两期平均数增长率公式推导_整理第七届学用杯全国数学知识应用竞赛
- 格式:docx
- 大小:27.12 KB
- 文档页数:15
第六届“学用杯”全国数学知识应用竞赛八年级初赛试题(A )卷(本题满分150分,考试时间120分钟)题号 一 二 三 四 总分 得分温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧.愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷. (注:可使用计算器)一、选择题(每小题6分,共30分)1.唐伯虎点秋香的故事家喻户晓了,现在我们来做一个推理:“唐伯虎点秋香”【规则】下面有四个人,其中一个人是秋香,请你通过下面提示辨别出谁是秋香. 友情提示:这四个人分别是:春香、夏香、秋香、冬香. 【所给人物】A 、B 、C 、D①A 不是秋香,也不是夏香;②B 不是冬香,也不是春香;③如果A 不是冬香,那么C 不是夏香;④D 既不是夏香,也不是春香; ⑤C 不是春香,也不是冬香.若上面的命题都是真命题,则秋香是( ) A .A B .B C .C D .D 2.如图1,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A ,B .若击打小球A ,经过球台边的反弹后,恰好击中小球B ,那么小球A 击出时,应瞄准球台边上的点( )A .1PB .2PC .3PD .4P3.时至父亲节,某大学校园“文苑”专栏登出了一位同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y 表示父亲和学子在行进中离家的距离,横轴t 表示父子同时离家后的时间,那么下面与上述诗意大致相吻合的图象是( )4.如图2,小明和小亮玩一种“机器人迈步游戏”,某一个机器人在图中的1号位置上,按顺时针方向,第一次跳一步到2号位置上,第二次跳两步跳到4号位置上,第三次跳三步又跳到了1号位置上,第四次跳四步……一直进行下去,那么如果第2006次跳2006步,所跳到的位置号是()A.2 B.4 C.5 D.65.某市进行青年歌手大奖赛预赛,评委给每位选手打分时,最高分不超过10分,所有评委的评分中去掉一个最高分,去掉一个最低分后的平均分即为选手的最后得分.李华的最后得分为9.68分,若只去掉一个最低分,李华的得分为9.72分,若只去掉一个最高分,李华的得分为9.66分,那么可以算出这次比赛的评委有()A.9名B.10名C.11名D.12名二、填空题(每小题6分,共30分)6.卡车司机小张开车在高速公路上以100km/h的速度行驶,听到车后有另一汽车的喇叭声,他即刻从反射镜中看到他车后约40米处有一辆轿车疾驰而来,他让开快车道,轿车很快赶上并超越了小张的卡车.若从小张的反射镜中看到轿车到轿车和卡车并行时经过了7秒钟,设轿车的速度为x km/h,那么,它应当满足方程.7.学校广播室要从八年级(2)班选一名广播员,小明、小华和小英普通话都不相上下,并且都争着要去.老师决定用抽签的办法确定,结果三个人都争着先抽,以为第一个抽签的人抽中的可能性大一些;这时,小华从兜里拿出两枚一元的硬币,并说将两枚硬币同时向上抛出,如果两个都是正面朝上,小明去;如果两个都是反面朝上,小英去;如果两个一正一反,小华自己去.那么,你认为(填“老师”或“小华”)的办法公平合理,理由是.8.在一张长26cm,宽19cm的绘图纸上按1∶100的比例尺绘制出某一池塘的图形(不规则).现将这张图纸复印数张,称得总质量为20g,再将称过质量的这些图纸沿池塘边缘剪掉多余部分后,称得质量为13g.那么根据这些数据,我们可以算出池塘的实际面积m(假设复印纸与图纸材料相同,结果精确到0.1).为29.某水库正常情况下,每天流入一定量的河水,可供城市用水80天,今年因天气干旱流入量减少20%,每天按原供水量只能用60天,如果仍计划用80天,每天供水量需要减少(填百分比);当库存水量剩一半时,由于雨季到来流入量比正常时增加了20%,若仍按天旱时的供水量供水还可供水天.10.小明的爸爸想买股票,星期一,他发现证券交易所中有三种股票情况如下:种类面值(元)现价(元)股息周期股息比率甲50 48 季3%乙100 104 半年 6.5%丙500 600 年15%晚上回家后,他想考考小明,让他计算一下假如一年前投入相同的资金购买这三种股票,现在同时出售,种股票(填“甲”、“乙”或“丙”)所得的收益最多.三、解答题(每小题15分,共60分)11.判断说理:元旦联欢会上,八年级(1)班的同学们在礼堂四周摆了一圈长条桌子,其中北边条桌上摆满了苹果,东边条桌上摆满了香蕉,礼堂中间B处放了一把椅子,游戏规则是这样的:甲、乙二人从A处(如图3)同时出发,先去拿苹果再去拿香蕉,然后回到B处,谁先坐到椅子上谁赢.张晓和李岚比赛,比赛一开始,只见张晓直奔东北两张条桌的交点处,左手抓苹果,右手拿香蕉,回头直奔B处,可是还未跑到B处,只见李岚已经手捧苹果和香蕉稳稳地坐在B 处的椅子上了.如果李岚不比张晓跑得快,张晓若想获胜有没有其他的捷径?若有,请说明你的捷径,若没有,请说明理由.12.信息处理:2006年8月25日颜老师带身份证去中国银行取女婿李建的跨国劳务工资6 300美元,银行告知身份证的名字与汇款名字不符,“李建”写成了“李健”.