TL494CN逆变器
- 格式:doc
- 大小:237.00 KB
- 文档页数:5
tl494逆变器工作原理TL494是一种常用的PWM控制集成电路,广泛应用于逆变器、开关电源和电源管理等领域。
本文将介绍TL494逆变器的工作原理,希望能帮助读者更好地理解和应用这一技术。
首先,我们来了解一下逆变器的基本概念。
逆变器是一种将直流电转换为交流电的电子器件,它通常由开关管和控制电路组成。
在逆变器中,PWM控制技术被广泛应用,它能够精确地控制开关管的导通和关断时间,从而实现对输出波形的调节。
TL494集成电路是一种专门用于PWM控制的集成电路,它具有多种保护功能和丰富的控制接口,非常适合用于逆变器的设计。
在TL494逆变器中,该集成电路负责产生PWM波形,并通过控制开关管的导通和关断来实现直流到交流的转换。
TL494逆变器的工作原理可以分为以下几个方面来说明:1. 输入电压检测,TL494集成电路通常会通过电压反馈回路来检测输入电压的变化,以便实时调节输出波形的占空比,从而保证输出电压的稳定性。
2. PWM波形生成,TL494集成电路内部集成了PWM波形生成电路,可以根据控制信号产生相应的PWM波形,通过调节占空比和频率来控制开关管的导通和关断。
3. 输出驱动,TL494集成电路还具有输出驱动功能,可以直接驱动开关管,实现对输出电压的控制。
4. 保护功能,TL494集成电路内置了多种保护功能,如过流保护、过压保护等,可以有效保护逆变器和负载不受损坏。
在实际应用中,TL494逆变器通常会配合其他电路和器件一起使用,如功率管、变压器、滤波电路等,以实现对不同类型负载的逆变。
通过合理设计电路参数和控制策略,可以实现逆变器对输出波形的精确控制,从而满足不同应用场景的需求。
总的来说,TL494逆变器通过PWM控制技术实现了对直流电到交流电的转换,具有输出波形精确可调、保护功能完善等优点,适用于各种逆变器应用场景。
希望通过本文的介绍,读者能够更好地理解TL494逆变器的工作原理,为实际应用提供参考和帮助。
TL494常应用于电源电路当中,在本站的文章中,除了本文TL494中文资料及应用电路,还有一个电路是应用了TL494资料的,具体的电路图,请参考本站文章:200W 的ATX电源线路图,本文已经提供了比较丰富的TL494中文资料了TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。
TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。
其主要特性如下:TL494主要特征集成了全部的脉宽调制电路。
片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。
内置误差放大器。
内止5V参考基准电压源。
可调整死区时间。
内置功率晶体管可提供500mA的驱动能力。
推或拉两种输出方式。
TL494外形图TL494引脚图TL494工作原理简述TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。
功率输出管Q1和Q2受控于或非门。
当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。
当控制信号增大,输出脉冲的宽度将减小。
参见图2。
TL494脉冲控制波形图控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。
死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。
当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。
脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。
车载电源逆变器电路原理图一市场上常见款式车载逆变器产品的主要指标输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。
二常见车载逆变器产品的电路图及工作原理目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。
一款最常见的车载逆变器电路原理图见图1。
车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。
图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。
由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。
图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。
TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。
TL494逆变器电路图(400W)
当前市场所有的双端输出驱动IC中,可以说美国德克萨斯仪器公司开发的TL494功能最完善、驱动能力最强,其两路时序不同的输出总电流为SG3525的两倍,达到400mA。
仅此一点,使输出功率千瓦级及以上的开关电源、DC/DC变换器、逆变器,几乎无一例外地采用TL494。
虽然TL494设计用于驱动双极型开关管,然而目前绝大部分采用MOSFET开关管的设备,利用外设灌流电路,也广泛采用TL494。
其内部电路功能、特点及应用方法如下:
A.内置RC定时电路设定频率的独立锯齿波振荡器,其振荡频率fo(kHz)=1.2/R(k Ω)·C(μF),其最高振荡频率可达300kHz,既能驱动双极性开关管,增设灌电流通路后,还能驱动MOSFET开关管。
B.内部设有比较器组成的死区时间控制电路,用外加电压控制比较器的输出电平,通过其输出电平使触发器翻转,控制两路输出之间的死区时间。
当第4脚电平升高时,死区时间增大。
C.触发器的两路输出设有控制电路,使Q1、Q2既可输出双端时序不同的驱动脉冲,驱动推挽开关电路和半桥开关电路,同时也可输出同相序的单端驱动脉冲,驱动单端开关电路。
D.内部两组完全相同的误差放大器,其同相输入端均被引出芯片外,因此可以自由设定其基准电压,以方便用于稳压取样,或利用其中一种作为过压、过流超阈值保护。
E.输出驱动电流单端达到400mA,能直接驱动峰值电流达5A的开关电路。
双端输出脉冲峰值为2×200mA,加入驱动级即能驱动近千瓦的推挽式和桥式电路。
Reference URL:/sch/kgdy/9391.html。
车载逆变器电路图及故障维修经验ﻫ一市场上常见款式车载逆变器产品得主要指标输入电压:DC 10V~14。
5V;输出电压:AC 200V~220V±10%;输出频率:50H z±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz、二常见车载逆变器产品得电路图及工作原理ﻫ目前市场上销售量最大、最常见得车载逆变器得输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主得脉宽调制电路、一款最常见得车载逆变器电路原理图见图1、车载逆变器得整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路得作用就是将汽车电瓶等提供得12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右得交流电;第二部分电路得作用则就是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右得交流电转换成50Hz、220V得交流电。
1。
车载逆变器电路工作原理ﻫ图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V /50kHz交流得逆变电路。
由芯片IC2及其外围电路、三极管VT5、VT8、MOS 功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路 VD5-V D8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电得转换电路,最后通过XAC插座输出220V /50Hz交流电供各种便携式电器使用、ﻫ图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器得核心控制电路。
TL494CN就是专用得双端式开关电源控制芯片,其尾缀字母CN表示芯片得封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。
常见车载逆变器电路图及维修要点常见车载逆变器电路图及维修要点一常见款式车载逆变器产品的主要指标输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。
二常见车载逆变器产品的电路图及工作原理目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。
一款最常见的车载逆变器电路原理图见图1。
车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。
1.车载逆变器电路工作原理电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。
由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。
IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。
TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。
逆变器电路原理分析1、逆变器的定义逆变器是通过半导体功率开关的开通和关断作用,把直流电能转变成交流电能的一种变换装置,是整流变换的逆过程。
车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。
高频升压逆变控制电路:(1)脚第一组放大器的同相输入端,检测输出电流,与3个0.33R 电阻分压,当电流过大时,分压电阻上的电压超过(2)脚基准电压,(3)脚放大器输出端输出高电平,(3)脚为高电平时,电路进入保护状态。
(2)脚为比较器的反相输入端,接(14)脚基准,作比较器的参考电压,外部输入端的控制信号可输入至脚(4)的截止时间控制端(也叫死区时间控制),与脚(1)、(2)、(15)、(16)误差放大器的输入端,其输入端点的抵补电压为120mV,其可限制输出截止时间至最小值,大约为最初锯齿波周期时间的4%。
当13脚的输出模控制端接地时,可获得96%最大工作周期,而当(13)脚接制参考电压时,可获得48%最大工作周期。
如果我们在第4脚截止时间控制输入端设定一个固定电压,其范围由0V至3.3V之间,则附加的截止时间一定出现在输出上。
(5)、(6)脚是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。
功率输出管Q1和Q2受控于或非门。
当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。
TL494CN中文资料原理及应用技巧
1.TL494CN原理:
TL494CN是一款具有故障保护功能的双脉冲宽度调制(DPM)控制器。
它内部集成了一个5V基准电压源、误差放大器、三角波发生器、PWM比
较器、跟踪电源驱动器和故障保护电路等部件。
通过控制PWM输出的占空
比来调整输出电压和电流,以满足不同的电源控制需求。
2.TL494CN应用技巧:
(1)输入和输出:
(2)PWM控制:
(3)反馈控制:
在电源控制系统中,通过反馈电路将电源输出与参考电压进行比较,
以实现电源的稳定输出。
可以使用滤波电容和反馈电阻来调整反馈信号的
灵敏度和稳定性,确保电源输出的准确性和可靠性。
(4)故障保护:
(5)限流和限压:
在一些特殊应用中,需要对电源输出进行限流或限压控制。
可以通过
添加外部限流电路或限压电路来实现对电源输出的控制,以满足不同的应
用需求。
总结:
TL494CN是一款功能强大的PWM控制集成电路,广泛应用于电源控制
系统。
通过调整PWM输出的占空比来控制输出电压和电流,并具有故障保
护等多种功能。
在使用TL494CN进行设计时,需要进行输入和输出的合理选取、PWM控制的调节、反馈控制的实现以及故障保护和限流、限压功能的添加。
通过合理地应用TL494CN,可以实现高效、稳定和安全的电源控制系统。
TL494逆变器电路原理详解1. 什么是TL494逆变器电路?TL494逆变器电路是一种基于TL494芯片设计的直流-交流(DC-AC)逆变器电路。
TL494芯片是一种集成电路,通常用于开关模式电源供应器和调制解调器应用中。
在逆变器电路中,它可以将直流输入转换为交流输出。
2. TL494芯片概述TL494芯片是由德州仪器(Texas Instruments)公司推出的一款PWM(脉宽调制)控制集成电路。
它具有多种功能和特性,使其成为设计各种开关模式电源和调制解调器等应用的理想选择。
以下是TL494芯片的主要特点:•双比较器:用于比较两个输入信号,并产生相应的PWM信号。
•双误差放大器:用于放大比较器输出信号和参考信号之间的误差。
•稳压引脚:用于设置输出脉冲的幅度。
•内部振荡电路:产生高频振荡信号。
•错误保护功能:包括过温保护、欠压保护、过载保护等。
3. TL494逆变器电路基本原理TL494逆变器电路的基本原理是将直流输入信号经过一系列的转换和控制,最终得到交流输出信号。
下面将详细介绍其基本原理。
3.1 输入滤波在逆变器电路中,首先需要对直流输入信号进行滤波。
这是为了去除输入信号中的噪声和干扰,使得后续处理更加稳定可靠。
常用的滤波元件包括电容和电感等。
3.2 脉宽调制(PWM)TL494芯片具有PWM功能,可以根据输入信号和参考信号之间的误差产生相应的脉冲宽度调制(PWM)信号。
PWM技术是一种通过改变脉冲宽度来控制输出功率的技术。
在逆变器电路中,PWM信号被用于控制开关管(如MOSFET或IGBT)的导通时间,从而实现将直流输入转换为交流输出。
通过调整脉冲宽度,可以控制输出波形的频率和占空比。
3.3 输出级在TL494逆变器电路中,输出级是由开关管和输出变压器组成的。
开关管根据PWM信号的控制状态,决定导通和截止的时间。
输出变压器则用于将直流输入信号转换为交流输出信号。
