完全随机设计和随机区组设计ANOVA
- 格式:ppt
- 大小:162.52 KB
- 文档页数:15
实习三方差分析(analysis of variance--- ANOV A )一、目的要求1、掌握方差分析的应用条件2、掌握方差分析的基本思想3、掌握方差分析的用途4、掌握常用方差分析的方法(完全随机设计、随机区组设计方差分析)5、掌握多个样本均数间的两两比较方法(a. 两两比较:SNK法(q检验);b.对照组与各处理组比较:LSD法)。
二、完全随机设计的方差分析(One-Way ANOVA)One-Way ANOVA过程用于进行两组及多组样本均数的比较,即完全随机设计(成组设计)的方差分析,如果做了相应选择,还可进行随后的两两比较。
P432第8题:某职业病防治院对某石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,结果如下表所示。
问三组石棉矿工的用力肺活量有无差别?三组石棉矿工的用力肺活量(L)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.5 31.82.33.41.92.4 31.82.43.41.8 3.32.03.5建库:1、点击Variable View: 定义分类变量(组别)和应变量(用力肺活量)2、点击Data View,输入数据:3、分析过程界面说明:【Dependent List框】(选入应变量)选入需要分析的变量,可选入多个结果变量(应变量)。
【Factor框】(因素,即选入一个分类变量)选入需要比较的分组因素,只能选入一个。
【Contrasts钮】(线性组合比较,如检验均数之间差异大小的关系,均数间的线性趋势等)【Post Hoc钮】(各组均数的多重比较)弹出Post Hoc Multiple Comparisons(多重比较)对话框,用于选择进行各组间两两比较的方法,有:Equal Variances Assumed复选框组一组当各组方差齐时可用的两两比较方法,共有14中种这里不一一列出了,其中最常用的为LSD和S-N-K法。
方差分析是为了比较多个总体样本均数是否存在差别。
该方法有RA.Fisher首先提出,后来由GW.Snedecor完善,为了纪念Fisher,故称方差分析为F检验。
组间均方:MS组间=SS组间/ v组间,SS代表离均差平方和,v代表自由度,组间变异包括处理效应和随机误差。
组内均方:MS组内=SS组内/ v组内,组内差异包括随机误差。
F=MS组间/MS组内,F接近1,说明组间差异不大。
方差分析的基本思想,首先将总变异分为组间和组内变异,然后计算两者的F 值。
F值越大,说明组间差异大,处理起作用,反之,则不起作用,是由随机误差导致的。
方差分析应用条件:1)样本独立;2)来自正态总体;3)方差齐性。
方差分析包括完全随机设计(completely random design)的方差分析,又叫单向(one-way)方差分析和随机区组设计(radomized block design)的方差分析又叫双向(two-way)方差分析。
完全随机设计的方差分析是将受试对象随机化的分配到各个处理组或对照组的方法,未考虑干扰因素的影响,各个组的样本数可以不一样多。
随机区组设计的方差分析将受试对象按照性质相同或相近组成b个区组,每个区组有g个受试对象,分别随机分配到g个处理组,这样各个处理组不仅样本个数相同,生物学特性也比较均衡。
方差分析拒绝H0,接受H1,只说明g个总体均数不全相等,如果想要进一步了解那两个组均数不等,需要进行两两比较或称多重比较,即post-hoc检验。
ANOVA与T test的关系:.。
多因素试验设计与分析方法研究试验设计作为科学研究的重要组成部分,常用于验证和分析多种因素对某一变量的影响。
本文将探讨多因素试验设计与分析方法的研究。
一、多因素试验设计方法多因素试验设计是指在试验设计中引入多个自变量(也称因子),以研究它们对某一因变量的同时或交互影响。
常见的多因素试验设计方法包括完全随机设计、随机区组设计、因子水平设计和回归分析等。
完全随机设计是指将所有因素的水平完全随机的分配给试验单位,以消除其他潜在影响因素,从而准确评估因素对因变量的影响。