颜老师将这一情况转告李建,李建等原汇款退回之后,于9月25日将工资重新汇款到国内(汇费另付),由于这几天人民币的升值,颜老师赶紧将美元兑换成了人民币,然后转存成3年定期存款.已知8月25日、9月25日100美元分别兑换人民币797.15元、791.96元,美元从国外汇到国内需要付汇款金额的1‰,即最低50元、最高260元人民币的手续费,另外收取电讯费150元人民币.已知3年定期存款的利率为3.69%,且需付20%的利息税,请问李建这次汇费与损失折算成人民币共多少元?13.方案设计:新疆是我国风力资源最丰富的地区之一,风力发电也将成为新疆未来重要的替代能源.新疆某地一年内日平均风速不小于3米/秒的时间共约160天,其中平均风速不小于6米/秒的时间约占60天.为了充分利用“风能”这种“绿色能源”,该地拟建一个小型风力发电厂,决定选用A 、B 两种型号的风力发电机.根据产品说明,这两种风力发电机在各根据上面的数据回答:(1)若这个发电厂购买x 台A 型风力发电机,则预计这些A 型风力发电机一年的发电总量至少为多少千瓦时?(2)已知A 型风力发电机每台0.3万元,B 型风力发电机每台0.2万元,该发电厂欲购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电厂每年的发电量不少于102 000千瓦时,请你提供符合条件的购机方案.14.实践探究:八年级(7)班为了从张帆、杨君两位同学中选出班长,进行了一次演讲答辩与民主测评,请数学、语文、政治、历史、英语科目的五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示: 表1表2规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定: 民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分 综合得分=演讲答辩得分×(1a -)+民主测评得分 (0.50.8)a a ⨯≤≤(1)当0.6a =时,张帆的综合得分是多少?(2)a 在什么范围内,张帆的综合得分高?a 在什么范围内,杨君的综合得分高?四、开放题(本题30分)15.2006年10月20日,《数学专页》顾问、中科院院士林群到报社指导工作时,谈及“为什么学数学”这个话题,举了一个这样的例子:测一棵树高,如果没有数学,必须把树砍倒,或爬到树尖,而一旦有了数学,只需用直尺和测角仪就可计算出树的高度.一个小小的例子就让我们大家明白了“为什么学数学”,也告诉了我们生活处处有数学.现在请你联想实际编写一道生活中的数学问题,并解释用了什么样的数学道理.卷参考答案一、选择题(每小题6分,共30分)1.C2.B 3.C 4.B 5.A二、选择题(每小题6分,共30分)6.10001000007740 36003600x⨯=⨯+7.老师.因为老师的办法,不管谁先抽均有13的机会;小华的办法中,小明和小英的机会各占14,而小华的机会占12.(注:本题只要说明老师的办法中,三人的机会相等,而小华的办法中,三人机会不均等即可得分.)8.2321.1m9.12.5%,12010.甲三、解答题(每小题15分,共60分)11.解:如下图,假设北边和东边条桌各为一个平面镜,光线经过两次反射到达B点.因此,分别以北条桌和东条桌为对称轴,找到A,B的对称点A',B',连接A B'',交两长条桌于C,D两点,则折线ACDB就是捷径.(本题说出方案可得10分,再画上图可给满分,若只画出图可给10分,其他较近捷径可适当给分.)12.解:第一次汇费:6 300×7.971 5×1‰+150≈200.22(元); ······························2分第二次汇费:6 300×7.919 6×1‰≈49.89(元)<50元,因此第二次汇费为200元. ·············································································6分两次汇率差造成的损失:6 300×(7.971 5-7.919 6)=326.97(元). ·························································9分一个月利息:6 300×7.971 5×3.69%×112×(1-20%)≈123.54(元). ······································· 12分200.22200326.97123.54850.73+++=(元). ···················································· 14分答:李建这次汇费和损失折算成人民币共850.73元. ········································· 15分13.解:(1)[36×(160-60)+150×60]x=12 600x(千瓦时); ·································4分(2)设购买A型发电机x台,则购买B型发电机(10-x)台.根据题意,得512 600[24(16060)9060](10)102 00090.30.2(10) 2.6x x x x +⨯-+⨯-+-⎧⎨⎩分≥.