第六章随机区组试验设计与分析
- 格式:ppt
- 大小:2.91 MB
- 文档页数:80
第16章随机区组设计和析因设计资料的分析 思考与练习参考答案一、选择题1.对于随机区组设计资料,应用单因素方差分析与用随机区组方差分析的结果相比,( A)。
A. 两种方法适用的资料不同而不可比两种方法适用的资料不同而不可比 B. 检验效果不能确定检验效果不能确定C. 两种方法都可以用两种方法都可以用D. 两种方法检验效果相同两种方法检验效果相同E. 以上均不对以上均不对2.在某项实验中欲研究A 、B 两因素对某观测指标的影响,A 、B 两因素分别有2个和3个水平,观测指标为数值型变量,假设检验的方法应选用(个水平,观测指标为数值型变量,假设检验的方法应选用( D)。
A. 随机区组设计资料的方差分析随机区组设计资料的方差分析B. 析因设计资料的方差分析析因设计资料的方差分析C. Friedman 检验检验D. 根据设计类型、资料分布类型、变异情况和研究目的等选择的检验方法。
根据设计类型、资料分布类型、变异情况和研究目的等选择的检验方法。
E. 以上均不对以上均不对3. 与完全随机设计及其方差分析相比,随机区组设计及其方差分析可以使其( A)。
A. 变异来源比前者更多变异来源比前者更多 B. 误差一定小于前者误差一定小于前者 C. 前者的效率高于后者前者的效率高于后者 D. 影响因素的效果得到分析影响因素的效果得到分析 E. 以上说法都不对以上说法都不对4.下面说法中不正确的是(.下面说法中不正确的是( D)。
A .方差分析可以用于两个样本均数的比较.方差分析可以用于两个样本均数的比较B .完全随机设计更适合实验对象的混杂影响不太大的资料.完全随机设计更适合实验对象的混杂影响不太大的资料C .在随机区组设计中,每一个区组内的例数都等于处理数.在随机区组设计中,每一个区组内的例数都等于处理数D .在随机区组设计中,区组内及区组间的差异都是越小越好.在随机区组设计中,区组内及区组间的差异都是越小越好E .以上均不对.以上均不对 5.配对t 检验可用(检验可用( B )来替代。
(精编资料推荐)随机区组设计随机区组设计方差分析概述随机区组设计又称为配伍设计,该方法属于两因素方差分析(Two-WayANOVA),用于多个样本均数间的比较,比如动物按体重、窝别等性质配伍,然后随机地分配到各个处理组中,即保证每一个区组内的观察对象的特征尽可能相近。
同一受试对象在不同时间点上观察,或同一样品分成多份,每一份给予不同处理的比较也可用随机区组设计进行分析。
随机区组设计分组原则:在某些研究中,先将受试对象按可能影响试验结果的属性分组(非随机组),分组的原则是将属性相同或相近的受试对象分在同一组内,如将病人按年龄/性别/职业或病情分组,或者将动物按性别/体重分组,然后采取随机化的方法对每个组内的受试对象分配各种处理。
如此以来,可使得区组内的观察单位同质性好,使各比较组的可比性强,使组间均衡性好,处理因素的效应更容易检测处理。
随机区组设计方差分析用于分析两个或两个以上因素是否对不同水平下样本的均值产生显著的影响;检验多个因素取值水平的不同组合之间,因变量的均值是否存在显著性差异。
其既可以分析单个因素的作用(主效应),也可以分析因素之间的交互作用(交互效应),还可以进行协方差分析,以及各因素变量与协变量之间的交互作用。
若有两个因素A与B,因素A与B间不存在交互作用,那么可以对因素A和B各自进行独立分析,在后续分析中去除不显著的因素。
