任务二:行星轮系传动比计算
- 格式:ppt
- 大小:1.01 MB
- 文档页数:12
行星齿轮传动比计算公式【最新版】目录1.行星齿轮传动比计算公式的概述2.行星齿轮传动比的计算方法3.行星齿轮传动比的特点4.应用行星齿轮传动比的注意事项正文行星齿轮传动比计算公式是一种在机械传动领域中常用的计算方式,它可以帮助我们准确地计算出行星齿轮传动系统中的传动比。
行星齿轮传动比计算公式的概述如下:行星齿轮传动比是指主动轮(太阳轮)的角速度与从动轮(行星轮)的角速度之比。
在行星齿轮传动系统中,太阳轮通过行星轮向外界输出动力,因此,行星齿轮传动比的计算至关重要。
它可以帮助我们了解传动系统的工作状态,以及调整传动系统中的参数,以达到最佳的工作效果。
行星齿轮传动比的计算方法如下:假设太阳轮的齿数为 Z1,行星轮的齿数为 Z2,太阳轮的角速度为ω1,行星轮的角速度为ω2。
那么,行星齿轮传动比计算公式可以表示为:传动比 = ω1 / ω2 = Z1 / Z2在实际应用中,行星齿轮传动比通常是瞬时传动比,即太阳轮和行星轮的瞬时角速度比。
但是,在某些特殊情况下,例如当太阳轮和行星轮的转速相同时,瞬时传动比就会变为恒定的平均传动比。
行星齿轮传动比具有以下特点:1.行星齿轮传动比是瞬时传动比,即随太阳轮和行星轮的角速度变化而变化。
2.行星齿轮传动比的计算方法简单,只需要知道太阳轮和行星轮的齿数和角速度即可。
3.行星齿轮传动比可以帮助我们了解传动系统的工作状态,以及调整传动系统中的参数,以达到最佳的工作效果。
应用行星齿轮传动比时,需要注意以下事项:1.确保行星齿轮传动比的计算准确无误,以免影响传动系统的工作效果。
2.根据行星齿轮传动比的计算结果,及时调整传动系统中的参数,以达到最佳的工作效果。
3.注意行星齿轮传动比的变化规律,以便在传动系统出现异常时,及时进行处理。
【例题】已知一行星轮系,太阳轮的齿数为 (Z_1),行星轮的齿数为 (Z_2),内齿圈的齿数为 (Z_3)。
行星架转速为 (n_H),太阳轮转速为 (n_1),求该行星轮系的传动比 (i_{1H})。
【解】
首先确定各构件的转速关系。
根据行星轮系的运动特点,我们有:
(n_1 + n_H = n_2 + n_3)
其中,(n_2) 为行星轮的转速,(n_3) 为内齿圈的转速。
由于内齿圈固定不动,所以 (n_3 = 0)。
将 (n_3) 的值代入上面的等式,得到:
(n_1 + n_H = n_2)
传动比 (i_{1H}) 定义为太阳轮转速与行星架转速之比,即:
(i_{1H} = \frac{n_1}{n_H})
将第2步得到的等式代入传动比的公式中,得到:
(i_{1H} = \frac{n_1}{n_1 - n_2})
由于行星轮的齿数与太阳轮和内齿圈的齿数有关,根据齿轮传动的原理,我们有:
(\frac{Z_1}{Z_2} = \frac{n_2}{n_1 - n_2})
将这个等式代入第4步得到的传动比公式中,得到最终的传动比公式:
(i_{1H} = 1 + \frac{Z_1}{Z_2})
这个公式是行星轮系传动比计算的基本公式,通过它可以方便地求出太阳轮与行星架之间的传动比。
行星齿轮传动比8个公式
1.齿轮比计算公式:
齿轮比=-(R+2)/(R+1),其中R为行星轮的齿数。
2.行星轮直径公式:
行星轮的直径可以通过行星轮齿数来计算。
行星轮直径=齿数*模数。
3.太阳轮直径公式:
太阳轮的直径可以通过太阳轮齿数来计算。
太阳轮直径=齿数*模数。
4.行星轮轮齿厚度公式:
行星轮的轮齿厚度可以通过行星轮直径和模数来计算。
行星轮轮齿厚度=2*模数。
5.太阳轮轮齿厚度公式:
太阳轮的轮齿厚度可以通过太阳轮直径和模数来计算。
太阳轮轮齿厚度=2*模数。
6.行星齿轮传动的速度比公式:
速度比=齿数A/齿数B,其中齿数A为太阳轮齿数,齿数B为行星轮齿数。
7.行星齿轮传动的扭矩比公式:
扭矩比=(半径A/半径B)^2,其中半径A为太阳轮半径,半径B为行星轮半径。
8.行星齿轮传动的传动效率公式:
传动效率=输出功率/输入功率。
综上所述,行星齿轮传动的8个常用公式分别是齿轮比计算公式、行星轮直径公式、太阳轮直径公式、行星轮轮齿厚度公式、太阳轮轮齿厚度公式、行星齿轮传动的速度比公式、行星齿轮传动的扭矩比公式和行星齿轮传动的传动效率公式。
这些公式帮助工程师在设计和计算行星齿轮传动时能够准确地确定齿轮比、轮齿尺寸和传动性能等参数,从而提高传动系统的可靠性和效率。
行星齿轮传动比计算在《机械原理》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错,其实用不着如此,只要理解了传动比eab i 的含义,就可以很快地直接写出行星齿轮的传动比,其关键是掌握几个根据e ab i 的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。
一式求解行星齿轮传动比有三个基本的公式1=+c ba a bc i i ――――――――――――――――――――――――1 acx a bx abci i i = ―――――――――――――――――――――――――2 a cb abc i i 1= ――――――――――――――――――――――――――3熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。
