .60°C .45°D .30°8.执行如图所示的程序框图,如果输入的1a =-,则输出的S =A .2B .3C .4D .59.中国古代数学著作《算法统宗》中有这样一个“九儿问甲歌”问题:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n 个儿子的年龄为n a ,则3456719a a a a a a a ++++--=( ) A .46B .69C .92D .13810.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A += )222S b a c =+-,则B ∠=A .90︒B .60︒C .45︒D .30︒11.己知点(1,0)A -,(1,0)B 分别为双曲线2222:1(0,0)x yC a b a b-=>>的左、右顶点,点M 在双曲线C 上,若ABM V 是顶角为120︒的等腰三角形,则双曲线C 的方程为A .2214y x -= B .2213y x -= C .2212y x -=D .221x y -=12.已知正六棱锥 P ABCDEF -的所有顶点都在一个半径为1的球面上,则该正六棱锥体积的最大值为( )A BC D 第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
2020年湖北省黄冈中学高考数学二模试卷(理科)一、选择题(共12小题).1.设集合A={x|2﹣2x≥0},B={x|y=ln|x|},则A∩B=()A.(﹣∞,1]B.(﹣∞,0)∪(0,1]C.[1,+∞)D.(0,1)∪(1,+∞)2.已知i为虚数单位,复数z满足(1+i3)z=2,则下列判断正确的是()A.z的虚部为iB.|z|=2C.z的实部为﹣1D.z在复平面内所对应的点在第一象限3.已知向量,,||=2,且在方向上的投影为,则•=()A.0B.C.﹣1D.﹣244.某学校为了解高三年级学生在线学习情况,统计了2020年4月18日﹣27日(共10天)他们在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.根据组合图判断,下列结论正确的是()A.这10天学生在线学习人数的增长比例在逐日减小B.前5天在线学习人数的方差大于后5天在线学习人数的方差C.这10天学生在线学习人数在逐日增加D.前5天在线学习人数增长比例的极差大于后5天在线学习人数增长比例的极差5.已知,,,则a,b,c的大小关系为()A.a>c>b B.b>a>c C.c>a>b D.a>b>c6.已知展开式的中间项系数为20,则由曲线和y=x a围成的封闭图形的面积为()A.B.C.1D.7.已知角α的顶点在坐标原点O,始边与x轴的非负半轴重合,将角α的终边绕O点顺时针旋转后,经过点(﹣3,4),则sinα=()A.B.C.D.8.将正整数20分解成两个正整数的乘积有1×20,2×10,4×5三种,其中4×5是这三种分解中两数差的绝对值最小的,我们称4×5为20最佳分解.当p×q(p≤q且p,q∈N*)是正整数n的最佳分解时,定义函数f(n)=q﹣p,则数列{f(3n)}(n∈N*)的前2020项的和为()A.31010+1B.C.D.31010﹣19.甲乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球时甲得分的概率为,乙发球时甲得分的概率为,各球的结果相互独立在某局双方10:10平后,甲先发球,则甲以13:11赢下此局的概率为()A.B.C.D.10.若点A为抛物线y2=4x上一点,F是抛物线的焦点,|AF|=5,点P为直线x=﹣1上的动点,则|PA|+|PF|的最小值为()A.8B.C.D.11.已知函数f(x)=sin|2x|+2|sin x|cos x,给出下列四个命题:①f(x)是偶函数;②f(x)在区间上单调递增;③f(x)在[﹣2π,2π]有7个零点;④f(x)的最大值为2.其中真命题的个数是()A.0B.1C.2D.312.已知函数f(x)=(lnx+1﹣ax)(e x﹣m﹣ax),若存在实数a使得f(x)<0恒成立,则实数m的取值范围是()A.(1,+∞)B.(﹣∞,1)C.(1,2)D.(﹣2,1)二、填空题:13.若实数x,y满足,则z=x+y的最大值是.14.已知等差数列{a n}的前n项和为S n,且a7﹣a4=6,S7﹣S4=﹣51,则a n=.15.如图,F1、F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线与圆x2+y2=a2相切,切点为T,且交双曲线的右支于点P,若,则双曲线C的离心率e=.16.我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童.如图的刍童ABCD ﹣EFGH有外接球,且AB=4,AD=4,EH=2,EF=6,点E到平面ABCD 的距离为4,则该刍童外接球的半径为.三、解答题:解答应写出文字说明、证明过程或演算步骤17.如图,在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=2,.(1)求A;(2)若AD是BC边的中线,,求△ABC的面积.18.如图1,四边形ABCD是正方形,四边形ADE1F1和BCE2F2是菱形,AB=2,∠DAF1=∠CBF2=60°.分别沿AD,BC将四边形ADE1F1和BCE2F2折起,使E1、E2重合于E,F1、F2重合于F,得到如图2所示的几何体.在图2中,M、N分别是CD、EF的中点.(1)证明:MN⊥平面ABCD;(2)求平面DCN与平面ABF所成锐二面角的余弦值.19.共享单车是互联网大潮下的新产物,是共享经济的先锋官.如今,无论一线二线城市,人群稍密集的区域都会有红黄绿等彩色的二维码单车,带给人们新的出行体验.只要有微信或者支付宝,安装相应共享单车App,仅需很少的费用就可以骑走了,有效的解决了某些场景下的“最后一公里”问题.某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为x,市场占有率为y(%),得结果如表:年月2019.122020.12020.22020.32020.42020.5x123456y81116151822(1)观察数据,可用线性回归模型拟合y与x的关系,请用相关系数加以说明(精确到0.001);(2)求y关于x的线性回归方程,并预测该公司2020年6月份的市场占有率;(3)根据调研数据,公司决定再采购一批单车投入市场,现有采购成本分别为1200元/辆和1000元/辆的甲、乙两款车型,报废年限不相同.考虑到公司的经济效益,该公司决定先对这两款单车各100辆进行科学模拟测试,得到两款单车使用寿命统计如表:1年2年3年4年总计报废年限车辆数车型甲款10205020100乙款153********经测算,平均每辆单车每年可以为公司带来收入600元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据,如果你是该公司的负责人,你会选择采购哪款车型?参考数据:,,,≈46.6.参考公式:相关系数r=,回归方程中斜率和截距的最小二乘估计公式分别为,.20.已知椭圆C:(a>b>0)过点,离心率,直线l:y=kx+1与椭圆C交于A,B两点.(1)求椭圆C的方程;(2)是否存在定点P,使得为定值.若存在,求出点P的坐标和的值;若不存在,请说明理由.21.已知函数f(x)=e x+cos x﹣2,f'(x)为f(x)的导数.(1)当x≥0时,求f'(x)的最小值;(2)当时,xe x+x cos x﹣ax2﹣2x≥0恒成立,求a的取值范围.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分.作答时,请用2B铅笔在答题卡上,将所选题号对应的方框涂黑.[选修4-4:坐标系与参数方程] 22.在平面直角坐标系xOy中,已知曲线C1:(t1为参数),曲线C2:(t2为参数),且tanθ1tanθ2=﹣1,点P为曲线C1与C2的公共点.(1)求动点P的轨迹方程;(2)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcosθ﹣3ρsinθ+10=0,求动点P到直线l距离的取值范围.[选修4-5:不等式选讲]23.已知f(x)=|x|+|x﹣3|.(1)求不等式的解集;(2)若f(x)的最小值为M,且a+2b+2c=M(a,b,c∈R),求证:a2+b2+c2≥1.