随机区组设计则在试验前将试验单位分成若干个相似的小组,每个小组内随机分配因素水平,以减小试验误差。
因子水平设计是通过改变因子的水平来观察因变量的变化趋势。
该方法可以通过改变因子水平的不同组合,得出因子对因变量的影响以及它们之间的交互关系。
回归分析则是利用数学模型来研究多个因素对因变量的影响程度和方向。
二、多因素试验设计的实施步骤在进行多因素试验设计之前,需要明确研究目的、确定研究因素、选择适当的试验设计方法,并进行样本容量的计算。
下面是多因素试验设计的一般实施步骤:1. 确定试验目的和研究因素:明确要研究的因变量和自变量,并确定它们的水平。
2. 选择试验设计方法:根据研究目的和因素数目选择适当的试验设计方法。
3. 设计试验方案:确定试验单位、试验的数目和分组方式,并规定随机化的方法和过程。
4. 进行试验:按照设计方案进行试验操作,记录实验数据。
5. 数据分析:根据试验数据,利用统计学方法进行数据分析,得出结论。
6. 结果解释和讨论:根据数据分析结果,进行结果解释或讨论,阐明研究发现和限制。
三、多因素试验设计的分析方法多因素试验设计的数据分析通常使用方差分析(ANOVA)方法。
方差分析可以用于比较多个因子水平对因变量的影响是否显著以及不同因子水平之间的差异是否存在。
在进行方差分析时,需要计算各因素的平方和、均方和和F值。
同时,还可以进行事后检验,来确定不同因素水平之间的差异是否显著。
方差分析公式(20PP-06-2611:03:09)转载▼标签:分类:统计方法杂谈方差分析方差分析(analPsisofvarianee ,简写为ANOV或ANOV A可用于两个或两个以上样本均数的比较。
应用时要求各样本是相互独立的随机样本;各样本来自正态分布总体且各总体方差相等。
方差分析的基本思想是按实验设计和分析目的把全部观察值之间的总变异分为两部分或更多部分,然后再作分析。
常用的设计有完全随机设计和随机区组设计的多个样本均数的比较。
一、完全随机设计的多个样本均数的比较又称单因素方差分析。
把总变异分解为组间(处理间)变异和组内变异(误差)两部分。
目的是推断k个样本所分别代表的卩1,卩2,……卩k是否相等,以便比较多个处理的差别有无统计学意义。
其计算公式见表19-6.表19-6完全随机设计的多个样本均数比较的方差分析公式GC=(艺G) 2/N=艺ni , k为处理组数方差分析计算的统计量为F,按表19-7所示关系作判断。
例19.9某湖水不同季节氯化物含量测量值如表19-8,问不同季节氯化物含量有无差别?表19-8某湖水不同季节氯化物含量(mg/L)SS 加刖=丄 和' 10619.265^170HO:湖水四个季节氯化物含量的总体均数相等,即 卩仁卩2=卩3=卩4H1:四个总体均数不等或不全相等a =0.05先作表19-8下半部分的基础计算。
C=(艺 G ) 2/N= (588.4) 2/32=10819.205 SS 总=艺 G2-C=11100.84-10819.205=281.635 V 总=N-仁31(工吋“ 1广_ (】6二口尸斗/」期.匸尸千K.IT N"一 -• r . —I bK V 组间=k-1=4-1=3SS 组内=SS 总-SS 组间=281.635-141.107=140.465 V 组内=N-k=32-4=28MS 组间二SS 组间 /v 组间=141.107/3=47.057MS组内=SS组内 /v 组内=140.465/28=5.017F=MS组间 /MS 组内=47.057/5.017=9.380以v1 (即组间自由度)=3, v2 (即组内自由度)=28查附表19-2 , F界值表,得F0.05(3,28)=2.95,F0.01(3,28)=4.57.本例算得的 F=9.380>F0.01 (3,28), P v0.01,按a =0.05检验水准拒绝H0,接受H1,可认为湖水不同季节的氯化物含量不等或不全相等。
第七章 方差分析基础方差分析基础二、完全随机与随机区组设计资料的方差分析完全随机设计资料方差分析概述n完全随机设计(completely randomized design) 是将同质的受试对象随机地分配到各处理组,再观察其 实验效应。
完全随机设计是最常见的研究单因素两水平或多水平的 实验设计方法,属单向方差分析(oneway ANOVA)。
