少齿差轮系
- 格式:ppt
- 大小:420.50 KB
- 文档页数:10
少齿差行星轮系反向自锁
少齿差行星轮系是一种先进的传动装置,它具有高效、紧凑和
稳定的特点。
而反向自锁则是指在特定条件下,系统可以避免自身
的反向运动。
将这两者结合起来,可以为各种机械系统带来更加安
全和可靠的运行方式。
少齿差行星轮系是一种采用行星齿轮传动的装置,它由太阳轮、行星轮和内齿轮组成,通过各种组合方式可以实现不同的传动比。
这种传动系统因其结构紧凑、传动效率高而被广泛应用于各种机械
设备中,如汽车变速箱、风力发电机等。
而反向自锁则是指一种机械装置,在特定条件下可以避免自身
的反向运动。
这种装置常用于需要防止意外反向运动的场合,如提
升装置、传动装置等。
通过反向自锁装置,可以有效地防止系统因
外力影响而产生的不可控的反向运动,从而提高了系统的安全性和
稳定性。
将少齿差行星轮系和反向自锁结合起来,可以为机械系统带来
更加安全和可靠的运行方式。
通过少齿差行星轮系的高效传动和反
向自锁的安全保障,可以有效地提高机械系统的工作效率和可靠性,
同时减少了系统运行过程中的意外事故发生的可能性。
总的来说,少齿差行星轮系反向自锁不仅可以提高机械系统的
传动效率和稳定性,还可以为系统带来更加安全和可靠的运行方式。
这种先进的传动装置将为各种机械设备的设计和制造带来更多的可
能性,为人们的生产生活带来更多的便利和安全保障。
少齿差齿轮传动主要有以下两种形式:渐开线少齿差行星齿轮传动:这种形式的传动具有传动比大、结构紧凑、体积小、质量轻、加工容易等优点,广泛应用于中小型动力传动,如起重运输、仪表、轻化、食品等工业部门。
但同时啮合的齿数少,承载能力较低,为了避免干涉,还要进行复杂的变位计算。
行星齿轮传动:这是动轴齿轮传动的一种主要方式,其最基本的形式是2K—H型(即两个中心轮a,b和个转臂H)。
它演变出两种典型的少齿差行星齿轮传动形式(2所示:K—H—V行星齿轮传动2(a)所示(基本构件为中心轮b、转臂H和构件V。
少齿差行星齿轮传动原理1.1 少齿差行星齿轮传动原理少齿差行星齿轮传动是行星齿轮传动中的一种。
由一个外齿轮与一个内齿轮组成一对内啮合齿轮副(它采用的是渐开线齿形,内外齿轮的齿数相差很小,简称为少齿差传动。
一般所讲的少齿差行星齿轮传动是专指渐开线少齿差行星齿轮传动而言的。
渐开线少齿差行星齿轮传动以其适用于一切功率、速度范围和一切T 作条件,受到了世界各国的广泛关注(成为世界各国在机械传动方面的重点研究方向之一。
1.1 2少齿差传动1.2 行星齿轮传动是动轴齿轮传动的一种主要方式,其最基本的形式是2K—H 型(即两个中心轮 a,b和个转臂 H),如图 l所示,传动比为 iaH=1+Zh/Zn.它演变出两种典型的少齿差行星齿轮传动形式 (如图 2所示:K—H—V行星齿轮传动如图2(a)所示 (基本构件为中心轮 b、转臂H和构件V,当中心轮 b固定,转臂H主动,构件V从动时,传动比为iHg= - Zg/(Zb-Zg).。
把构件V 固定(转臂H主动,中心轮 b输出(如图2(b)所示,其传动比iHb=Zb/(Zb-Zg)。
为少齿差行星齿轮传动机构实质是一个由平面四连杆机构和内啮合齿轮副组成的齿轮连杆机构。
通过对不同构件作不同限制,可以设计出多种少齿差行星齿轮传动结构形式。
1.1.3 少齿差行星齿轮传动的特点少齿差行星齿轮传动具有以下优点:(I)加工方便、制造成本较低渐开线少齿差传动的特点是用普通的渐开线齿轮刀具和齿轮机床就可以加工齿轮,不需要特殊的刀具与专用设备,材料也可采用普通齿轮材料料。
(2)传动比范围大,单级传动比为 10,1000以上。
(3)结构形式多样,应用范围广,由于其输入轴与输出轴可在同一轴线上,也可以不在同一轴线上,所以能适应各种机械的需要。
(4) 结构紧凑、体积小、重量轻,由于采用内啮合行星传动,所以结构紧凑;当传动比相等时,与同功率的普通圆柱齿轮减速器相比,体积和重量均可减少1/3,2,3。
少齿差行星齿轮传动分析及应用摘要:少齿差行星齿轮传动由行星齿轮传动演变而来,由于行星齿轮副内外齿轮的齿数相差很少,因此简称少齿差传动,通常指渐开线少齿差行星齿轮传动。
少齿差轮系按传动形式可分为N型和NN型,其输出机构又设计成多种形式,文章分析轮系传动比的计算方法,对其典型结构的效率计算做了阐述,少齿差传动以其大传动比、小体积、轻重量、传动效率高等优点,在化工、轻工、冶金等机械设备中获得广泛应用。
关键词:少齿差传动;传动比;传动效率Abstract: the less tooth differenced planetary gear transmission of planetary gear transmission by evolved, by the planet gear pair of internal and external gear are very few number, so fewer tooth difference as transmission, usually refers to the involute less tooth differenced planetary gear transmission. Less tooth was sent by the transmission forms can be divided into N type and NN type, its export agencies and design into a variety of forms, this paper analyzes the calculation method of gear