参考答案一、选择题:在每小题给出的四个选项中,只有一项是满足题目要求的.1.设集合A={x|2﹣2x≥0},B={x|y=ln|x|},则A∩B=()A.(﹣∞,1]B.(﹣∞,0)∪(0,1]C.[1,+∞)D.(0,1)∪(1,+∞)【分析】可以求出集合A,B,然后进行交集的运算即可.解:A={x|2x≤2}={x|x≤1},B={x|x≠0},∴A∩B=(﹣∞,4)∪(0,1].故选:B.2.已知i为虚数单位,复数z满足(1+i3)z=2,则下列判断正确的是()A.z的虚部为iB.|z|=2C.z的实部为﹣1D.z在复平面内所对应的点在第一象限【分析】把已知等式变形,利用复数代数形式的乘除运算化简,然后逐一核对四个选项得答案.解:由(1+i3)z=2,得,其实部为1,虚部为1,故A错、C错;z在复平面内所对应的点的坐标为(1,1),在第一象限,故D正确.故选:D.3.已知向量,,||=2,且在方向上的投影为,则•=()A.0B.C.﹣1D.﹣24【分析】根据平面向量数量积的定义,求解即可.解:∵在方向上的投影为,∴||cos<,>=,又||=4,故选:C.4.某学校为了解高三年级学生在线学习情况,统计了2020年4月18日﹣27日(共10天)他们在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.根据组合图判断,下列结论正确的是()A.这10天学生在线学习人数的增长比例在逐日减小B.前5天在线学习人数的方差大于后5天在线学习人数的方差C.这10天学生在线学习人数在逐日增加D.前5天在线学习人数增长比例的极差大于后5天在线学习人数增长比例的极差【分析】对于A:23﹣24的增长比例在下降,故A错误;对于B:由条形图可得前五天学习人数的方差小,故B错误;对于C:由条形图可知学习人数在逐日增加,故C正确;对于D:前五天在线学习人数增长比例的极差小于后五天在线学习人数增长比例的极差,故D错误.解:对于A,由折线图很明显,23﹣24的增长比例在下降,故A错误;对于B,由条形图可得前5天学习人数的变化幅度明显比后5天的小,故方差也小,故B错误;对于D,前5天增长比例的极差大约为15%﹣5%=10%,后5天增长比例的极差大约为40%﹣5%=35%,所以前五天在线学习人数增长比例的极差小于后五天在线学习人数增长比例的极差,故D错误.故选:C.5.已知,,,则a,b,c的大小关系为()A.a>c>b B.b>a>c C.c>a>b D.a>b>c【分析】由已知结合指数函数与对数函数的性质即可比较大小.解:∵,,lnπ>1,∴,又a>1,故选:A.6.已知展开式的中间项系数为20,则由曲线和y=x a围成的封闭图形的面积为()A.B.C.1D.【分析】首先由展开式的通项求出a,然后利用定积分表示封闭图形的面积,然后计算即可.解:因为展开式的中间项系数为20,所以,解得a=2,即曲线和y=x a围成的封闭图形的面积为,故选:A.7.已知角α的顶点在坐标原点O,始边与x轴的非负半轴重合,将角α的终边绕O点顺时针旋转后,经过点(﹣3,4),则sinα=()A.B.C.D.【分析】直接利用三角函数的定义和角的变换的应用求出结果.解:∵角α的终边按顺时针方向旋转后得到的角为,由三角函数的定义:可得,,∴=,故选:B.8.将正整数20分解成两个正整数的乘积有1×20,2×10,4×5三种,其中4×5是这三种分解中两数差的绝对值最小的,我们称4×5为20最佳分解.当p×q(p≤q且p,q∈N*)是正整数n的最佳分解时,定义函数f(n)=q﹣p,则数列{f(3n)}(n∈N*)的前2020项的和为()A.31010+1B.C.D.31010﹣1【分析】直接利用分类讨论思想的应用和数列的求和的应用求出结果.解:当n为偶数时,,当n为奇数时,,故选:D.9.甲乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球时甲得分的概率为,乙发球时甲得分的概率为,各球的结果相互独立在某局双方10:10平后,甲先发球,则甲以13:11赢下此局的概率为()A.B.C.D.【分析】在比分为10:10后甲先发球的情况下,甲以13:11赢下此局分两种情况:①后四球胜方依次为甲乙甲甲;②后四球胜方依次为乙甲甲甲,由此能求出所求事件概率.解:在比分为10:10后甲先发球的情况下,甲以13:11赢下此局分两种情况:①后四球胜方依次为甲乙甲甲,概率为;②后四球胜方依次为乙甲甲甲,概率为,所以,所求事件概率为:,故选:C.10.若点A为抛物线y2=4x上一点,F是抛物线的焦点,|AF|=5,点P为直线x=﹣1上的动点,则|PA|+|PF|的最小值为()A.8B.C.D.【分析】求出点A为(4,4),画出图形,利用对称性转化求解即可.解:由题意可知,p=2,F(1,0),由抛物线的定义可知,,∴x A=4,代入抛物线方程,得,不妨取点A为(4,4),设点F关于x=﹣6的对称点为E,则E(﹣3,0),故选:D.11.已知函数f(x)=sin|2x|+2|sin x|cos x,给出下列四个命题:①f(x)是偶函数;②f(x)在区间上单调递增;③f(x)在[﹣2π,2π]有7个零点;④f(x)的最大值为2.其中真命题的个数是()A.0B.1C.2D.3【分析】先判断f(x)为偶函数,再考虑x≥0时,f(x)的图象和性质,从而可得正确选项.解:f(x)=sin|2x|+2|sin x|cos x,f(﹣x)=sin|﹣2x|+2|sin(﹣x)|cos(﹣x)=sin|5x|+2|sin x|cos x=f(x),当x≥0时,f(x)=sin|2x|+2|sin x|cos x=,又f(x)=而f(x)在[﹣2π,2π]上有无数个零点,故③错.故选:C.12.已知函数f(x)=(lnx+1﹣ax)(e x﹣m﹣ax),若存在实数a使得f(x)<0恒成立,则实数m的取值范围是()A.(1,+∞)B.(﹣∞,1)C.(1,2)D.(﹣2,1)【分析】问题可转化为存在实数a,使得直线y=ax始终在函数g(x)=lnx+1与函数h (x)=e x﹣m之间,利用导数的几何意义数形结合解答即可.解:依题意,存在实数a,使得直线y=ax始终在函数g(x)=lnx+1与函数h(x)=e x﹣m之间,考虑直线y=ax与函数g(x),函数h(x)相切于同一点的情况,作出下图,由图象观察可知,当m<1时,函数h(x)越偏离函数g(x),符合题意,故选:B.二、填空题:13.若实数x,y满足,则z=x+y的最大值是5.【分析】画出约束条件的可行域,利用目标函数的几何意义,转化求解即可.解:实数x,y满足,在坐标系中画出不等式组表示的平面区域,如图所示.由,解得C(5,3),代入目标函数z=x+y,得z max=2+3=5.故答案为:7.14.已知等差数列{a n}的前n项和为S n,且a7﹣a4=6,S7﹣S4=﹣51,则a n=2n﹣29.【分析】设等差数列{a n}的公差为d,利用等差数数列的通项公式、前n项公式求出a6=﹣17,d=2,由此能求出通项公式.解:设等差数列{a n}的公差为d,∵a7﹣a4=6,S3﹣S4=﹣51,解得:a6=﹣17,d=2,故答案为:2n﹣29.15.如图,F1、F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线与圆x2+y2=a2相切,切点为T,且交双曲线的右支于点P,若,则双曲线C的离心率e=.【分析】连接PF2,过F2作F2Q∥OT,若,通过在Rt△PQF2中,利用勾股定理求解双曲线C的离心率即可.解:连接PF2,过F2作F2Q∥OT,若,则易知|OF1|=c,|OT|=a,|TF1|=|TQ|=|QP|=b,|QF2|=2a,|PF4|=|PF1|﹣2a=3b﹣2a,所以双曲线C的离心率.故答案为:.16.我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童.如图的刍童ABCD ﹣EFGH有外接球,且AB=4,AD=4,EH=2,EF=6,点E到平面ABCD 的距离为4,则该刍童外接球的半径为5.【分析】如图,由已知得,球心在上下底面中心连线上,该连线与上下底面垂直,球心必在该垂线上,然后根据OB=OG,利用两个直角三角形OO1G与直角三角形OO2B,即可列出外接圆半径的方程,求解即可.解:假设O为刍童外接球的球心,连接HF、EG交于点O1,连接AC、DB交于点O2,由球的几何性质可知O,O1,O2在同一条直线上,由题意可知,OO2⊥平面ABCD,OO1⊥平面EFGH,O2O1=4.∴.设外接球的半径OG=OB=R,∴,解得r=3.故答案为:5.三、解答题:解答应写出文字说明、证明过程或演算步骤17.