关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等例如:在此例中,要求出e ab i =,如果行星架固定不动的话,这道题目就简单多了,就是一定轴传动。
所以我们要想办法把e ab i 变成一定轴传动,所以可以根据公式a cx a bx a bci i i =将x 加进去, 所以可以得出:e bx e ax eab i i i =要想变成定轴传动,就要把x 放到上面去,所以这里就要运用第一个公式1=+c ba abc i i 了,所以)1()1(xbe x ae ebx e ax eab i i i i i --==所以现在eab i 就变成了两个定轴传动之间的关系式了。
定轴传动的传动比就好办了,直接写出来就可以了。
即)1()1())1(1())1(1()1()1(01c e bd ae c e b d c e a c x be x ae e bx e ax e ab Z Z Z Z Z Z Z Z Z Z Z Z Z Z i i i i i ⨯-+=⨯--⨯--=--== 再例如下面的传动机构:已知其各轮的齿数为z 1=100,z 2=101,z 2’ =100 ,z 3=99。
行星齿轮传动比计算行星齿轮传动由太阳轮、行星轮和内齿轮三个主要部分组成。
太阳轮位于行星齿轮机构的中心,而行星轮则围绕太阳轮旋转,在行星轮外侧则还有一圈内齿轮。
行星齿轮传动的传动比由太阳轮、行星轮和内齿轮的齿数关系决定。
首先,我们需要知道太阳轮、行星轮和内齿轮的齿数分别为N1、N2和N3传动比=(N1+N3)/N2其中,传动比是行星齿轮传动的输出角速度与输入角速度之比。
值得注意的是,传动比可以是正值也可以是负值。
当传动比为正值时,行星轮和内齿轮的运动方向与太阳轮相同;当传动比为负值时,行星轮和内齿轮的运动方向与太阳轮相反。
下面以一个具体的例子来说明行星齿轮传动比的计算。
假设太阳轮的齿数为10,行星轮的齿数为20,内齿轮的齿数为30。
则传动比可以计算如下:传动比=(10+30)/20=2这意味着行星齿轮传动的输出角速度是输入角速度的两倍。
当太阳轮以一定的速度旋转时,行星轮和内齿轮将以两倍的速度旋转。
通过这种方式,可以实现大扭矩的传递。
对于行星齿轮传动,还有一个称为传动效率的重要参数。
传动效率表示的是传动装置中输入功率与输出功率之间的转换效率。
一般来说,行星齿轮传动的效率比较高,通常可以达到95%以上。
除了行星齿轮传动比的计算,还需要注意到传动比的选择应满足以下几个条件:1.传动比要满足机械系统的要求,如输出转速、扭矩传输等。
2.传动比要能满足传动装置的安装空间要求,包括整体尺寸、配合间隙等。
3.传动比要考虑齿轮的使用寿命,如齿轮齿数、齿轮模数、齿轮材料等。
综上所述,行星齿轮传动比的计算是行星齿轮传动设计中的重要一环,需要根据具体的太阳轮、行星轮和内齿轮的齿数来求解。
通过合理选择传动比,可以实现高效率的传动和大扭矩的传递。
行星齿轮传动比计算在《机械原理》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错,其实用不着如此,只要理解了传动比eab i 的含义,就可以很快地直接写出行星齿轮的传动比,其关键是掌握几个根据e ab i 的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。
一式求解行星齿轮传动比有三个基本的公式1=+cba abc i i ――――――――――――――――――――――――1acxabx abc i i i =―――――――――――――――――――――――――2acbabc i i 1=――――――――――――――――――――――――――3熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。
关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等例如:在此例中,要求出eab i =?,如果行星架固定不动的话,这道题目就简单多了,就是一定轴传动。
所以我们要想办法把e ab i 变成一定轴传动,所以可以根据公式acxabx abc i i i =将x 加进去,所以可以得出:ebxeaxeab i i i =要想变成定轴传动,就要把x 放到上面去,所以这里就要运用第一个公式1=+c ba a bc i i 了,所以)1()1(xbe xae ebxeaxeab i i i i i --==所以现在eab i 就变成了两个定轴传动之间的关系式了。
定轴传动的传动比就好办了,直接写出来就可以了。
即)1()1())1(1())1(1()1()1(01ce bdae ce bdc e a c xbe xae ebxeaxeab ZZ Z ZZZ ZZ Z ZZ Z ZZ i i i i i ⨯-+=⨯--⨯--=--==再例如下面的传动机构:已知其各轮的齿数为z 1=100,z 2=101,z 2’ =100 ,z 3=99。