以上一节的例1为例完全随机设计资料方差分析的一般步骤 (1) 建立检验假设,确定检验水准: 0 H 三组不同喂养方式下大白鼠体重改变的总体平均水 平相同。
: 1 H 三组不同喂养方式下大白鼠体重改变的总体平均水平不全相同。
05. 0 = a(2) 计算检验统计量表1 例1资料的方差分析表变异来源 SS df MS F P 总变异 47758.32 35组间(处理组间) 31291.67 2 15645.83 31.36 <0.001 组内(误差) 16466.65 33 498.99(3) 确定P值并作出推断结论查F 界值表,得 。
由F = 31.36,查表得到P < 0.01。
按 水准,差别 有统计学意义,可以认为三组不同喂养方式下大白鼠体重 改变的总体平均水平不全相同,即三个总体均数中至少有 两个不等。
05 . 0 = a 34 . 5 29 . 3 32 , 2 01 . 0 32 , 2 05 . 0 = = )( ) ( ,F F随机区组设计资料方差分析概述n随机区组设计(randomized block design)又称配伍组设计,通常是将受试对象按性质(如动物的 窝别、体重等非实验因素)相同或相近者组成b个区组(配 伍组),每个区组中的受试对象分别随机分配到k个处理 组中去。
随机区组设计资料方差分析的例子例2 为探索丹参对肢体缺血再灌注损伤的影响,将30只纯种 新西兰实验用大白兔,按窝别相同分为10个区组。
每个区 组的3只大白兔随机接受三种不同的处理,即在松止血带前 分别给予丹参2ml/kg、丹参1ml/kg、生理盐水2ml/kg,并分 别测定松止血带前及松后1小时后血中白蛋白含量(g/L),算 出白蛋白的减少量如表2所示。
方差分析公式(2012-06-26 11:03:09)转载▼标签:分类:统计方法杂谈方差分析方差分析(analysis of variance,简写为ANOV或ANOVA)可用于两个或两个以上样本均数的比较。
应用时要求各样本是相互独立的随机样本;各样本来自正态分布总体且各总体方差相等。
方差分析的基本思想是按实验设计和分析目的把全部观察值之间的总变异分为两部分或更多部分,然后再作分析。
常用的设计有完全随机设计和随机区组设计的多个样本均数的比较。
一、完全随机设计的多个样本均数的比较又称单因素方差分析。
把总变异分解为组间(处理间)变异和组内变异(误差)两部分。
目的是推断k个样本所分别代表的μ1,μ2,……μk是否相等,以便比较多个处理的差别有无统计学意义。
其计算公式见表19-6.表19-6 完全随机设计的多个样本均数比较的方差分析公式变异来源离均差平方和SS 自由度v 均方MS F 总ΣX2-C* N-1组间(处理组间)k-1 SS组间/v组间MS组间/MS组间组内(误差)SS总-SS组间N-k SS组内/v组内*C=(ΣX)2/N=Σni,k为处理组数表19-7 F值、P值与统计结论αF值P值统计结论0.05 <F0.05(v1.V2)>0.05 不拒绝H0,差别无统计学意义0.05 ≥F0.05(v1.V2)≤0.05 拒绝H0,接受H1,差别有统计学意义0.01 ≥F0.01(v1.V2)≤0.01 拒绝H0,接受H1,差别有高度统计学意义方差分析计算的统计量为F,按表19-7所示关系作判断。
例19.9 某湖水不同季节氯化物含量测量值如表19-8,问不同季节氯化物含量有无差别?表19-8 某湖水不同季节氯化物含量(mg/L)X ij春夏秋冬22.6 19.1 18.9 19.0 22.8 22.8 13.6 16.9 21.0 24.5 17.2 17.6 16.9 18.0 15.1 14.820.0 15.2 16.6 13.121.9 18.4 14.2 16.9 21.5 20.1 16.7 16.2 21.2 21.2 19.6 14.8ΣX ijj167.9 159.3 131.9 129.3 588.4(ΣX)n i8 8 8 8 32(N)X i20.99 19.91 16.49 16.16ΣX2ijj3548.51 3231.95 2206.27 2114.1111100.84(ΣX2)H0:湖水四个季节氯化物含量的总体均数相等,即μ1=μ2=μ3=μ4H1:四个总体均数不等或不全相等α=0.05先作表19-8下半部分的基础计算。