分≤,解得56x ≤≤. ························································································· 13分 所以可购A 型发电机5台,B 型发电机5台;或购A 型发电机6台,B 型发电机4台. ················································································································· 15分 14.解:设综合得分为T ,演讲得分为1T ,民主测评得分为2T .(1)张帆同学:1T ≈93.67,2T =87, ································································· 4分 0.6a =时,T 张帆93.67(106)870690=⨯-+⨯..≈; ··············································· 6分 (2)杨君同学:1T ≈91.33,2T =88, ······························································· 10分T 杨君=91.33(1-a )+88a=91.33-3.33a ,又∵T 张帆=93.67(1-a )+87a =93.67-6.67a , ························································· 12分 若T 张帆>T 杨君,则有93.67-6.67a>91.33-3.33a . 解得0.7a <. ····························································································· 14分 ∴0.50.7a <≤时,张帆的综合得分高,0.70.8a ≤≤时,杨君的综合得分高. ···· 15分四、开放题(本题30分) 15.答案不惟一.(本题编写出题目可给15分,解释了其中的道理或给出详解可得满分,其他情况可酌情给分.)。
第七届学用杯全国数学知识应用竞赛八年级初第七届“学用杯”全国数学知识应用竞赛八年级初赛B卷试题一、选择题(每小题6分,共30分)1.图1是石家庄市中华大街与二环路交叉口的转盘示意图.在周日某时段车流高峰期,单,,(假设单位时间内进出路口A,B,C,D的机动车数量如图1所示,请你计算该高峰期单位时间内通过路段AB,BCCDDA位时间内,在上述路段中,同一路口驶入与驶出的车辆数固定)车辆最多的是()A.AB B.BCC.CDD.DA2.手工课上,小明用螺栓将两端打有孔的5根长度相等的木条,首尾连接制作了一个五角星,他发现五角星的形状不稳定,稍微一动五角星就变形了.于是他想在木条交叉点处再加上若干个螺栓,使其稳定不再变形,他至少需要添加的螺栓数为()A.1个B.2个C.3个D.4个3.骑电动自行车出行是很多人的选择,电动自行车比脚踏自行车省力,比摩托车环保,可谓好处多多,当然价格居高不下也是因为这些好处.受市场影响,某品牌同种价位的电动车在三个商场都进行了两次提价(第二次提价的百分比是以第一次提价后的价格为基础的),A商场第一次提价的百分比为某,第二次提价的百分比为y;B商场两次提价的百分比都是场第一次提价的百分比为y,第二次提价的百分比为某,如果某y0,则提价最多的商场是()某y;C商2A.A商场B.B商场C.C商场D.无法确定4.小张和小李听说某商场在“十·一”期间举行特价优惠活动,两人约好前去购物,当他们到的时候,只剩两种商品还在搞特价,每件商品单价分别是8元和9元,于是他们各自选购了这两种商品数件,已知两人购买商品的件数相同,且两人购买商品一共花了172元,请问两人共购买了几件商品()A.18件B.19件C.20件D.21件5.师范大学学生张丽、王云、李玲三人一起去银行柜员机取钱,张丽取款一次,王云取款两次,李玲取款三次,假设每取款一次所用时间相同,请问她们三人按什么样的顺序取款,才能使三人所花总时间最少(包括等待时间)()A.张丽,王云,李玲B.李玲,张丽,王云C.张丽,李玲,王云D.王云,李玲,张丽二、填空题(每小题6分,共30分)6.如图3,有一楼梯每一阶的长度、宽度与增加的高度都一样.有一工人在此楼梯的一侧贴上大小相同的正方形磁砖,第一阶贴了4块,第二阶贴了8块,,依此规律共贴了144块磁砖后,刚好贴完楼梯的一侧.则此楼梯共有阶.7.华云中学在20周年校庆时,有100位老同学聚会,他们中有73人家住河北省内,有78人住在城市里,有68人购买了住房,95人有笔记本电脑,假设至少有某人和不超过y人住在河北省的城市里,且有自己的住房和笔记本电脑,则某,y.8.小李家有一块四边形菜地ABCD,这块菜地里有一口井O,从O别是OE,OF,OG,OH,把四边形菜地分成四块(如图4所示),已30m,四边形EOFB的面积为40m,四边形OFCG的面积为50m,222向四边的中点挖了四条水渠,分知四边形AEOH的面积等于那么请你算一算四边形DGOH的面积是m.9.学校田径运动会快要举行了,小刚用自己平时积攒的零花钱买了一双运动鞋,他发现鞋码与脚的大小不是1:1的关系,爱动脑筋的他就想研究一下,到底鞋码与脚的大小是怎样一种关系,于是小刚回家量了量妈妈36码的鞋子,内长是23cm,量了量爸爸42码的鞋子,内长是26cm,又量了量自己刚买的鞋子内长是24.5cm,他认真思考,觉得鞋子内长某与鞋子号码y之间隐约存在一种一次函数关系,你能帮助小刚求出这个一次函数关系式吗?,并说出小刚刚买的鞋是码.10.