如图,在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=2,.(1)求A;(2)若AD是BC边的中线,,求△ABC的面积.【分析】(1)由已知结合余弦定理可求cos A,进而可求A;(2)由已知结合三角形的内角和定理,诱导公式及正弦定理可得B,C的关系,然后结合正弦定理可求b,c,再由三角形的面积公式即可求解.解:(1)∵,∴,∵8<A<π,∴.在三角形ABD中,,在三角形ADC中,,∴sin2B=sin2C,∴(舍去)或者B=C.由正弦定理得,故三角形ABC的面积.18.如图1,四边形ABCD是正方形,四边形ADE1F1和BCE2F2是菱形,AB=2,∠DAF1=∠CBF2=60°.分别沿AD,BC将四边形ADE1F1和BCE2F2折起,使E1、E2重合于E,F1、F2重合于F,得到如图2所示的几何体.在图2中,M、N分别是CD、EF的中点.(1)证明:MN⊥平面ABCD;(2)求平面DCN与平面ABF所成锐二面角的余弦值.【分析】(1)连接DF,易知△DEF为等边三角形,故EF⊥DN,EF⊥CN,由线面垂直的判定定理可得EF⊥平面CDN,从而AD⊥平面CDN,AD⊥MN;由等腰三角形的性质可知MN⊥CD;再根据线面垂直的判定定理即可得证;(2)取AB的中点G,连接MG,以M为原点,MG、MC、MN所在的直线分别为x、y、z轴建立空间直角坐标系,逐一写出M、A、B、G、F的坐标,由法向量性质求得平面ABF的法向量;由(1)知,MG⊥平面CDN,故可取平面CDN的法向量为;再利用空间向量数量积的坐标运算求出cos<,>即可得解.【解答】(1)证明:连接DF,由图1知,四边形ADEF为菱形,且∠DEF=60°,∴△DEF为等边三角形,∴EF⊥DN.又DN∩CN=N,DN、CN⊂平面CDN,∴EF⊥平面CDN.∵MN⊂平面CDN,∴AD⊥MN.又AD、CD⊂平面ABCD,AD∩CD=D,∴MN⊥平面ABCD.(2)解:取AB的中点G,连接MG,以M为原点,MG、MC、MN所在的直线分别为x、y、z轴建立如图所示的空间直角坐标系,在Rt△DMN中,DM=1,DN=EN=,∴MN=,∴,设平面ABF的法向量为,由,得,由(1)知,AD⊥平面CDN,∴,故平面DCN与平面ABF所成锐二面角的余弦值为.19.共享单车是互联网大潮下的新产物,是共享经济的先锋官.如今,无论一线二线城市,人群稍密集的区域都会有红黄绿等彩色的二维码单车,带给人们新的出行体验.只要有微信或者支付宝,安装相应共享单车App,仅需很少的费用就可以骑走了,有效的解决了某些场景下的“最后一公里”问题.某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为x,市场占有率为y(%),得结果如表:年月2019.122020.12020.22020.32020.42020.5x123456y81116151822(1)观察数据,可用线性回归模型拟合y与x的关系,请用相关系数加以说明(精确到0.001);(2)求y关于x的线性回归方程,并预测该公司2020年6月份的市场占有率;(3)根据调研数据,公司决定再采购一批单车投入市场,现有采购成本分别为1200元/辆和1000元/辆的甲、乙两款车型,报废年限不相同.考虑到公司的经济效益,该公司决定先对这两款单车各100辆进行科学模拟测试,得到两款单车使用寿命统计如表:报废年限1年2年3年4年总计车辆数车型甲款10205020100乙款153********经测算,平均每辆单车每年可以为公司带来收入600元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据,如果你是该公司的负责人,你会选择采购哪款车型?参考数据:,,,≈46.6.参考公式:相关系数r=,回归方程中斜率和截距的最小二乘估计公式分别为,.【分析】(1)求出相关系数,接近1,可用线性回归模型进行拟合;(2)求出回归直线方程的系数,得到回归直线方程,2020年6月份代码x=7,代入线性回归方程得,推出预报值即可.(3)甲款单车的利润X的分布列,求解乙款单车的利润Y的分布列与期望,比较两个期望值,即可推出选择的车型.解:(1)由参考数据可得,接近8.所以y与x之间具有较强的线性相关关系,可用线性回归模型进行拟合;所以y关于x的线性回归方程为.(3)用频率估计概率,甲款单车的利润X的分布列为:乙款单车的利润Y的分布列为:以每辆单车产生利润的期望值为决策依据,应选择乙款车型.20.已知椭圆C:(a>b>0)过点,离心率,直线l:y=kx+1与椭圆C交于A,B两点.(1)求椭圆C的方程;(2)是否存在定点P,使得为定值.若存在,求出点P的坐标和的值;若不存在,请说明理由.【分析】(1)利用已知条件列出方程组,求出a,b即可得到椭圆方程.(2)设A(x1,y1),B(x2,y2),P(x0,y0),则由通过韦达定理,结合向量的数量积转化求解即可.解:(1)椭圆C:(a>b>0)过点,离心率,可得,解得a=2,b=,所以所求椭圆方程.显然△≥0,,,即x0=7.则,解得,.即存在点,使得为定值.21.已知函数f(x)=e x+cos x﹣2,f'(x)为f(x)的导数.(1)当x≥0时,求f'(x)的最小值;(2)当时,xe x+x cos x﹣ax2﹣2x≥0恒成立,求a的取值范围.【分析】(1)求导,判断函数的单调性,进而得到函数的最值;(2)令h(x)=e x+cos x﹣2﹣ax,依题意当时,x•h(x)≥0恒成立,然后分a≤1及a>1讨论,即可得出结论.解:(1)f'(x)=e x﹣sin x,令g(x)=e x﹣sin x,x≥0,则g'(x)=e x﹣cos x.当x∈[0,π)时,g'(x)为增函数,g'(x)≥g'(0)=7;故x≥0时,g'(x)≥0,g(x)为增函数,(2)令h(x)=e x+cos x﹣2﹣ax,h'(x)=e x﹣sin x﹣a,则时,x•h(x)≥5恒成立.所以h(x)为增函数,故h(x)≥h(0)=0恒成立,即x•h(x)≥0恒成立;h'''(x)=e x+sin x在上为增函数,故存在唯一,使得h'''(x0)=0.x∈(x0,5)时,h'''(x)≥0,h''(x)为增函数.故存在唯一使得h''(x1)=0.x∈(x1,6)时,h''(x1)<0,h'(x)为减函数.所以时,h'(x)>0,h(x)为增函数,当a>1时,由(1)可知h'(x)=e x﹣sin x﹣a在[3,+∞)上为增函数,故存在唯一x2∈(0,+∞),使得h'(x2)=0.所以h(x)<h(0)=0,此时x•h(x)<0,与x•h(x)≥0恒成立矛盾.综上所述,a≤6.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分.作答时,请用2B铅笔在答题卡上,将所选题号对应的方框涂黑.[选修4-4:坐标系与参数方程] 22.在平面直角坐标系xOy中,已知曲线C1:(t1为参数),曲线C2:(t2为参数),且tanθ1tanθ2=﹣1,点P为曲线C1与C2的公共点.(1)求动点P的轨迹方程;(2)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcosθ﹣3ρsinθ+10=0,求动点P到直线l距离的取值范围.【分析】(1)分别把曲线C1与C2中的参数消去,结合已知tanθ1tanθ2=﹣1,可得动点P的轨迹方程;(2)由(1)中P的轨迹方程,得圆心坐标,化直线的极坐标方程为直角坐标方程,求出圆心到直线的距离,可得动点P到直线l距离的取值范围.解:(1)设点P的坐标为(x,y),∵点P为曲线C1与C2的公共点,∴点P同时满足曲线C1与C2的方程.由tanθ1tanθ6=﹣1,得,(2)由已知,直线l的极坐标方程6ρcosθ﹣ρsinθ+10=0,∵P的轨迹为圆(去掉两点),∴点P到直线l的距离的取值范围为.[选修4-5:不等式选讲]23.已知f(x)=|x|+|x﹣3|.(1)求不等式的解集;(2)若f(x)的最小值为M,且a+2b+2c=M(a,b,c∈R),求证:a2+b2+c2≥1.【分析】(1)根据f(x)=|x|+|x﹣3|,,利用零点分段法解不等式即可;(2)先用绝对值三角不等式求出f(x)的最小值M,得到a+2b+2c的值,然后利用柯西不等式,由(a+2b+2c)2≤(12+22+22)(a2+b2+c2),证明不等式a2+b2+c2≥1成立.解:(1)∵f(x)=|x|+|x﹣3|,∴当x<0时,等价于|x|+|x﹣8|>﹣5,该不等式恒成立;当x>3时,等价于,解得x>4,(2)证明:∵f(x)=|x|+|x﹣3|≥|x﹣(x﹣3)|=3,由柯西不等式,可得6=(a+2b+2c)2≤(52+24+22)(a2+b4+c2)=9(a2+b2+c2),当且仅当,,时等号成立,∴a2+b2+c2≥1.。