如果方差分析结果显示因素A和B间存在交互作用,则需对数据进行进一步分析,具体包括:在因素A的某个水平下,因素B对响应变量的作用在因素B的某个水平下,因素A对响应变量的作用在所有因素(A/B)的组合中,哪两组的差异最大SPSS实现随机区组设计方差分析示例:研究3种不同的避孕药A/B/C在体内的半衰期,考虑到窝别对结果的影响,采用随机区组设计方案。
将同一窝别的3只雌性大白鼠随机分配到A/B/C3组,测定该药在血液中的半衰期(小时),试分析3种药物的半衰期有无不同?1.示例分析:目的:确认3种药物的半衰期有无不同;不同窝别对半衰期有所影响,考虑该该问题,按照窝别进行配伍设计,在同一配伍内随机分配A/B/C三种药物。
双因素随机区组实验设计随机区组实验设计是一种常用的实验设计方法,用于研究两个或多个因素对实验结果的影响。
其中,双因素随机区组实验设计是一种常见的设计方法,用于研究两个因素对实验结果的影响。
本文将介绍双因素随机区组实验设计的基本原理、步骤和应用。
一、基本原理双因素随机区组实验设计的基本原理是将实验对象按照某种规则分成若干个区组,然后在每个区组内随机分配不同的处理组合,以消除区组间的差异,减小误差的影响。
通过对每个处理组合进行实验观测,得到实验结果,进而分析不同因素对结果的影响。
二、步骤双因素随机区组实验设计的步骤如下:1. 确定研究目的:明确要研究的两个因素,以及对实验结果的影响。
2. 确定区组数和处理组合:根据实验要求和资源限制,确定区组数和每个区组的处理组合。
一般情况下,区组数要足够多,以减小误差的影响。
3. 随机分配处理组合:将每个区组内的处理组合按照随机的方式分配给实验对象。
4. 进行实验观测:对每个处理组合进行实验观测,记录实验结果。
5. 分析实验结果:使用统计方法对实验结果进行分析,确定不同因素对实验结果的影响。
6. 得出结论:根据分析结果,得出对两个因素的影响结论。
三、应用双因素随机区组实验设计广泛应用于各个领域的研究中。
下面以农业领域为例,介绍该设计方法的应用。
假设研究的两个因素分别是施肥水平和灌溉水量,研究目的是研究不同施肥水平和灌溉水量对作物产量的影响。
首先,将试验田划分为若干个区组,每个区组的土壤和气候条件尽量相似。
然后,随机分配不同施肥水平和灌溉水量的处理组合给每个区组。
在实验过程中,记录每个处理组合的作物产量。
通过对实验数据的分析,可以得出不同施肥水平和灌溉水量对作物产量的影响。
例如,当施肥水平为A级,灌溉水量为B级时,作物产量最高。
而当施肥水平为C级,灌溉水量为D级时,作物产量最低。
通过双因素随机区组实验设计,我们可以更加全面地了解两个因素对作物产量的影响,为农业生产提供科学依据,优化施肥和灌溉管理策略,提高作物产量。
第十一章随机区组试验知识目标:●掌握随机区组试验田间试验设计方法;●掌握随机区组排列田间试验结果统计分析方法。
技能目标:●学会随机区组试验设计;●能够绘制随机区组设计田间布置图;●学会随机区组试验结果统计分析。
随机区组试验设计是把试验各处理随机排列在一个区组中,区组内条件基本上是一致的,区组间可以有适当的差异。
随机区组试验由于引进了局部控制原理,可以从试验的误差方差中分解出区组变异的方差(即由试验地土壤肥力、试材、操作管理等方面的非处理效应所造成的变异量),从而减少试验误差,提高F检验和多重比较的灵敏度和精确度。
随机区组试验也分为单因素和复因素两类。
本节只介绍单因素和二因素随机区组试验的方差分析方法,第一节单因素随机区组试验和统计方法一、随机区组设计随机区组设计(randomized blocks design)是根据“局部控制”和“随机排列”原理进行的,将试验地按肥力程度等性质不同划分为等于重复次数的区组,使区组内环境差异最小而区组间环境允许存在差异,每个区组即为一次完整的重复,区组内各处理都独立地随机排列。