长期以来,地域偏远、交通不便一直是制约经济发展的重要因素,“要想富,先修路”,某地政府为实施辖区内偏远地区的开发,把一条原有铁路延伸了一段,并在沿途建立了一些新车站,因此铁路局要印制46种新车票,这段铁路线上新老车站加起来不超过20个.请问该地一共新建了个车站,原有个车站.三、解答题(每小题15分,共60分)11.如图5(1),某住宅小区有一三角形空地(三角形ABC),周长为2500m,现规划成休闲广场且周围铺上宽为3m的草坪,求草坪面积.(精确到1m)22由题意知,四边形AEFB,BGHC,CMNA是3个矩形,其面积为2500某3m,而3个扇形EAN,FBG,HCM的面积和为π某32m,于是可求出草坪的面积为7500+9π≈7528(m).(1)若空地呈四边形ABCD,如图5(2),其他条件不变,你能求草坪面积吗?若能,请你求出来;若不能,请说明理由;(2)若空地呈五边形ABCDE,如图5(3),其他条件不变,还能求出草坪面积吗?若能,请你求出来;若不能,请说明理由;(3)若空地呈n(n≥3)边形,其他条件不变,这时你还能求出草坪面积吗?若能,请你求出来.12.集体供暖有燃料的利用率高、供暖效果好和环保等明显特点,被越来越多的人们所接受,2007年11月,市统计部门随机抽查100户家庭供暖方式,以及集体供暖用户对供热的认可情况.制成统计图如图6(1),图6(2),试回答下列问题.(1)在被抽查的100户中,采用其他供暖方式的用户有户.(2)补充完整条形统计图.(3)如果该城市大约有12万户,请你估计大约有多少集体供暖用户对供热认可为基本满意或满意.(4)请你对市政府或热力公司提出一条合理化建议.13.2007年8月22日,中国人民银行再次上调存款基准利率,这是央行本年内第4次加息,根据决定,一年期存款基准利率上调0.27个百分点,由现行的3.33%提高到3.60%,活期存款不变,仍是以前上调后的基准,利率为0.81%.(1)李红现有5000元,若在8月22日存入银行,按活期存入,一年后本息共多少?按一年期存入,一年后本息又是多少222元?(2)王明曾在2007年5月29日调息时存入20000元一年期定期存款,为获得更大的利息收益,在8月22日,是否有必要转存为调整后的一年期定期存款?(提示:2007年8月15日之前利息税率为20%,8月15日利息税率改为5%,若转存,转存前的天数的利息按活期利率计算,且一年存款按365天计算).14.奥威汽车俱乐部举行沙漠拉力训练,每组两辆车,两辆车从同一地点出发,沿同一个方向直线行驶,每车最多只能携带30桶汽油,每桶汽油可以使一辆汽车行进80km,两车都必须返回出发点,但可以先后返回,且两车可以相互赠用双方的汽油,为了使其中一辆车尽可能的远离出发点,请问另一辆车应在离出发点多远处返回?远行的那辆车往返最多能行驶多少千米?四、开放题(本题30分)15.著名数学家华罗庚先生说:“数形结合百般好,隔离分家万事休”.事实上,有些代数问题,通过构造图形来解,常使人茅塞顿开,突破常规思维,进入新的境界;还有三国时期数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明——他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,由此可见,“数形结合思想”在解决数学问题中占有重要地位,请你根据所学的数学知识自己编写一道用数形结合思想解决的实际问题,说明解题思路,给出解答过程.同学们展开你的想象力,试试吧!第七届“学用杯”全国数学知识应用竞赛八年级初赛(B)卷试题参考答案一、1.C.(理由:假设该高峰期AB路段上行驶的车辆数为某.上行驶的车辆数为某-20+30=某+10.则BC上行驶的车辆数为某+10-45+60=某+25.CD上行驶的车辆数为某+25-35+30=某+20.DA上行驶的车辆数最多.据此判断可得此时CD)2.A3.B(取特殊值代入验证即可得出答案)4.C(设每人购买了n件商品,两人共购买了单价为8元的商品某件,单价为9元的商品y件.某y2n,某18n172,则解得8某9y172.y17216n.因为某≥0,y≥0,所以953≤n≤10,n取整数,故n=10,所以共购买了20件.)745.A二、6.8.7.14,68.(提示:根据已知解得,有27人不住在河北省,22人不住在城市,32人没有自己的住房,5人没有笔记本电脑,这个总数是86.他们在四项中至少缺一项,所以至少有14人具有四项中的每一项.因为仅有68人拥有自己的住房,而拥有其他项的人数都大于68,所以具有四项条件的人数最多为68人.)8.409.y=2某-10,39.10.2,11(提示:设原有车站某个,新车站有y个.则每个新车站需要印制的车票有(某+y-1)种,y个新车站要印(某+y-1)y种,对于某个老车站,要印某y种.根据题意,有(某+y-1)y+某y=46,即y(2某+y-1)=46.由于46=1某46=2某23,因为某,y必须取正整数,加之新车站合起来不超过20个,则有即新建2个,原有11个.)三、11.解:(1)如图5(2),空地呈四边形ABCD时,其草坪面积为:S草=S矩形ABFE+S 矩形BGHC+S矩形CMND+S矩形DPQA+4个小扇形的面积的和.