在开关管导通时,直流输入信号通过输出变压器的原/辅线圈,产生交流输出信号;而在开关管截止时,输出变压器的原/辅线圈之间断开,交流输出信号停止。
一市场上常见款式车载逆变器产品的主要指标输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。
二常见车载逆变器产品的电路图及工作原理目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。
一款最常见的车载逆变器电路原理图见图1。
车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。
1.车载逆变器电路工作原理图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。
由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。
图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。
TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。
TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。
TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。
TL494芯片的内部电路如图2所示。
图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。
上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。
当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。
IC1的15脚外围电路的R1、Rt、R2组成过热保护电路,Rt为正温度系数热敏电阻,常温阻值可在150 Ω~300Ω范围内任选,适当选大些可提高过热保护电路启动的灵敏度。
热敏电阻Rt安装时要紧贴于MOS功率开关管VT2或VT4的金属散热片上,这样才能保证电路的过热保护功能有效。
IC1的15脚的对地电压值U是一个比较重要的参数,图1电路中U≈Vcc×R2÷ (R1+Rt+R2)V,常温下的计算值为U≈6.2V。
结合图1、图2可知,正常工作情况下要求IC1的15脚电压应略高于16脚电压(与芯片14脚相连为5V),其常温下6.2V的电压值大小正好满足要求,并略留有一定的余量。
当电路工作异常,MOS功率管VT2或VT4的温升大幅提高,热敏电阻Rt 的阻值超过约4kΩ时,IC1内部比较器1的输出将由低电平翻转为高电平,IC1的3脚也随即翻转为高电平状态,致使芯片内部的PWM 比较器、“或”门以及“或非”门的输出均发生翻转,输出级三极管VT1和三极管VT2均转为截止状态。
当IC1内的两只功率输出管截止时,图1电路中的VT1、VT3将因基极为低电平而饱和导通,VT1、VT3导通后,功率管VT2和VT4将因栅极无正偏压而处于截止状态,逆变电源电路停止工作。
IC1的1脚外围电路的VDZ1、R5、VD1、C2、R6构成12V输入电源过压保护电路,稳压管VDZ1的稳压值决定了保护电路的启动门限电压值,VD1、C2、R6还组成保护状态维持电路,只要发生瞬间的输入电源过压现象,保护电路就会启动并维持一段时间,以确保后级功率输出管的安全。
考虑到汽车行驶过程中电瓶电压的正常变化幅度大小,通常将稳压管VDZ1的稳压值选为15V或16V较为合适。
IC1的3脚外围电路的C3、R5是构成上电软启动时间维持以及电路保护状态维持的关键性电路,实际上不管是电路软启动的控制还是保护电路的启动控制,其最终结果均反映在IC1的3脚电平状态上。
电路上电或保护电路启动时,IC1的3脚为高电平。
当IC1的3脚为高电平时,将对电容C3充电。
这导致保护电路启动的诱因消失后,C3通过R5放电,因放电所需时间较长,使得电路的保护状态仍得以维持一段时间。
当IC1的3脚为高电平时,还将沿R8、VD4对电容C7进行充电,同时将电容C7两端的电压提供给IC2的4脚,使IC2的4脚保持为高电平状态。
从图2的芯片内部电路可知,当4脚为高电平时,将抬高芯片内死区时间比较器同相输入端的电位,使该比较器输出保持为恒定的高电平,经“或”门、“或非”门后使内置的三极管VT1和三极管VT2均截止。
图1电路中的VT5和VT8处于饱和导通状态,其后级的MOS管VT6和VT9将因栅极无正偏压而都处于截止状态,逆变电源电路停止工作。
IC1的5脚外接电容C4(472)和6脚外接电阻R7(4k3)为脉宽调制器的定时元件,所决定的脉宽调制频率为fosc=1.1÷ (0.0047×4.3)kHz≈50kHz。