这是随机排列设计中最常用、最基本的设计。
区组内各试验处理的排列可采用抽签法或随机数字法。
如采用随机数字法,可按照如下步骤进行:(1)当处理数为一位数时,这里以8个处理为例,首先要将处理分别给以1、2、3、4、5、6、7、8的代号,然后从随机数字表任意指定一页中的一行,去掉0和9及重复数字后,即可得8个处理的排列次序。
如在该表1页第26行数字次序为0056729559,3083877836,8444307650,7563722330,1922462930 则去掉0和9以及重复数字而得到56723841,即为8个处理在区组内的排列。
完成一个区组的排列后,再从表中查另一行随机数字按上述方法排列第二区组、第三区组……,直至完成所有区组的排列。
(2)当处理数多于9个为两位数时,同样可查随机数字表。
从随机数字表任意指定一页中的一行,去掉00和小于100且大于处理数及其最大整数倍相乘所得的数字及重复数字后,将剩余的两位数分别除以处理数,所得的各余数即为各处理在此区组内的排列。
第一章测试1.四组均数比较的方差分析,其备择假设H1应为()。
A:至少有两个样本均数不等B:C:D:各总体均数不全相等E:任两个总体均数间有差别答案:D2.随机区组设计的方差分析中,ν配伍等于()。
A:ν总-ν处理-ν误差B:ν总-ν处理+ν误差C:ν总-ν误差D:ν总+ν处理+ν误差E:ν总-ν处理答案:A3.当自由度(ν1, ν2)及检验水准α都相同时,方差分析的界值比方差齐性检验的界值()。
A:小B:不一定C:大D:相等答案:A4.完全随机设计方差分析的检验假设是()。
A:各处理组样本均数相等B:各处理组样本均数不相等C:各处理组总体均数相等D:各处理组总体均数不相等答案:C5.关于方差分析,下列说法正确的是()。
A:只要是定量资料,均能选用方差分析B:方差分析只能用于多组定量资料均数的比较C:只要各组例数相等,定量资料均数的比较可采用随机区组设计方差分析D:方差分析的基本思想是将数据均方与自由度进行分解E:方差分析可适用于多组正态且等方差的定量资料均数比较答案:E6.当组数等于2时,对于同一资料,方差分析结果与t检验结果相比()。
A:方差分析结果更为准确B:t检验结果更为准确C:两者结果可能出现矛盾D:完全等价且答案:D7.完全随机设计、随机区组设计的SS和及自由度各分解为几部分()。
A:2,2B:2,3C:2,4D:3,3答案:B8.完全随机设计方差分析中,组间均方主要反映()。
A:处理因素的作用B:系统误差的影响C:抽样误差大小D:n个数据的离散程度E:随机误差的影响答案:A9.三组以上某实验室指标观测数据服从正态分布且满足参数检验的应用条件。
任两组分别进行多次t检验代替方差分析,将会()。
A:使均数相差更为显著B:明显增大犯I型错误的概率C:使结论更加具体D:明显增大犯II型错误的概率E:使均数的代表性更好答案:B10.在完全随机设计的方差分析中,必然有()。
A:MS组间> MS组内B:MS总 = MS组间 + MS组内C:SS总= SS组间 + SS组内D:MS组间< MS组内E:SS组内< SS组间答案:C第二章测试1.2×2析因试验设计表述正确的是()。
随机区组试验设计嘿,朋友们!今天咱来聊聊随机区组试验设计。
这玩意儿啊,就像是给科学研究搭了个特别的舞台!你看啊,随机区组试验设计就好比是一场精心安排的比赛。