∵4个小扇形可以组成一个圆.∴S草地=2500某3+9π≈7528(m2).(2)∵空地呈五边形时,5个小扇形可以组成一个圆.y2,2某y123.符合题意,解得某11,y2.∴S草地=2500某3+9π≈7528(m).(3)∵空地呈n边形时,n个小扇形也可以组成一个圆.∴S草地=2500某3+9π≈7528(m2).答:不论空地呈三角形、四边形还是五边形,,还是n(n≥3)边形,其面积都是7528m2.12.解:(1)15;(2)略;(3)9.69万户;(4)不惟一,示例:对市政府可以是继续进行热力改造,扩大集体供暖用户的数量;对热力公司改进服务质量,提高老百姓的认可率.13.解:(1)按活期存入,一年后的本息和为:5000某(1+0.81%某95%)=5038.475(元);按一年期存入,一年后的本息和为:5000某(1+3.60%某95%)=5171(元).(2)王明若从5月29日起存入20000元,一年期定期存款不转存,则可以得到利息为:20000某3.33%某278287某0.8+20000某3.33%某某0.95≈611.35(元).365365若在8月22日转存,王明从5月29日起一年后获得的利息为:20000某78736585某0.81%某0.8+20000某某0.81%某0.95+20000某某3.60%某0.95≈555.36(元).3653653652某)80由于611.35>555.36,所以王明没有必要转存自己于5月29日的存款.14.解:设两车中,甲车应在离出发点某km处即返回,乙车最远能离出发点ykm,因而甲车能赠给乙车的汽油为(30-桶,由题意可得2某某3030≤30,①80802y30302某,②8080解不等式①,得某≥800.由方程②,得y(2400某).要使y最大,则需某取最小值.故当某=800时,y最大1600.因而往返全程最多为2y216003200(km).即甲车行驶至800km处应返回,乙车往返最多可行驶3200km.四、15.答案不惟一.略.。
增长率计算公式是什么该如何计算增长率是统计学中经常会用到的一个概念,那么关于它的相关知识大家了解吗?下面是由编辑为大家整理的“增长率计算公式是什么该如何计算”,仅供参考,欢迎大家阅读本文。
增长率计算公式增长率也称增长速度,它是时间序列中报告期观察值与基期观察值之比减1 后的结果,用%表示。
增长率公式:n年数据的增长率=[(本期/前n年)^(1/(n-1) )-1]×100%公式解释:1、本期/前N年:应该是本年年末/前N年年末,其中,前N年年末是指不包括本年的倒数第N年年末,比如,计算2005年底4年资产增长率,计算期间应该是2005、2004、2003、2002四年,但前4年年末应该是2001年年末。
括号计算的是N年的综合增长指数,并不是增长率。
2、( )^1/(n-1)是对括号内的N年资产总增长指数开方。
也就是指数平均化。
因为括号内的值包含了N年的累计增长,相当于复利计算。
因此要开方平均化。
应该注意的是,开方数应该是N,而不是N-1,除非前N年年末改为前N年年初数。
总之开方数必须同括号内综合增长指数所对应的期间数相符。
而具体如何定义公式可以随使用者的理解。
3、[( )^1/(n-1)]-1,减去1是因为括号内计算的综合增长指数包含了基期的1,开方以后就是每年的平均增长指数,仍然大于1,而我们需要的是年均增长率,也就是只对增量部分实施考察,因此必须除去基期的1,因此要减去1。
拓展阅读:增长率的相关公式1、n年数据的增长率=[(本期/前n年)^(1/(n-1))-1]×100%;2、同比增长率=(当年的指标值-去年同期的值)÷去年同期的值*100%;3、环比增长率=(本期的某个指标的值-上一期这个指标的值)/上一期这个指标的值。
本期/前N年:应该是本年年末/前N年年末,其中,前N年年末是指不包括本年的倒数第N年年末,括号计算的是N年的综合增长指数,并不是增长率。
全国数学知识应用竞赛七年级初赛(校拟)试题(A )卷 (本卷满分150分,考试时间120分钟)题号一 二 三 四 总分 得分温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧,愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷。
一、填空题(每小题5分,共30分)1.七年级(1)班的生物小组在同一枝条上收集到三枚叶片做植物标本,测得叶片①的最大宽度是8厘米,最大长度是16厘米;叶片②的最大宽度是7厘米,最大长度是14厘米;叶片③的最大宽度是6.5厘米,最大长度是13厘米.叶片①、 ②分别记为(8+,16-)、 (7+,14-),仿照上述记法,则叶片③应记为 .2.美国是世界上最大的纸张生产和消费国.美国人买礼品讲究纸包装,购物喜欢用纸袋,餐桌喜欢用纸台布,吃饭、喝水更是离不开纸巾、纸杯.另外,报刊、广告、商品目录在美国多如牛毛,许多免费刊物人们随看随丢.政府部门办公用纸的用量更是令人咋舌,平均每小时工作用纸1 000万张.以美国国防部为例,一年约用纸210万箱,每箱5 000张,则美国国防部一年约用纸 张(用科学记数法表示).3.某校七年级有三个班,(1)班有40人,(2)班有36人,(3)班有44人,现三个班都按相同的比例派同学参加第七届“学用杯”数学知识应用竞赛,已知全年级共有30人未参加,则该校七年级(1)班参加竞赛的有 人.4.