2020年湖北省武汉市黄冈中学高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数y=xcosx + sinx 的图象大致为(A)(B)(C) (D)参考答案:D函数y=xcosx + sinx为奇函数,所以图象关于原点对称,所以排除B,C.当时,,排除A,选D.2. 已知各项均为正数的等差数列{a n}的公差为2,等比数列{b n}的公比为-2,则()A. B.C. D.参考答案:B【分析】由已知求得等比数列{b n}的通项公式,作比即可得到.【详解】∵等差数列{a n}的公差为2,数列{b n}是公比为﹣2的等比数列,∴,∴.故选:B.【点睛】本题考查等差数列与等比数列的通项公式,是基础题.3. 设变量x,y满足约束条件,则目标函数的最小值为A 6B 7C 8D 23参考答案:B解析:由已知,先作出线性规划区域为一个三角形区域,得到三个交点(2,1)(1,2)(4,5),那么作一系列平行于直线的平行直线,当过其中点(2,1)时,目标函数最小。
4. 已知集合,,则A. B. C. D.参考答案:D略5. 已知集合A={x|x2﹣3x+2=0},B={x|log x4=2},则A∪B=()A.{﹣2,1,2} B.{1,2} C.{﹣2,2} D.{2}参考答案:B【考点】并集及其运算.【分析】先将A,B化简,再计算并集,得出正确选项.【解答】解:∵A={x|x2﹣3x+2=0}={x|(x﹣1)(x﹣2)=0}={1,2}B={x|log x4=2}={2}∴A∪B={1,2}故选B.6. 庆“元旦”的文艺晚会由6个节目组成,演出顺序有如下要求:节目甲必须安排往前两位,节目乙不能安排在第一位,节目丙必须安排在最后一位,则该晚会节目演出顺序的编排方案共有A.36种; B.42种; C.48种; D.54种参考答案:B7. 下列说法错误的是( )A.命题“若,则”的否命题是:“若,则”B.如果命题“”与命题“或”都是真命题,那么命题一定是真命题.C.若命题:,则;D.“”是“”的充分不必要条件;参考答案:D8. 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )(A).y=cos2x,x R (B).y=log2|x|,x R且x≠0(C).y=,x R (D).,x R参考答案:B9. 设集合,,则等于()A. B. C. D.参考答案:D略10. 如图所示的茎叶图为高三某班50名学生的化学考试成绩,算法框图中输入的,,,…,为茎叶图中的学生成绩,则输出的m,n分别是()A. ,B. ,C. ,D. ,参考答案:B试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故,.【思路点睛】本题主要考查识图的能力,通过对程序框图的识图,根据所给循环结构中的判断框计算输出结果,属于基础知识的考查.由程序运行过程看,两个判断框执行的判断为求50个成绩中成绩不小于80和成绩不小于60且小于80的个数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个.二、填空题:本大题共7小题,每小题4分,共28分11. (不等式选做题)若不等式对任意的实数x恒成立,则实数a的取值范圉是.参考答案:12. 给出下列结论:①函数在区间上有且只有一个零点;②已知l是直线,是两个不同的平面.若;③已知表示两条不同直线,表示平面.若;④在中,已知,在求边c 的长时有两解.其中所有正确结论的序号是:参考答案:【知识点】命题的真假判断与应用.A2①④解析:①由,得,当x∈时f′(x)>0,∴f(x)在上为单调增函数,又,∴函数在区间上有且只有一个零点,①正确;②由,可得l?β或l∥β或l与β相交,②错误;③m⊥α,m⊥n,可得n∥α或n?α,③错误;④在△ABC中,已知a=20,b=28,A=40°,则由正弦定理得:,即,则B有一个锐角和一个钝角,对应的边c的长有两解,命题④正确.∴正确的命题是①④.故答案为:①④.【思路点拨】利用导数判断函数f(x)=lnx﹣的单调性,结合函数零点存在性定理判断①;由空间中的点、线、面的位置关系判断②;利用正弦定理结合已知分析角B的可能情况,从而得到边c的解得情况判断④.13. 已知全集U=R,集合,则集合=________参考答案:14. 下列四种说法①命题“>0”的否定是“”;②“命题为真”是“命题为真”的必要不充分条件;③“若<,则<”的逆命题为真;④若A∪B=A,C∩D=C,则A B,C D.正确的命题有__________________.(填序号)参考答案:1,215. 在△中,已知,,且的面积为,则边长为.参考答案:7略16. 已知曲线y=ax2在x=1处切线的斜率是﹣4,则实数a的值为.参考答案:-2略17. 若等差数列{a n}的前5项和=25,且,则 .参考答案:7三、解答题:本大题共5小题,共72分。
2020年湖北省黄冈中学高考模拟试卷数学(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷50分,第Ⅱ卷100分,卷面共计150分,时间120分钟.第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、复数,则复数z在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2、若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.bαB.b∥αC.bα或b∥αD.b与α相交或bα或b∥α3、映射f:A→B,如果满足集合B中的任意一个元素在A中都有原象,则称为“满射”.已知集合A 中有4个元素,集合B中有3个元素,那么从A到B的不同满射的个数为()A.24B.6C.36D.724、已知在等比数列{a n}中,a2·a4·a6·a8=16,则a5的值为()A.2B.-2C.-2或2D.不确定5、如图1,在等腰△ABC中,AB=AC,D为BC中点,则“向量且0<x<y<1”是“点P在△ABD内”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6、某铁路货运站对6列货运列车进行编组调度,决定将这6列车平均分成2组,且列车甲与列车乙不在同一个小组.如果甲车所在小组的3列列车先开出,那么这6列列车先后不同的发车顺序共有()A.36种B.108种C.216种D.432种7、某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为,给出下列命题:①该市这次考试的数学平均成绩为90分;②该市这次考试的数学成绩方差为100分;③分数在120分以上的人数与分数在50分以下的人数相同;④及格率(90分或90分以上为及格)为50%;⑤分数在130分以上的人数几乎为0.其中,真命题的个数是()A.1B.2C.3D.48、设F1、F2分别是椭圆:的左、右焦点,若在其右准线上存在P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是()9、设,若f(x)=x有且仅有两个实数解,则实数a的取值范围是()A.(-∞,2)B.[1,2)C.[1,+∞)D.(-∞,1]10、如图2,正方体AC′中,E、F分别是BB′、B′C′的中点,点P在AEF确定的平面内,且P点到A 点和平面BCC′B′的距离相等,则P点轨迹是()A.直线B.抛物线C.椭圆D.双曲线第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分)11、已知二项式的展开式的第4项与第5项之和为0,则x等于__________.12、_________.13、用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的.已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的.