transmission ratio, the typical structure of the calculation efficiency paper and less tooth difference with its large transmission transmission, small volume, light weight, high transmission efficiency advantage, in the chemical industry, the light industry, metallurgy, and other machinery and equipment were widely available.Keywords: less tooth difference transmission; Transmission ratio; Transmission efficiency中图分类号:U463.212+.42 文献标识码:A文章编号:少齿差行星齿轮传动是由行星齿轮传动演变而来,是行星齿轮传动中的一种特殊的轮系。
机械设计第10章机械传动系统及其传动比机械传动系统及其传动比案例导入:在实际的机械工程中,为了满足各种不同的工作需要,仅仅使用一对齿轮是不够的。
本章通过带式输送机、牛头刨床、汽车变速箱和差速器、自动进刀读数装置、滚齿机行星轮系等例子,介绍轮系的概念、分类、传动比的分析计算方法。
第一节定轴轮系的传动比计算在实际应用的机械中,为了满足各种需要,例如需要较大的传动比或作远距离传动等,常采用一系列互相啮合的齿轮来组成传动装置。
这种由一系列齿轮组成的传动装置称为齿轮系统,简称轮系。
一、轮系的分类轮系有两种基本类型:(1)定轴轮系。
如图10-1所示,在轮系运转时各齿轮几何轴线都是固定不变的,这种轮系称为定轴轮系。
(2)行星轮系。
如图10-2所示,在轮系运转时至少有一个齿轮的几何轴线绕另一几何轴线转动,这种轮系称为行星轮系。
图10-1 定轴轮系二、轮系的传动比1.轮系的传动比轮系中,输入轴(轮)与输出轴(轮)的转速或角速度之比,称为轮系的传动比,通常用i表示。
因为角速度或转速是矢量,所以,计算轮系传动比时,不仅要计算它的大小,而且还要确定输出轴(轮)的转动方向。
2.定轴轮系传动比的计算根据轮系传动比的定义,一对圆柱齿轮的传动比为nzi12 1 2 n2z1式中:“±”为输出轮的转动方向符号,图10-2行星轮系第十章机械传动系统及其传动比当输入轮和输出轮的转动方向相同时取“+”号、相反时取“-”号。
如图10-1a) 所示的一对外啮合直齿圆柱齿轮传动,两齿轮旋转方向相反,其传动比规定为负值,表示为:i=n1=n2z2 z1如图10-1b)所示为一对内啮合直齿圆柱齿轮传动,两齿轮的旋转方向相同,其传动比规定为正值,表示为:n1z2 i= =n2z1如图10-3所示的定轴轮系,齿轮1为输入轮,齿轮4为输出轮。
应该注意到齿轮2和2'是固定在同一根轴上的,即有n2=n2′。
此轮系的传图10-3定轴轮系传动比的计算动比i14可写为:nnn ni14 1 123 i12i2 3i***** z2z3z4 312上式表明,定轴轮系的总传动比等于各对啮合齿轮传动比的连乘积,其大小等于各对啮合齿轮中所有从动轮齿数的连乘积与所有主动轮齿数的连乘积之比,即m从1轮到k轮之间所有从动轮齿数n的连乘积i1k 1 1 (10-1) nk从1轮到k轮之间所有从主轮齿数的连乘积式中:m为平行轴外啮合圆柱齿轮的对数,用于确定全部由圆柱齿轮组成的定轴轮系中输出轮的转向。
机械原理课程教案一轮系及其设计一、教学目标及基本要求1了解各类轮系的组成和运动特点,学会判断一个已知轮系属于何种轮系。
2,熟练掌握各种轮系传动比的计算方法,会确定主、从动轮的转向关系;掌握周转轮系的传动特性与类型和结构的关系。
3,了解各类轮系的功能,学会根据各种要求正确选择轮系类型。
4.了解行星轮系效率的概念及其主要影响因素。
5.了解复合轮系的组合方法,学会分析复合轮系的组成,正确计算其传动比。
6.了解行星轮系设计的几个基本问题;了解几种其它类型行星传动的原理及特点。
二、教学内容及学时分配第一节轮系的分类第二节定轴轮系的传动比及效率(第一、二节共1学时)第三节周转轮系及其设计第四节复合轮系及其设计(第三、四节共2.5学时)第五节轮系的功用第六节少齿差传动简介(第三、四节0.5学时)三、教学内容的重点和难点重点:1轮系传动比的计算。
2.轮系的设计。
难点:复合轮系传动比计算。
四、教学内容的深化与拓宽新型少齿差传动。
五、教学方式与手段及教学过程中应注意的问题充分利用多媒体教学手段,围绕教学基本要求进行教学。
在教学过程中应注意强调应用反转法原理求解周转轮系传动比方法的实质、转化机构的概念、正确划分基本轮系的方法。
要注意突出重点,多采用启发式教学以及教师和学生的互动。
六、主要参考书目1黄茂林,秦伟主编.机械原理.北京:机械工业出版社,2010 2申永胜主编.机械原理教程(第2版).北京:清华大学出版社,20053孙桓,陈作模、葛文杰主编.机械原理(第七版).北京:高等教育出版社,20064曲继方,安子军,曲志刚.机构创新设计.北京:科学出版社,2001七、相关的实践性环节参观机械创新设计实验室。
八、课外学习要求自学定轴轮系的传动效率计算、定轴轮系设计中的几个问题、封闭型轮系的功率流等内容。
一齿差渐开线行星齿轮减速器设计摘要本毕业设计的目标是设计一齿差渐开线行星齿轮减速器。
本减速器属于K-H-V型。
K 表示行星轮,H表示转臂,V表示输出轴。
由于行星轮与内齿轮齿数差为1,所以叫“一齿差”,可以实现很大传动比。