行星齿轮传动比计算在《机械原理》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错,其实用不着如此,只要理解了传动比eab i 的含义,就可以很快地直接写出行星齿轮的传动比,其关键是掌握几个根据e ab i 的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。
一式求解行星齿轮传动比有三个基本的公式1=+c ba a bc i i ――――――――――――――――――――――――1 acx a bx abci i i = ―――――――――――――――――――――――――2 a cb abc i i 1= ――――――――――――――――――――――――――3熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。
关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等例如象论坛中“大模王”兄弟所举的例子:在此例中,要求出e ab i =?,如果行星架固定不动的话,这道题目就简单多了,就是一定轴传动。
所以我们要想办法把e ab i 变成一定轴传动,所以可以根据公式a cx a bx a bci i i =将x 加进去, 所以可以得出:e bx e ax eab i i i =要想变成定轴传动,就要把x 放到上面去,所以这里就要运用第一个公式1=+c ba abc i i 了,所以)1()1(xbe x ae ebx e ax eab i i i i i --==所以现在eab i 就变成了两个定轴传动之间的关系式了。
定轴传动的传动比就好办了,直接写出来就可以了。
即)1()1())1(1())1(1()1()1(01c e bd ae c e b d c e a c x be x ae e bx e ax e ab Z Z Z Z Z Z Z Z Z Z Z Z Z Z i i i i i ⨯-+=⨯--⨯--=--== 再例如下面的传动机构:已知其各轮的齿数为z 1=100,z 2=101,z 2’ =100 ,z 3=99。
二级行星减速器传动比计算公式
二级行星减速器是一种常见的机械传动装置,其传动比可以通过以下公式计算:
传动比 = (Zs + 1) * Zr / (Zs * Zr')
其中,
Zs 表示太阳轮的齿数(行星轮),
Zr 表示内齿轮(行星齿)的齿数,
Zr' 表示行星系输出轴(内齿轮)的齿数。
请注意,这个公式是基于以下假设条件:
1. 太阳轮(行星轮)和内齿轮(行星齿)之间的齿数比是相等的。
2. 太阳轮(行星轮)的齿数大于内齿轮(行星齿)的齿数,形成减速的效果。
3. 二级行星减速器中的行星系具有理想的传动效率,不考虑摩擦损失和机械损耗。
请根据实际应用中的具体参数,替换公式中的齿数数值,以计算二级行星减速器的传动比。
行星轮系传动比的计算【一】能力目标1.能正确计算行星轮系和复合轮系的传动比。
2.熟悉轮系的应用。
【二】知识目标1.掌握转化机构法求行星轮系的传动比。
2.掌握混合轮系传动比的计算。
3.熟悉轮系的应用。
【三】教学的重点与难点重点:行星轮系、混合轮系传动比的计算。
难点:转化机构法求轮系的传动比。
【四】教学方法与手段采用多媒体教学,联系实际讲授,提高学生的学习兴趣。
【五】教学任务及内容一、行星轮系传动比的计算(一)行星轮系的分类若轮系中,至少有一个齿轮的几何轴线不固定,而绕其它齿轮的固定几何轴线回转,则称为行星轮系。
行星轮系的组成:行星轮、行星架(系杆)、太阳轮(二)行星轮系传动比的计算以差动轮系为例(反转法)转化机构(定轴轮系) T 的机构 1234差动轮系:2个运动行星轮系:,对于行量轮系:∴∴例12.2:图示为一大传动比的减速器,Z 1=100,Z 2=101,Z 2'=100,Z 3=99。
求:输入件H 对输出件1的传动比i H1H HW W W -=111W H H W W W -=222W HH W W W -=333W 0=-=H H H H W W W H W 13313113)1(Z Z W W W W W W i H HH H H⋅'-=--==03=W 1310Z Z W W W H H-=--11311+==Z Z W W i H H )(z f W W W W W W iH B H A H BH A HAB=--==0=B W AHHA H H A H AB i W WW W W i -=-=--=110HAB AH i i -=1解:1,3中心轮;2,2'行星轮;H 行星架 给整个机构(-W H )绕OO 轴转动∵W 3=0∴∴若Z 1=99行星轮系传动比是计算出来的,而不是判断出来的。
(三)复合轮系传动比的计算复合轮系:轮系中既含有定轴轮系又含有行星轮系,或是包含由几个基本行星轮系的复合轮系。
行星齿轮传动比计算在《机械原理》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错,其实用不着如此,只要理解了传动比eab i 的含义,就可以很快地直接写出行星齿轮的传动比,其关键是掌握几个根据e ab i 的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。