请从这个实事中提炼出一个不等式组是__________.14、已知向量a=(2cosα,2sinα),b=(3cosβ,3sinβ),其夹角为60°,则直线xcosα-ysinα+=0与圆(x-cosβ)2+(y+sinβ)2=的位置关系是__________.15、请阅读定义:(1)如果就称直线y=a或y=b为y=f(x)的一条水平渐近线;(2)如果,就称直线x=x0为y=f(x)的一条竖直渐近线;(3)如果有a≠0使得,就称直线y=ax+b为y=f(x)的一条斜渐近线”.下列函数的图像恰有两条渐近线的是_________.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16、(本小题满分12分)已知,将f(x)的图像按向量平移后,图像关于直线对称.(1)求实数a的值,并求f(x)取得最大值时x的集合;(2)求f(x)的单调区间.17、(本小题满分12分)一个动点P从原点O出发,按如下规则同时沿y轴、x轴的方向进行移动:同时掷两枚骰子,(a)每掷1次,沿y轴方向移动+1;(b)计算两枚骰子的点数之和,如果不大于4点或不小于10点,则沿x轴方向移动+2;如果不小于5点且不大于9点,则沿x轴方向移动-1.(1)每掷1次,分别求沿x轴方向移动+2的概率和沿x轴方向移动-1的概率;(2)求动点P到达点(2,7)的概率.18、(本小题满分12分)如图3,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.(1)求异面直线EG与BD所成的角;(2)在线段CD上是否存在一点Q,使得A点到平面EFQ的距离为,若存在,求出CQ的值;若不存在,请说明理由.19、(本小题满分12分)已知数列{a n}满足a1=1,a n+1=2a n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足,证明:{b n}是等差数列;(3)证明:.20、(本小题满分13分)如图4,已知椭圆的中心在原点,焦点在x轴上,长轴是短轴的2倍,且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),且交椭圆于A,B两点.(1)求椭圆的方程;(2)求m的取值范围;(3)求证:直线MA,MB与x轴围成一个等腰三角形.21、(本小题满分14分) 已知函数和点P(1,0),过点P 作曲线y=f(x)的两条切线PM、PN,切点分别为M、N.(1)设|MN|=g(t),试求函数g(t)的表达式;(2)是否存在t,使得M、N与A(0,1)三点共线?若存在,求出t的值;若不存在,请说明理由.(3)在(1)的条件下,若对任意的正整数n,在区间[2,]内总存在m+1个实数a1,a2,…,a m,a m+1,使得不等式g(a1)+g(a2)+…+g(a m)<g(a m+1)成立,求m 的最大值.试题答案一、选择题提示:1、,而点(1,-2)位于第四象限.2、根据直线与平面的位置关系,易知选D.3、共有个.4、.5、当点P在△ABD内时,根据图形易得0<x<y<1,反之,若0<x<y<1,当x,y无限接近于1时,易知点P在△ABC外部,所以是必要不充分条件.6、从除甲乙外的4辆列车中任选2辆与甲组成一个小组,有种,然后再把这3辆全排列有种,最后再把剩下的3辆全排列,也有种,故共有种.7、正态分布可记作N(90,100),故期望为90分,方差为100分,则①②正确;因为曲线关于直线x=90对称,故④正确;③错误,,故⑤正确.所以真命题有①②④⑤.8、设右准线与x轴交于点A,则,又|F2P|=|F1F2|=2c,故.9、当x>0时,函数f(x)是周期为1的函数,作出图像即可得出答案.10、过P作PH⊥面BCC′B′,作PG⊥EF,连接GH,则∠PGH为面AEF与面BCC′B′所成的角,故PGsin∠PGH=PH=PA,则为定值,且,故P点轨迹是椭圆.二、填空题答案:11、2 12、13、14、相离15、①③⑤⑥提示:11、,则,解得x=2.12、,.13、第二次受击后进入木板部分的铁钉长度是钉长的,第三次为钉长的,则有.14、.圆心到直线的距离,故直线与圆相离.15、根据定义求极限即可,可得①③⑤⑥有两条渐进线.三、解答题17、设“每掷1次,沿x轴方向移动+2”为事件A;“每掷1次,沿x轴方向移动-1”为事件B;“动点P到达点(2,7)”为事件C.(1)掷两枚骰子点数之和不大于4点有下列四种情形:两枚均为1点;两枚均为2点;一枚1点,一枚2点;一枚1点,一枚3点.掷两枚骰子点数之和不小于10点也有四种情形:两枚均为5点;一枚5点,一枚6点;一枚4点,一枚6点;两枚均为6点.(2)由(a)知,动点P到达点(2,7),必须掷7次骰子,设沿x轴方向移动+2有x次;沿x轴方向移动-1有y次.18、(1)取BC的中点M,连接GM,AM,EM,如图a,则GM∥BD,∴∠EGM(或其补角)就是异面直线EG与BD所成的角.(2)假设在线段CD上存在一点Q满足题设条件,过点Q作QR⊥AB于R,连接RE,如图b,则OR∥AD,∵ABCD是正方形,△PAD是直角三角形,且PA=AD=2,∴AD⊥AB,AD⊥PA,又有AB∩PA=A,∴AD⊥平面PAB.又∵E,F分别是PA,PD中点,∴EF∥AD,∴EF⊥平面PAB.又∵EF面EFQ,∴面EFQ⊥面PAB.过A作AT⊥ER于T,则AT⊥平面EFQ,∴AT就是点A到平面EFQ的距离.设CQ=x(0≤x≤2),则BR=CO=x,AR=2-x,AE=1,在Rt△EAR中,故存在点Q,当时,点A到平面EFQ的距离为.。
2020年湖北省黄冈中学高考数学冲刺试卷(理科)(二)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x∈Z|x2−2x−3≤0},B={x|x−1>0},则集合A∩B=()A. {2,3}B. {−1,1}C. {1,2,3}D. ⌀=n+i(m,n∈R),其中i为虚数单位,则m+n=()2.己知m−2iiA. −1B. 1C. 3D. −33.已知向量a⃗,b⃗ 满足|a⃗|=1,|2a⃗+b⃗ |=√7,且a⃗与b⃗ 的夹角为60°,则|b⃗ |=()A. 1B. 3C. √3D. √54.已知数列{a n}为等差数列,S n为其前n项和,a6+a3−a5=3,则S7=()A. 42B. 21C. 7D. 35.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图(90后指1990年及以后出生,80后指1980−1989年之间出生,80前指1979年及以前出生),则下列结论中不一定正确的是()A. 互联网行业从业人员中90后占一半以上B. 互联网行业中从事技术岗位的人数90后比80后多C. 互联网行业中从事设计岗位的人数90后比80前多D. 互联网行业中从事市场岗位的90后人数不足总人数的10%(其中e为自然对数的底数)的图象大致为()6.函数f(x)=e x+1x3(e x−1)A. B.C. D.7.已知抛物线y2=4x的焦点为F,M,N是抛物线上两个不同的点.若|MF|+|NF|=5,则线段MN的中点到y轴的距离为()A. 3B. 32C. 5 D. 528.如图,我国古代珠算算具算盘每个档(挂珠的杆)上有7颗算珠,用梁隔开,梁上面两颗叫上珠,下面5颗叫下珠.若从某一档的7颗算珠中任取3颗,至少含有一颗上珠的概率为()A. 57B. 47C. 27D. 179.已知函数f(x)=2sin(2x+π6),将f(x)的图象上所有点向右平移θ(θ>0)个单位长度,得到的图象关于直线x=π6对称,则θ的最小值为()A. π6B. π3C. π2D. π10.设α是给定的平面,A,B是不在α内的任意两点.有下列四个命题:①在α内存在直线与直线AB异面;②在α内存在直线与直线AB相交;③存在过直线AB的平面与α垂直;④存在过直线AB的平面与α平行.其中,一定正确的是()A. ①②③B. ①③C. ①④D. ③④11.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1作圆x2+y2=a2的切线,交双曲线右支于点M,若∠F1MF2=45°,则双曲线的渐近线方程为()A. y=±√2xB. y=±√3xC. y=±xD. y=±2x12.已知球O是正四面体A−BCD的外接球,BC=2,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得截面圆面积的最小值是()A. 89π B. 11π18C. 512π D. 4π9二、填空题(本大题共4小题,共20.0分)13.“角谷定理”的内容为对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2;如此循环,最终都能够得到1.如图为研究角谷定理的一个程序框图.