行星轮少齿差行星齿轮减速器具有结构紧凑、体积小、重量轻、传动平稳、效率高、传动比范围大等优点,在许多情况下可以代替多级的普通齿轮传动。
但齿轮必须修正,即选定一对变位系数。
设计时首先在一齿差齿轮传动的基础上进行机构的运动设计,包括几何尺寸的计算、强度校核计算等。
设计时要满足几个条件,即要保证啮合率不小于1、齿顶不相碰、不发生齿廓重迭干涉,然后对主要零件进行详细的受力分析和设计计算,从而进行装配结构的设计,并最终在AutoCAD环境下绘出减速器的装配图和零件图。
另外,还在pro-engineer环境下实现三维建模,并对减速器传动进行相关的分析。
关键词:减速器一齿差变位 pro-engineerThe design of one tooth difference involute planetary gear reducerAbstractMy design goal is a kind of one tooth difference involute planetary gear reducer. The reducer belonging to the K-H-V type. K stands for planetary gear, H stands for tumbler, and V stands for output axle. The tooth difference between the planetary gear and the internal gear is one, therefore it can achieve a large transmission ratio. Planetary gear with few teeth difference planetary gear reducer has the advantages of compact structure, small volume, light weight, stable transmission, high efficiency, wide range of transmission ratio etc, in many cases can replace the multistage ordinary gear drive. But the gear must be trimmed, that is to selecte a pair of displacements coefficient. When I design it, first of all, I do the motion design of mechanisms at the base of one gear tooth difference movement, which includes geometry size calculation and strength checking calculation. The design must meet several conditions, we must ensure that the coincidence should not be less than one, no collision between top gear teeth, and no profile overlapping interference, then make detailed stress analysis and design calculation of the main parts, thus design the assembly structure, and ultimately drawn in AutoCAD environment the reducer assembly and main parts. In addition, achieve three-dimensional modeling in pro-engineer environment to conduct relevant analysis.Key words:reducer one tooth difference displace pro-engineer目录1.前言 (4)1.1课题来源 (4)1.2产品的发展与研究 (4)1.3渐开线少齿差行星传动 (5)1.4 渐开线少齿差行星传动减速器工作原理 (6)1.4.1少齿差行星齿轮传动基本原理 (6)1.4.2实现少齿差行星传动的条件 (7)2.传动方案的总体设计 (7)2.1拟定传动方案 (7)2.2电机的选择 (8)2.3 选择W机构 (8)2.4零件材料和热处理的选择 (9)3.减速装置的设计 (9)3.1齿轮齿数的确定 (9)3.2模数的确定 (10)3.3齿轮几何尺寸的设计计算 (12)3.4偏心轴的设计 (20)3.5销轴及销轴套的选择 (21)3.6浮动盘的设计 (22)3.7输出轴的设计 (22)4.主要零件的校核 (23)4.1偏心轴的校核 (23)4.2销轴的弯曲强度校核 (25)4.3销轴套与滑槽平面的接触强度校核 (26)4.4轴承的校核 (27)5.一齿差行星传动效率计算 (27)5.1行星机构的啮合效率计算 (28)5.2输出机构效率计算 (29)5.3转臂轴承的效率计算 (30)5.4 总效率计算 (30)6.减速器的润滑与密封与固定 (30)7.三维建模 (30)7.1零件建模 (30)7.2虚拟装配及爆炸视图 (36)结束语 (37)参考文献 (38)致谢....................................................... 错误!未定义书签。