保险公司赔偿损失的计算公式为:保险赔偿=参保财产价值×损失程度,损失程度=保险财产受损价值保险财产受损当时市场完好价值×100%.若某人参加保险的财产价值为100 000元,受损时,按当时市场价计算总值为80 000元,受损后残值为20 000元,则该投保人能获得 元保险赔偿.5.假设图1为特快火车软座车厢的座位图,若小明坐在第6车、第八列、第三排,则他的车票号码为第6车第 号.6.小明家最近买了一套二手楼房,小明的爸爸准备将厨房、卫生间原来的地砖换成一种既防滑,又不易结污的新型正方形地砖(如图2,阴影部分表示地砖上的略凸起的部分,有防滑效果).利用4块这样的地砖,你能拼出 种不同的正方形图案.二、选择题(每小题5分,共30分)7.有一个外观为圆柱形的物体,它的内部构造从外部看不到.当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图3所示的(1)、(2)两组形状不同的截面,则这个物体的内部构造是( ).A .空心圆柱B .空心圆锥C .空心球D .空心半球8.有一条围粮的席子,长5米,宽2.5米,把它围成一个筒状的粮食囤.围法有两种: 第一种围法:围成周长2.5米,高5米的粮囤;第二种围法:围成周长5米,高2.5米的粮囤.下列说法正确的是( ).A .第一种围法的容积大,盛粮多B .第二种围法的容积大,盛粮多C .因是同一条席子围成的粮囤,所以两种围法围成的粮囤盛的粮一样多D .无法判断哪种围法围成的粮囤盛的粮多9.把一根绳子对折成线段AB ,如图4,从P 处把绳子剪断,已知12AP PB ,若剪断后的各段绳子中最长的一段为40厘米,则绳子的原长为( ).A .30厘米B .60厘米C .120厘米D .60厘米或120厘米10.某省积极响应“村村通公路”政策号召,截至2007年6月底,全县已有23的农村修建了公路.现准备将一条新修成的公路(如图5)一旁等距离地竖立电线杆,要求在两端及转弯的地方都分别竖立一根电线杆,则至少要竖立电线杆( ).A .20根B .19根C .18根D .17根11.我国著名的数学家华罗庚教授,在他生前写的文章中这样说:“……如果我们宇宙航船到了一个星球上,那儿也有如我们人类一样高级的生物存在.我们用什么东西作为我们之间的媒介呢?带幅画去吧,那边风景特殊,不了解.带一段录音去吧,也不能沟通.我看最好带两个图形去,一个‘数’,一个‘数形关系’(勾股定理)……”他在这里谈的到“数”指的是我国古代的“河图”,它是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图6给出了“河图”的部分点图,请你推算出P 处所对应的点图是( ).12.有一拉面师傅首先把一个面团搓成1.6米长的圆柱形面棍,对折,再拉长到1.6米;再对折,再拉长到1.6米;……这样对折10次,再拉长到1.6米,就做成了拉面.此时,若将手中的面条伸展开,把面条看作粗细均匀的圆柱形,它的粗细(直径)是原来面棍粗细(直径)的 ( ).A .116B .132C .164D .1128三、解答题(每小题15分,共60分)13.小惠和小红在学校操场的旗杆前玩“石头、剪刀、布”的游戏,规则如下:在每一个回合中,若某一方赢了对方,便可向右走2米,而输的一方则向右走-3米,和的话就原地不动,最先向右走18米的便是胜方.假设游戏开始时,两人均在旗杆处.(1)若小惠在前四个回合中都输了,则她会站在什么位置?(2)若小红在前三个回合中赢了两次输了一次,则她会站在什么位置?(3)假设经过五个回合后,小红仍然站在旗杆处,且没有猜和(即五个回合中没有出现和的情况).问小惠此时会站在什么位置?14.某儿童商场暑期进行大促销活动,并在购物大厅的一角设置了一个名为“智力快乐站”的参与游戏,每位在儿童商场购物的家长都可以带孩子参加这个游戏,每位家长与孩子一起抽取问题并进行解答,若能答对的话,会有精美礼品赠送.其中一位家长和孩子抽到的题目是:如图8,是由图7的六种图形拼成的,请你在图8中标出一种拼法.15.某市积极响应政府提出的“加快旧城改造,建设新型绿色城市”的号召,将位于居民区较集中的一处破旧厂房进行规划,建成了一个供附近居民休闲散步的公园.在公园的中心建了一个正方形的音乐喷泉(图9).现计划将喷泉四周用花隔开.如有16盆花,要放在喷泉四周,要使每一条边上所放盆花同样多,该怎么放呢?有几种放法?每边放几盆花?试画图说明.16.为了备战北京奥运会,国家田径队的运动员在专门设置的新型三环形跑道上,夜以继日抓紧训练.每条环形跑道的长度都是200米并相交于同一个点A(如图10所示).有一天,李刚与其他两名队员从三条跑道的共同交点A同时出发,各取一条跑道练习长跑.(按图中箭头所示方向开始跑).甲每小时跑5千米,乙每小时跑7千米,李刚每小时跑9千米.请问他们三人第五次在A点相遇时,跑了多长时间?17.古时候有个做油炸馓子的小贩,一日正挑着货担行走,与一村民相撞,将所有的馓子都撞落在地,那村民答应赔他50枚馓子的钱,小贩偏说他的馓子有300枚,两人争执不下.这时,有一位刘大人正好路过此地,问明情况后,刘大人让人拿来一枚馓子,称了它的重量,然后让人从地上扫起所有馓子的碎末,再称出总质量来,把这两个数字一折算,便得小贩的馓子的确实数目了,谁是谁非一目了然.读完上面的故事,请你想一想:(1)现有一大捆粗细均匀的电线,要确定其长度总值,怎样做比较简捷可行....?