每个区组就像是一个小组,里面的试验对象就像是参赛选手。
我们要保证每个小组里的选手都有差不多的实力,这样比赛才公平嘛!不然,这结果能靠谱吗?为啥要搞这么复杂呢?这可不是瞎折腾哦!它能帮我们更好地看清各种因素的影响。
比如说,我们想知道不同肥料对庄稼生长的效果,那我们就可以把一块地分成好多区组,每个区组用不同的肥料。
这样一来,我们就能清楚地知道哪种肥料最厉害啦!在这个过程中,随机可太重要啦!就像抽奖一样,不能有猫腻,得让每个处理都有平等的机会。
要是不随机,那结果不就容易跑偏嘛!这可不是我们想要的。
而且哦,随机区组试验设计还特别灵活。
它可以用在农业、医学、心理学等等好多领域呢!想象一下,在农业上,它能帮农民伯伯找到最好的种植方法,让庄稼长得更壮实;在医学上,能帮医生找到最有效的治疗方案,让病人更快康复。
这多牛啊!它就像是一把万能钥匙,能打开好多知识的大门。
我们通过它能发现很多以前不知道的秘密呢!比如说,哪种药对某种病效果最好,哪种教学方法能让学生成绩提高得更快。
做随机区组试验设计可不能马虎哦!得认真规划,仔细实施。
就跟盖房子一样,根基要打牢,每一步都不能出错。
从选择区组,到分配处理,再到收集数据,都得用心。
不然,最后得出个不靠谱的结果,那不就白忙乎啦!咱们做研究的人啊,就得像个细心的工匠,一点点雕琢出准确可靠的结果。
可不能马大哈似的随便搞搞,那可不行!总之呢,随机区组试验设计是个特别有用的工具,能帮我们在科学的道路上走得更稳、更远。
它让我们能更清楚地看到事物的本质,找到解决问题的方法。
所以啊,大家可别小瞧了它哟!。
试验设计与分析复习第一章试验设计概述试验设计的定义与重要性试验设计的基本原则试验设计的类型与分类第二章随机化与区组设计随机化的概念与方法区组设计的基本原理区组设计的应用实例第三章完全随机设计完全随机设计的定义与特点完全随机设计的实施步骤完全随机设计的数据分析方法第四章交互作用与多因素设计交互作用的概念与识别多因素设计的基本理论多因素设计的分析方法与应用第五章方差分析方差分析的基本原理单因素方差分析的步骤多因素方差分析的应用与解释第六章试验结果的解释与报告试验结果的统计解释结果报告的结构与内容试验设计的实际应用案例分析1.试验设计的基本概念试验设计是为了获取可靠数据而系统安排实验的过程。
主要目标:控制变异、提高效率、获取有效信息。
2.随机化与重复随机化:消除系统误差,确保样本的代表性。
重复:增加试验的可靠性,减少偶然误差。
3.因子设计单因子设计:研究单一因素对结果的影响。
多因子设计:同时研究多个因素及其交互作用。
4.完全随机设计每个处理随机分配到实验单位,适用于变异较小的情况。
5.随机区组设计将实验单位分成若干区组,控制区组内的变异,适用于变异较大的情况。
6.拉丁方设计控制两个干扰因素,适用于需要控制两个方向的实验设计。
7.方差分析(ANOVA)用于比较多个组的均值,判断因素对结果的显著性影响。
包括单因素方差分析和多因素方差分析。
8.回归分析建立因变量与自变量之间的关系模型,分析影响因素。
包括线性回归和非线性回归。
9.实验结果的解释与报告结果应包括统计显著性、效应大小和置信区间等。
报告应清晰、准确,便于他人理解和复现。
10.实验设计的伦理考虑确保实验的伦理性,保护参与者的权益和隐私。
试验设计的定义:系统地规划和实施试验,以获取可靠的数据和结论。
试验设计的目的:提高实验效率,控制变异,确保结果的有效性和可重复性。
试验设计的基本要素:自变量(因素):实验中被操控的变量。
因变量(响应):实验中被测量的结果。