若输入n的值为6,则输出i的值为______.14.已知cos(2α+π6)=−25,则sin(2α−π3)=______.15.若(3+ax)(1+x)4展开式中x的系数为13,则展开式中各项系数和为______(用数字作答).16.已知函数f(x)={e x−1−e1−x,x≤1|x−2|−1,x>1(其中e为自然对数的底数),则不等式f(x)+ f(x−1)<0的解集为______.三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}中,a1=1且2a n+1=6a n+2n−1(n∈N∗).(1)求证:数列{a n+n2}为等比数列;(2)求数列{a n}的前n项和S n.18.如图,在四棱锥S−ABCD中,已知四边形ABCD是边长为√2的正方形,点S在底面ABCD上的射影为底面ABCD的中心点O,点P在棱SD上,且△SAC的面积为1.(1)若点P是SD的中点,求证:平面SCD⊥平面PAC;(2)在棱SD上是否存在一点P使得二面角P−AC−D的余弦值为√5?若存在,求出5点P的位置;若不存在,说明理由.19.已知椭圆的一个顶点A(0,−1),焦点在x轴上,离心率为√3.2(1)求椭圆的标准方程;(2)设直线y=kx+m(k≠0)与椭圆交于不同的两点M,N.当|AM|=|AN|时,求m的取值范围.20.东莞的轻轨给市民出行带来了很大的方便,越来越多的市民选择乘坐轻轨出行,很多市民都会开汽车到离家最近的轻轨站,将车停放在轻轨站停车场,然后进站乘轻轨出行,这给轻轨站停车场带来很大的压力.某轻轨站停车场为了解决这个问题,决定对机动车停车施行收费制度,收费标准如下:4小时内(含4小时)每辆每次收费5元;超过4小时不超过6小时,每增加一小时收费增加3元;超过6小时不超过8小时,每增加一小时收费增加4元,超过8小时至24小时内(含24小时)收费30元;超过24小时,按前述标准重新计费.上述标准不足一小时的按一小时计费.为了调查该停车场一天的收费情况,现统计1000辆车的停留时间(假设每辆车一天内在该停车场仅停车一次),得到下面的频数分布表:以车辆在停车场停留时间位于各区间的频率代替车辆在停车场停留时间位于各区间的概率.(1)现在用分层抽样的方法从上面1000辆车中抽取了100辆车进行进一步深入调研,记录并统计了停车时长与司机性别的2×2列联表:完成上述列联表,并判断能否有90%的把握认为“停车是否超过6小时”与性别有关?(2)(i)X表示某辆车一天之内(含一天)在该停车场停车一次所交费用,求X的概率分布列及期望E(X);(ii)现随机抽取该停车场内停放的3辆车,ξ表示3辆车中停车费用大于E(X)的车辆数,求P(ξ≥2)的概率.参考公式:k2=n(ad−bc)2,其中n=a+b+c+d(a+b)(c+d)(a+c)(b+d)21.已知函数f(x)=e2x+mx,x∈(0,+∞)(其中e为自然对数的底数).(1)求f(x)的单调性;(2)若m=−2,g(x)=a2x2e x,对于任意a∈(0,1),是否存在与a有关的正常数x0,使得f(x02)−1>g(x0)成立?如果存在,求出一个符合条件x0;否则说明理由.22.在直角坐标系xOy中,圆C的普通方程为x2+y2−4x−6y+5=0.在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ+π4)=−3√22.(1)写出圆C的参数方程和直线l的直角坐标方程;(2)设点P在C上,点Q在l上,求|PQ|的最小值及此时点P的直角坐标.23.已知函数f(x)=|x+1|−|x−2|.(1)解不等式f(x)≤1;(2)记函数f(x)的最大值为s,若√a+√b+√c=s(a,b,c>0),证明:√a b√c≥3.答案和解析1.【答案】A【解析】解:∵A={x∈Z|−1≤x≤3}={−1,0,1,2,3},B={x|x>1},∴A∩B={2,3}.故选:A.可以求出集合A,B,然后进行交集的运算即可.本题考查了描述法、列举法的定义,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.2.【答案】D=n+i,得m−2i=i(n+i)=−1+ni,【解析】解:由m−2ii∴m=−1,n=−2.则m+n=−3.故选:D.利用复数代数形式的乘除运算化简,再由复数相等的条件列式求得m,n的值,则答案可求.本题考查复数代数形式的乘除运算,考查复数相等的条件,是基础题.3.【答案】A【解析】解:∵向量a⃗,b⃗ 满足|a⃗|=1,|2a⃗+b⃗ |=√7,∴4a⃗2+4a⃗⋅b⃗ +b⃗ 2=7.又a⃗与b⃗ 的夹角为60°,∴4+4⋅1⋅|b⃗ |⋅cos60°+|b⃗ |2=7,则|b⃗ |=1,或|b⃗ |=−3(舍去),故选:A.由题意利用两个向量的数量积的定义,求向量的模的方法,属于基础题.本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.4.【答案】B【解析】解:∵数列{a n}为等差数列,S n为其前n项和,a6+a3−a5=3,∴a1+5d+a1+2d−a1−4d=a1+3d=3,∴S7=7(a1+a7)=7(a1+3d)=21.2故选:B.利用等差数列通项公式求出a1+3d=3,再由S7=72(a1+a7)=7(a1+3d),能求出结果.本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.5.【答案】B【解析】解:由整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图,知:在A中,互联网行业从业人员中90后占56%,故A正确;在B中,互联网行业中从事技术岗位的人数90后不一定比80后多,故B错误;在C中,互联网行业中从事设计岗位的人数90后比80前多,故C正确;在D中,互联网行业中从事市场岗位的90后人数不足总人数的10%,故D正确.故选:B.利用整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图直接求解.本题考查例题真假的判断,考查整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图的性质等基础知识,考查运算求解能力,是基础题.6.【答案】D【解析】解:f(−x)=e −x+1(−x)3(e−x−1)=−1+e xx3(1−e x)=e x+1x3(e x−1)=f(x),故函数f(x)为偶函数,其图象关于y轴对称,故排除A,C;当x→+∞时,x3(e x−1)>>e x+1,f(x)→0,故排除B.故选:D.由函数为偶函数,排除AC;由x→+∞时,f(x)→0,排除B,由此得到答案.本题考查函数图象的确定,考查读图识图能力,属于基础题.7.【答案】B【解析】【分析】考查抛物线的定义的应用,属于基础题.抛物线到焦点的距离转化为到准线的距离,可求出横坐标之和,进而求出中点的横坐标,求出结果即可.【解答】解:由抛物线方程得,准线方程为:x=−1,设M(x,y),N(x′,y′),由抛物线的定义得,MF+NF=x+x′+p=x+x′+2=5,线段MN的中点的横坐标为x+x′2=32,线段MN的中点到y轴的距离为:32.故选:B.8.【答案】A【解析】解:我国古代珠算算具算盘每个档(挂珠的杆)上有7颗算珠,用梁隔开,梁上面两颗叫上珠,下面5颗叫下珠.从某一档的7颗算珠中任取3颗,基本事件总数n=C73=35,至少含有一颗上珠包含的基本事件个数m=C22C51+C21C52=25,∴至少含有一颗上珠的概率为P=mn =2535=57.故选:A.从某一档的7颗算珠中任取3颗,基本事件总数n=C73=35,至少含有一颗上珠包含的基本事件个数m=C22C51+C21C52=25,由此能求出至少含有一颗上珠的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.9.【答案】C【解析】解:函数f(x)=2sin(2x+π6),将f(x)的图象上所有点向右平移θ(θ>0)个单位长度,得y=f(x−θ)=2sin[2(x−θ)+π6]=2sin(2x−2θ+π6);又函数y的图象关于直线x=π6对称,即2×π6−2θ+π6=kπ+π2,k∈Z;解得θ=−12kπ,k∈Z;又θ>0,所以θ的最小值为π.2故选:C.根据三角函数图象平移法则写出平移后的函数解析式,再根据函数图象关于直线x=π6对称求出θ的最小值.本题考查了三角函数的图象与性质的应用问题,也考查了图象平移问题,是基础题.10.