即电路中的三极管VT1、VT2、VT3、VT4、变压器T1的工作频率均为50kHz左右,因此T1应选用高频铁氧体磁芯变压器,变压器T1的作用是将12V脉冲升压为220V的脉冲,其初级匝数为20×2,次级匝数为380。
IC2的5脚外接电容C8(104)和6脚外接电阻R14(220k)为脉宽调制器的定时元件,所决定的脉宽调制频率为fosc=1.1÷(C8×R14)=1.1÷(0.1×220)kHz≈50Hz。
R29、R30、R27、C11、VDZ2组成XAC插座220V输出端的过压保护电路,当输出电压过高时将导致稳压管VDZ2击穿,使IC2的4脚对地电压上升,芯片IC2内的保护电路动作,切断输出。
车载逆变器电路中的MOS管VT2、VT4有一定的功耗,必须加装散热片,其他器件均不需要安装散热片。
当车载逆变器产品持续应用于功率较大的场合时,需在其内部加装12V小风扇以帮助散热。
2.电路中的元器件参数电路中各元器件的参数列于附表。
三.车载逆变器产品的维修要点由于车载逆变器电路一般都具有上电软启动功能,因此在接通电源后要等5s-30s后才会有交流220V的输出,同时LED指示灯点亮。
当LED指示灯不亮时,则表明逆变电路没有工作。
当接通电源30s以上,LED指示灯还没有点亮时,则需要测量XAC输出插座处的交流电压值,若该电压值为正常的220V左右,则说明仅仅是LED指示灯部分的电路出现了故障;若经测量XAC输出插座处的交流电压值为0,则说明故障原因为逆变器前级的逆变电路没有工作,可能是芯片IC1内部的保护电路已经启动。
判断芯片IC1内部保护电路是否启动的方法是:用万用表的直流电压挡测量芯片IC1的3脚对地直流电压值,若该电压在1V以上则说明芯片内部的保护电路已经启动了,否则说明故障原因是非保护电路动作所致。
若芯片IC1的3脚对地电压值在1V以上,表明芯片内部的保护电路已启动时,需进一步用万用表的直流电压挡测试芯片IC1的15、16脚之间的直流电压,以及芯片IC1的1、2脚之间的直流电压。
正常情况下,图1电路中芯片IC1的15脚对地直流电压应高于16脚对地直流电压,2脚对地的直流电压应高于1脚对地的直流电压,只有当这两个条件同时得到满足时,芯片IC1的3脚对地直流电压才能为正常的0V左右,逆变电路才能正常工作。
若发现某测试电压不满足上述关系时,只需按相应支路去查找故障原因,即可解决问题。
四.车载逆变器产品的主要元器件参数及代换图1电路中的主要器件有驱动管SS8550、KSP44,MOS功率开关管IRFZ48N、IRF740A,快恢复整流二极管HER306以及PWM 控制芯片TL494CN (或KA7500C)。
SS8550为TO-92形式封装的PNP型三极管。
其引脚电极的识别方法是,当面向三极管的印字标识面时,引脚1为发射极E、2为基极B、3为集电极C。
SS8550的主要参数指标为:BVCBO=-40V,BVCEO=-25V,VCE(S)=-0.28V,VBE(ON)=-0.66V ,fT=200MHz,ICM=1.5A,PCM=1W,TJ= 150℃ ,hFE=85~160(B)、120~200(C)、160~300(D)。
与TO-92形式封装的SS8550相对应的表贴器件型号为S8550LT1,其封装形式为SOT-23。
SS8550为目前市场上较为常见、易购的三极管,价格也比较便宜,单只售价仅0.3元左右。
KSP44为TO-92形式封装的NPN型三极管。
其引脚电极的识别方法是,当面向三极管的印字标识面时,其引脚1为发射极E、2为基极B、3为集电极C。
KSP44的主要参数指标为:BVCBO=500V ,BVCEO=400V,VCE(S)=0.5V ,VBE(ON)=0.75V ,ICM=300mA ,PCM=0.625W ,TJ=150℃,hFE=40~200。
KSP44为电话机中常用的高压三极管,当KSP44损坏而无法买到时,可用日光灯电路中常用的三极管KSE13001进行代换。
KSE13001为FAIRCHILD公司产品,主要参数为BVCBO=400V,BVCEO=400V,ICM=100mA,PCM=0.6W,hFE=40~80。
KSE13001的封装形式虽然同样为TO-92,但其引脚电极的排序却与KSP44不同,这一点在代换时要特别注意。
KSE13001引脚电极的识别方法是,当面向三极管的印字标识面时,其引脚电极1为基极B、2为集电极C、3为发射极E。
IRFZ48N为TO-220形式封装的N沟道增强型MOS快速功率开关管。
其引脚电极排序1为栅极G、2为漏极D、3为源极S。
IRFZ48N的主要参数指标为:VDss=55V,ID=66A,Ptot=140W,TJ=175℃,RDS(ON)≤16mΩ 。
当IRFZ48N损坏无法买到时,可用封装形式和引脚电极排序完全相同的N沟道增强型MOS开关管IRF3205进行代换。
IRF3205的主要参数为VDss=55V,ID=110A,RDS(ON)≤8mΩ。