(使用的工具不限)(2)针对上面问题的讨论,你有哪些感想?七年级初赛试题(A)卷参考答案一、填空题(每小题5分,共30分)1.( 6.513),+-2.101.0510⨯3.304.75 0005.326.8二、选择题(每小题5分,共30分)7.C 8.B 9.D 10.C 11.D 12.B三、解答题(每小题15分,共60分)13.(1)小惠站在旗杆左12米处;……………………(5分)(2)小红站在旗杆右1米处;…………………………(10分)(3)小惠站在旗杆左5米处.…………………………(15分)14.提示:找出一种拼法即可.评分注意:只要给出其中的一种正确拼法即可得分.15.4种放法,………………………………………………(3分)如下图:(1)每边放5盆花 (2)每边放6盆花(3)每边放7盆花 (4)每边放8盆花评分注意:①答对“4种放法”得3分,再每画对一种放法得“3分”;②若“4种放法”没答对,无论放法画的正确与否,均不能得分.16.甲跑一圈用2001500025= (小时), 乙跑一圈用2001700035= (小时), 李刚跑一圈用2001900045= (小时),故他们三人第一次相遇用了15小时(此时他们三人分别跑了5、7、9圈),所以他们第五次在A点相遇时恰好跑了1小时.评分注意:要求有详细的解题步骤才能得满分,只给出最后结果不能得分.四、开放题(本题30分)17.(1)设这捆电线总长度为L,称出这捆电线的总质量为M,拿剪刀剪下一段,量出其长度为l,称出其质量为a,则这捆电线的长度为lMLa .……………………………(15分)(2)提示:不惟一,如:遇到不易解决的问题要学会转化.………………………(15分)。
全国数学知识应用竞赛七年级初赛(校拟)试题A卷(本卷满分150分考试时间120分钟)题号一二三四总分得分温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧,愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷.一、选择题(每小题6分,共30分)1.在一本名为《数学和想象》的书中,作者爱德华·卡斯纳和詹姆斯·纽曼引入了一个名叫“Googol”的大数,这个数既大且好,很快就被著书撰文者采用并普及到数学文章中,“Googol”是这样一个数,即在1这个数字后面跟上一百个零.如果用科学记数法表示“Googol”这个大数,它的指数是()A.98B.99C.100D.1012.老年人活动中心麻将馆门口的拐角处放着一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的,如图1所示,其中可看见7个面,而11个面是看不到的,则看不见的面其点数总和是()图1 A.21B.22C.41D.43.如果在第六届“学用杯”夏令营活动中,将有198名学生参加,这198名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第198名学生所报的数是()A.1 B.2 C.3 D.44.天意花店在母亲节感恩大特卖活动中,康乃馨1.5元/支,玫瑰花2元/支,包装成整束加工费2元.莉莉手里有21元钱,想买10支花,包装成整束后送给妈妈,应该如何搭配()A.7支康乃馨,3支玫瑰花B.8支康乃馨,2支玫瑰花C.3支康乃馨,7支玫瑰花D.2支康乃馨,8支玫瑰花5.小明和爸爸在锻炼时发现:小明每跑8步而爸爸只能跑5步,可是爸爸2步的距离相当于小明5步的距离.如果小明从爸爸面前跑了27步后,爸爸才开始追小明,则爸爸把小明追上至少需要跑的步数为()A.20B.30C.40D.48二、填空题(每小题6分,共48分)6.中央电视台李咏主持的“幸运52”节目中,有这样一个游戏:李咏向甲出示一张纸条,让甲用语言或动作将纸条上的内容告诉乙,但甲的叙述中不能出现纸条上的字.假设你和同学聪聪玩这种游戏,李咏向你出示的纸条上面写着“0”,你对聪聪可以说“两个相等的数的差”等,但不能说“零”.你还有其他说法吗?请写出3种不同的说法(要求语言简练、准确):(1)__________;(2)__________;(3)__________.7.在用flash画一个正方形时,如图2,实折线是正方形的两条邻边,虚折线是由实折线经过平移得到的,当虚折线按顺时针方向旋转__________度,并经过适当平移后恰好与实折线组成正方形.8.我国古代用算筹记数,表示数的算筹有纵、横两种方式:如要表示一个多位数字,即把各位的数字从左到右横列,各位数的筹式需要纵横相间,个位数用纵式表示,十位数用横式表示,百位、万位用纵式,千位、十万位用横式.例如:614用算筹表示出来是;数字有空位时,如86021用算筹表示出来是,百位是空位就不放算筹.那么,“”表示的最小的数是__________.9.我们知道,赤道周长近似等于40000km,它可以看作是地球的“腰带”.如果假设这根“腰带”长出10m,那么它离开地球表面的空隙是__________;判断你和你的同学能否从这根新“腰带”下走过呢?__________.(填“能”或“不能”).10.公园里修了五条笔直的甬路,其余的部分进行绿化,那么需要绿化的部分最多有__________块.11.芭比玩具厂实行计时工资制,每个工人工作1小时的报酬是5元,一天工作8小时.