【答案】B【解析】解:对于①,无论直线AB与α平行,还是直线AB与α相交,都在α内存在直线与直线AB异面,所以①正确;对于②,当直线AB与α平行时,平面α内不存在直线与直线AB相交,所以②错误;对于③,无论直线AB与α平行,还是直线AB与α相交,都存在过直线AB的平面与α垂直,所以③正确;对于④,若直线AB与α相交,则不存在过直线AB的平面与α平行,所以④错误;综上知,正确的命题序号是①③.故选:B.根据空间中的直线与平面、以及平面与平面的位置关系,判断题目中的命题真假性即可.本题考查了空间中的直线与平面以及平面与平面的位置关系应用问题,是基础题.11.【答案】A【解析】【分析】本题考查双曲线的渐近线方程,考查双曲线的定义和三角形的中位线定理,考查运算能力,属于中档题.设切点为N,连接ON,作F2作F2A⊥MN,垂足为A,运用中位线定理和勾股定理,结合双曲线的定义,即可得到a,b的关系,进而得到所求渐近线方程.【解答】解:设切点为N ,连接ON ,作F 2作F 2A ⊥MN ,垂足为A , 由|ON|=a ,且ON 为△F 1F 2A 的中位线,可得 |F 2A|=2a ,|F 1N|=√c 2−a 2=b , 即有|F 1A|=2b , 因为∠F 1MF 2=45°,所以在等腰直角三角形MF 2A 中,可得|MF 2|=2√2a , 即有|MF 1|=2b +2a ,由双曲线的定义可得|MF 1|−|MF 2|=2b +2a −2√2a =2a , 可得b =√2a ,则双曲线的渐近线方程为y =±√2x. 故选A .12.【答案】A【解析】解:作AO′⊥面BCD ,垂足为O′连接BO′并延长交CD 于F ,由题意得F 时CD 的中点,且O′为三角形BCD 的外接圆的圆心,设三角形BCD 的外接圆半径为r ,则r =BO′=23BF =23⋅√32BC =√33⋅2=2√33,高ℎ=AO′=√AB 2−BO′2=(2√33)=2√63,设外接球的球心为O ,设外接球的半径为R ,则由题意知O 在AO′上,连接OB ,R =OB ,在三角形BOO′中:R 2=r 2+(ℎ−R)2,所以2Rℎ=r 2+ℎ2,将r ,h 值代入可得:R =√62,所以OO′=AO′−R =2√63−√62=√66, 因为点E 在线段BD 上,且BD =3BE ,BD =2,所以BE =23,在三角形BEO′中,由余弦定理:O′E =√BO′2+BE 2−2⋅BO′⋅BE ⋅cos30°=√(2√33)2+(23)2−2⋅2√33⋅23⋅√32=23,正三角形OEO′中,OE 2=O′E 2+OO′2=(23)2+(√66)2=1118当过E 的截面与OE 垂直时,截面的面积最小,设截面的半径为r′则r′2=R 2−OE 2=(√62)2−1118=1618=89,所以截面的面积S =πr′2=89π,故选:A.由正四面体的棱长求出底面外接圆的半径即棱锥的高,再由外接球的半径与高和底面外接圆的半径之间的关系求出外接球的半径,在△BEO′,由余弦定理求出EO′的值,当过E的截面与OE垂直时,截面的面积最小,求出OE,再求求出截面的半径,进而求出截面的面积.考查正四面体的外接球的半径与棱长的关系,及截面面积最小时的情况.属于中档题.13.【答案】8【解析】解:i=0,n=6;n为偶数,n=3,i=1;n为奇数,n=10,i=2;n为偶数,n=5,i=3;n为奇数,n=16,i=4;n为偶数,n=8,i=5;n为偶数,n=4,i=6;n为偶数,n=2,i=7;n为偶数,n=1,i=8;跳出循环,输出结果8,故答案为:8.由已知中的程序语句可知:该程序的功能是利用循环结构计算n的值并输出相应变量i 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.14.【答案】25【解析】解:因为sin(2α−π3)=cos[π2−(2α−π3)]=cos(5π6−2α)=cos[π−(2α+5π6)]=−cos(2α+π6)=25.故答案为:25.直接根据诱导公式把所求问题转化为sin(2α−π3)=cos[π2−(2α−π3)]=cos(5π6−2α)=cos[π−(2α+5π6)]=−cos(2α+π6)即可求解.本题主要考查诱导公式在解题中的应用,属于基础题目.15.【答案】64【解析】解:∵(3+ax)(1+x)4展开式中x 的系数为:3C 41+aC 44=12+a =13,∴a =1, 令x =1,得:(3+x)(1+x)4展开式中各项系数和为:(3+1×1)(1+1)4=64, 故答案为:64.依题意,可得3C 41+aC 44=12+a =13,求得a =1,再赋值x =1,即可求得展开式中各项系数和.本题考查二项式定理,依题意,求得a =1是关键,考查赋值法的灵活应用,属于中档题.16.【答案】(−∞,72)【解析】解:因为f(x)={e x−1−e 1−x ,x ≤1|x −2|−1,x >1,∴当x ≤1时,x −1≤0,∴由f(x)+f(x −1)<0,得e x−1−e 1−x +e x−2−e 2−x <0,∴x ≤32,又x ≤1,∴x ≤32; 当1<x ≤2时,0<x −1≤1,∴由f(x)+f(x −1)<0, 得|x −2|−1+e x−2−e 2−x <0,∴|x −2|<1−e x−2+e 2−x , ∵当1<x ≤2时,|x −2|∈[0,1),1−e x−2+e 2−x ∈[1,1+e +1e ), ∴当1<x ≤2时,f(x)+f(x −1)<0成立,∴1<x ≤2, 当x >2时,由f(x)+f(x −1)<0,得|x −2|−1+|x −3|−1<0,∴|x −2|+|x −3|<2, ∴32<x <72,又x >2,∴2<x <72, 综上,不等式的解集为(−∞,72). 故答案为:(−∞,72).根据f(x)+f(x −1)<0,分x ≤1,1<x ≤2和x >2三种情况解不等式即可. 本题考查了指数不等式和绝对值不等式的解法,考查了分类讨论思想和计算能力,属中档题.17.【答案】(1)证明:∵2a n+1=6a n +2n −1(n ∈N ∗)∴a n+1=3a n+n−12;∴a n+1+n+1 2a n+n2=3a n+n−12+n+12a n+n2=3a n+32na n+n2=3;∴{a n+n2}为等比数列,首项为32,公比为3.(2)解:由(1)得:a n+n2=(a1+12)×3n−1=32×3n−1=12×3n;∴a n=12×3n−n2;S n=a1+a2+a3+⋯…+a n=12(31+32+33+⋯…+3n)−12(1+2+3+⋯…+n) =123(1−3n)1−3−12n(n+1)2=3(3n−1)4−n2+n4=3n+1−n2−n−34.【解析】(1)把已知的递推关系式整理即可证明结论;(2)先利用(1)的结论求出通项公式,再直接利用分组求和即可求解.本题主要考查由数列的递推关系式求数列的通项以及分组求和的应用,是对数列知识的综合考查,属于中档题目.18.【答案】解:(1)∵点S在底面ABCD上的射影为点O,∴SO⊥平面ABCD,∵四边形ABCD是边长为√2的正方形,∴AC=2;∵三角形SAC的面积为1,∴12×2×SO=1,即SO=1,∴SC=√2,∵CD=√2,点P是SD的中点,∴CP⊥SD,同理可得AP⊥SD;又因为AP∩CP=P,AP,CP⊂平面PAC;∴SD⊥平面PAC,∵SD⊂平面SCD,∴平面SCD⊥平面PAC.(2)如图,连接OB,易得OB,OC,OS两两互相垂直,分别以OB,OC,OS为x轴,y轴,z轴建立空间直角坐标系O−xyz,则A(0,−1,0),C(0,1,0),S(0,0,1),D(−1,0,0);假设存在点P 使得二面角P −AC −D 的余弦值为√55,不妨设SP ⃗⃗⃗⃗⃗ =λSD ⃗⃗⃗⃗⃗ ,又点P 在棱SD 上,∴0≤λ≤1, 又SD⃗⃗⃗⃗⃗ =(−1,0,−1), ∴SP⃗⃗⃗⃗⃗ =(−λ,0,−λ),∴P(−λ,0,1−λ), 设平面PAC 的法向量为n ⃗ =(x,y ,z),则{n ⃗ ⋅AP ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AC ⃗⃗⃗⃗⃗ =0,∵AP⃗⃗⃗⃗⃗ =(−λ,1,1−λ),AC ⃗⃗⃗⃗⃗ =(0,2,0), ∴{−λx +y +(1−λ)z =02y =0, 令z =λ,可得x =1−λ,∴平面PAC 的一个法向量为n⃗ =(1−λ,0,λ), 又平面ACD 的一个法向量为OS⃗⃗⃗⃗⃗ =(0,0,1),二面角P −AC −D 的余弦值为√55; ∴|cos <OS ⃗⃗⃗⃗⃗ ,n ⃗ >|=|OS ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||OS ⃗⃗⃗⃗⃗ |×|n ⃗⃗ |=√(1−λ)2+λ2=√55, 即3λ2+2λ−1=0,解得λ=13或λ=−1(不合题意,舍去);所以存在点P 符合题意,点P 为棱SD 靠近端点S 的三等分点.