一式求解行星齿轮传动比有三个基本的公式1=+c ba a bc i i ――――――――――――――――――――――――1 a cx a bx abci i i = ―――――――――――――――――――――――――2 a cb abc i i 1= ――――――――――――――――――――――――――3熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。
关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等例如:在此例中,要求出e ab i =?,如果行星架固定不动的话,这道题目就简单多了,就是一定轴传动。
所以我们要想办法把e ab i 变成一定轴传动,所以可以根据公式a cx a bx a bci i i =将x 加进去, 所以可以得出:e bx e ax eab i i i =要想变成定轴传动,就要把x 放到上面去,所以这里就要运用第一个公式1=+c ba abc i i 了,所以)1()1(xbe x ae ebx e ax eab i i i i i --==所以现在eab i 就变成了两个定轴传动之间的关系式了。
定轴传动的传动比就好办了,直接写出来就可以了。
即)1()1())1(1())1(1()1()1(01c e bd ae c e b d c e a c x be x ae e bx e ax e ab Z Z Z Z Z Z Z Z Z Z Z Z Z Z i i i i i ⨯-+=⨯--⨯--=--== 再例如下面的传动机构:已知其各轮的齿数为z 1=100,z 2=101,z 2’ =100 ,z 3=99。
行星齿轮传动比计算在《机械原理》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错,其实用不着如此,只要理解了传动比eab i 的含义,就可以很快地直接写出行星齿轮的传动比,其关键是掌握几个根据e ab i 的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。
一式求解行星齿轮传动比有三个基本的公式1=+c ba a bc i i ――――――――――――――――――――――――1 a cx a bx abci i i = ―――――――――――――――――――――――――2 a cb abc i i 1= ――――――――――――――――――――――――――3熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。
关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等例如象论坛中“大模王”兄弟所举的例子:在此例中,要求出e ab i =?,如果行星架固定不动的话,这道题目就简单多了,就是一定轴传动。
所以我们要想办法把e ab i 变成一定轴传动,所以可以根据公式a cx a bx a bci i i =将x 加进去, 所以可以得出:e bx e ax eab i i i =要想变成定轴传动,就要把x 放到上面去,所以这里就要运用第一个公式1=+c ba abc i i 了,所以)1()1(xbe x ae ebx e ax eab i i i i i --==所以现在eab i 就变成了两个定轴传动之间的关系式了。
定轴传动的传动比就好办了,直接写出来就可以了。
即)1()1())1(1())1(1()1()1(01c e bd ae c e b d c e a c x be x ae e bx e ax e ab Z Z Z Z Z Z Z Z Z Z Z Z Z Z i i i i i ⨯-+=⨯--⨯--=--== 再例如下面的传动机构:已知其各轮的齿数为z 1=100,z 2=101,z 2’ =100 ,z 3=99。
齿轮传动 117 模块五
锥齿轮z 3 = 20,z 4 = 21。
一对圆柱齿轮z 5 = 21,z 6 = 28。
若蜗杆为主动轮,其转速n 1 = 1 500 r/min ,试求齿轮6的转速n 6的大小和转向。
解: 根据定轴齿轮系传动比公式得 246116613526212836.412021
z z z n i n z z z ××====×× 如图空间齿轮轮系转向用几何箭头标注,n 6的转向如图5-32(b )所示。
1616150041.236.4
n n i
==≈(r/min)
(a ) (b ) 图5-32 定轴轮系实例
2.行星齿轮系传动比的计算
(1)单级行星齿轮系传动比的计算。
对于图
5-33所示的行星齿轮系,其传动比的计算不能直接用定轴齿轮系传动比的计算公式来计算,这是因为行星轮的轴本身在转动。
图5-33 行星齿轮系
为了利用定轴齿轮系传动比的计算公式,间接计算行星齿轮系的传动比,必须采用转化机构法,即假设给整个齿轮系加上一个与行星架H 的转速大小相等,转向相反的附加转速−n H 。
根据相对性原理,此时整个行星轮系中各构件间的相对运动关系不变,但这时行星。