【解析】(1)根据题意证明CP ⊥SD ,AP ⊥SD ,得出SD ⊥平面PAC ,即可证明平面SCD ⊥平面PAC ;(2)连接OB ,易知OB ,OC ,OS 两两互相垂直,建立空间直角坐标系O −xyz ,设存在点P 使得二面角P −AC −D 的余弦值为√55,SP ⃗⃗⃗⃗⃗ =λSD ⃗⃗⃗⃗⃗ ,则0≤λ≤1; 利用法向量表示二面角的余弦值,求出λ的值,从而求出点P 的位置.本题考查了空间中的垂直关系应用问题,也考查了利用空间向量求出二面角余弦的计算问题,是中档题.19.【答案】解:(1)设椭圆的标准方程为x 2a +y2b =1(a >b >0), 则{b =1ca =√32,a 2=b 2+c 2,解之得:a =2,b =1,c =√3.故椭圆的标准方程为x 24+y 2=1.(2)设P(x 0,y 0)弦MN 的中点,设M(x 1,y 1),N(x 2,y 2), 由{y =kx +m,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4(m 2−1)=0, 因为直线与椭圆相交,所以x 1+x 2=−8km4k 2+1,x 1x 2=4(m 2−1)4k 2+1,△=(8km)2−16(4k 2+1)(m 2−1)>0⇒m 2<1+4k 2,① ∴x 0=x 1+x 22=−4km4k 2+1,所以y 0=kx 0+m =m4k +1. ∴k AP =y 0+1x 0=−m+1+4k 24km,又|AM|=|AN|,∴AP ⊥MN ,则−m+1+4k 24km=−1k,即3m =4k 2+1,②把②代入①得m 2<3m ,解得0<m <3, 由②得k 2=3m−14>0,解得m >13.综上可知m 的取值范围为(13,3).【解析】(1)根据顶点、离心率建立方程求出椭圆的标准方程;(2)先由直线与椭圆方程联立方程组,由判别式得出不等关系,根与系数关系,再将条件|AM|=|AN|转化为A 在线段MN 的垂直平分线上,建立等量关系,最后将它们相结合进行求解.本题考查了椭圆的标准方程以及直线与椭圆的位置关系的综合问题,有一定难度,属于中档题目.20.【答案】解:(1)2×2列联表如下:根据上表数据代入公式可得K 2=100×(20×30−10×40)230×70×60×40=5063≈0.794<2.706,所以没有超过90%的把握认为“停车是否超过6小时”与性别有关. (2)(i)由题意知:X 的可取值为5,8,11,15,19,30, P(X =5)=110,P(X =8)=110,P(X =11)=15, P(X =15)=15,P(X =19)=720,P(X =30)=120.所以X 的分布列为:∴E(X)=5×110+8×110+11×15+15×15+19×720+30×120=14.65. (ii)由题意得P(X >14.65)=15+720+120=35, ∴ξ~B(3,35),∴P(ξ≥2)=P(ξ=2)+P(ξ=3)=C 32(35)2(25)+(35)3=3×925×25+27125=81125.【解析】(1)作出2×2列联表,求出K 2=100×(20×30−10×40)230×70×60×40=5063≈0.794<2.706,从而没有超过90%的把握认为“停车是否超过6小时”与性别有关.(2)(i)由题意知:X 的可取值为5,8,11,15,19,30,分别求出相应的概率,由此有求出X 的分布列和数学期望.(ii)由题意得P(X >14.65)=15+720+120=35,从而ξ~B(3,35),由此能求出P(ξ≥2)的概率.本题考查独立检验的应用,考查概率、离散型随机变量的分布列、数学期望的求法,考查二项分布等基础知识,考查运算求解能力,是中档题.21.【答案】解:(1)f′(x)=2e 2x +m ,①当m ≥0时,f′(x)>0恒成立,所以f(x)在(0,+∞)上的单调递增;②当−2≤m <0时,x ∈(0,+∞),f′(x)>0,所以f(x)在(0,+∞)上的单调递增; ③当m <−2时,由f′(x)=0得x =12ln(−m2)>0,x ∈(0,12ln(−m2))时,f′(x)<0,f(x)单调递减,x ∈(12ln(−m 2),+∞)时,f′(x)>0,f(x)单调递增; 综上所述:当m ≥−2时,f(x)在(0,+∞)上的单调递增;当m <−2时,f(x)在(0,12ln(−m2))上单调递减,f(x)在(12ln(−m2),+∞)上单调递增;(2)f(x02)−1>g(x 0)⇒e x 0−x 0−1>a2x 02e x 0⇒1−x 0+1e x 0>a2x 02⇒a2x 02+x 0+1e x 0−1<0(∗),需求一个x 0,使(∗)成立,只要求出t(x)=a2x 2+x+1e x−1的最小值,满足t(x)min <0,∵t′(x)=x(a −1e x )∴t(x)在(0,−lna)上单调递减,在(−lna,+∞)上单调递增, ∴t(x)min =t(−lna)=a2ln 2a +a(−lna +1)−1,只需证明a2ln 2a +a(−lna +1)−1<0在a ∈(0,1)内成立即可,令φ(a)=a 2ln 2a +a(−lna +1)−1⇒φ′(a)=12ln 2a >0, ∴φ(a)在a ∈(0,1)单调递增,∴φ(a)<φ(1)=12ln 21+1×(−ln1+1)−1=0,所以t(x)min <0,故存在与a 有关的正常数x 0=−lna(0<a <1)使(∗)成立.【解析】(1)先对函数求导,然后结合导数与单调性的关系即可判断, (2)需求一个x 0,满足结论成立,只要求出t(x)=a2x 2+x+1e x−1的最小值,满足t(x)min <0,结合函数的性质及导数即可证明.本题考查了导数的综合应用,考查了一定的推理与运算的能力,属于中档题.22.【答案】解:(1)圆C 的方程可化为(x −2)2+(y −3)2=8,圆心为C(2,3),半径为2√2,∴圆C 的参数方程为{x =2+2√2cosαy =3+2√2sinα(α为参数)直线l 的极坐标方程可化为ρsinθ+ρcosθ=−3, ∵{ρcosθ=x ρsinθ=y, ∴直线l 的直角坐标方程为x +y +3=0. (2):曲线C 是以C(2,3)为圆心,半径为2√2的圆, 圆心C(2,3)到直线l :x +y +3=0的距离d =22=4√2,所以|PQ|min =4√2−2√2=2√2,此时直线PQ 经过圆心C(2,3),且与直线l :x +y +3=0垂直,k PQ ⋅k l =−1, 所以k PQ =1,PQ 所在直线方程为y −3=x −2,即y =x +1. 联立直线和圆的方程{y =x +1x 2+y 2−4x −6y +5=0,解得{x =0y =1或 {x =4y =5当|PQ|取得最小值时,点P 的坐标为(0,1) 所以|PQ|min =2√2,此时点P 的坐标为(0,1).【解析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用点到直线的距离公式的应用和方程组的解法的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,方程组的解法的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.23.【答案】解:(1)f(x)={−3,x ≤−12x −1,−1<x <23,x ≥2,①当x ≤−1时,−3≤1恒成立,所以x ≤−1;②当−1<x <2时,2x −1≤1,即x ≤1,所以−1<x ≤1; ③当x ≥2时,3≤1显然不成立,所以不合题意; 综上,不等式的解集为(−∞,1]. (2)证明:由(1)知f(x)max =3=s , 于是√a +√b +√c =3, 所以√a√a √b√b +√c+√c≥2√b +2√c +2√a =6,当且仅当a =b =c =1时取等号, 所以√a √b √c ≥3.【解析】(1)先将f(x)写为分段函数的形式,然后根据f(x)≤1分别解不等式即可; (2)先由(1)得到f(x)的最大值s ,然后利用基本不等式即可证明√a √b √c ≥3成立.本题考查了绝对值不等式的解法和利用综合法证明不等式,考查了分类讨论思想和转化思想,属中档题.。