但是用于计时的那口钟不准:每72分钟才使分针与时针重合一次,因此工厂每天少付给每个工人的工资是__________元.(提示:正常的时钟,分针与时针重合一次的时间为60 6011⎛⎫+⎪⎝⎭分)12.在一次师生互动交流会上,参加者是部分科目的老师和该班的学生,共有31人.会上,第1位老师与16名学生交换意见;第2位老师与17名学生交换意见;第3位老师与18名学生交换意见;…;依次类推,直到最后一位老师和所有学生交换意见.参加这次会议的老师有__________位,学生有__________名.13.李强租种了张大伯一块土地,他每年要支付给张大伯800元钱和若干千克小麦.某天,他心里打起了小算盘:当时小麦的价格为每千克1.2元,这笔开销相当于每亩地70元;但现在小麦的市价己涨到每千克1.6元,所以他所支付的相当于每亩地80元.通过李强的小算盘,你可以知道这块农田是__________亩.三、解答题(每小题14分,共42分)14.在实际生活中,平行线的“影子”很多很多,如图3-1,笔直的两条铁轨和一条条枕木都给我们平行线的形象.在你的身边,还有哪些平行线的实例?不妨举出两个.图3-2是以多组平行线设计的图案,请你展开自己的想象力利用平行线设计一幅美丽的图案.图2图3-1 图3-215.如图4表示的是一个正方体房间,一只苍蝇在房间上角B 处,一只蜘蛛在房间下角A 处,蜘蛛发现苍蝇后准备沿屋面(包括地面)偷袭苍蝇.根据以上数学情景,请提出数学问题,并解答.16.有一位盲人把6筐24个西瓜摆成一个三角形(如图5),三角形的每条边上都是三筐西瓜,且个数和为9个.为检查西瓜是否丢失,他每天摸一次,只要每条边上三筐的西瓜一共是9个,他就放心了.没想到,他的邻居,一个淘气的小男孩跟他开了个玩笑,第一天偷出了6个,第二天又偷出了3个,一共少了9个西瓜,而这位盲人却一点没发现,这是怎么回事?四、创新题(本题30分)17.一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给孩子一块糖;来两个孩子,老人就给每个孩子两块糖……(1)第一天有a 个男孩去了老人家,老人一共给了这些孩子2a 块糖;(2)第二天有b 个女孩去了老人家,老人一共给了这些孩子2b 块糖;(3)第三天这()a b +个孩子一起去了老人家,老人一共给了这些孩子()2a b +块糖. 这些孩子第三天得到的糖果数与前两天他们得到的糖果总数相比哪个多,哪个少?为什么?经过思考可知,a 个男孩每人多得了b 块糖,b 个女孩每人多得了a 块糖,因此多得了2ab ab ab +=块糖,即有()2222a b a b ab +=++.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.在一定条件下,数和形之间可以相互转化,相互渗透.体会数形结合思想的内涵,试设计一种图形来说明()2222a b a b ab +=++.(要求:画出图形,并利用图形作必要的推理说明)七年级初赛试题(A)卷参考答案图 4 图5一、选择题(每小题6分,共30分)1.C 2.C 3.B 4.D 5.B二、填空题(每小题6分,共48分)6.答案不惟一.如:数轴上原点对应的数,表示没有的数,和任何数相乘都等于自身的数,等7.180 8.10340 9.1.59m ,能.(提示:10 1.592π2πC C +-≈) 10.16.(提示:实质是5条直线相交,最多将平面分成几部分)11.4.(提示:实际每天工作7288.8606011⨯=+小时) 12.8,23.(提示:设老师有x 位,则()1531x x ++=)13.20.(提示:设这块农田是x 亩,根据题意,得70800 1.6800801.2x x -⨯+=) 三、解答题(每小题14分,共42分)14.实例1 ···································································································· 2分 实例2 ·········································································································· 2分 如,实例1:操场上的双杠;实例2:电梯上的扶手.答案不惟一.设计图案要求:(1)必须有平行线 ························································································· 4分(2)图案正确,有一定的设计道理 ···································································· 4分(3)图案美观 ······························································································· 2分15.答案不惟一.提出的问题 ···································································································· 6分 如:蜘蛛沿屋面偷袭苍蝇,最近的路线有几条?问题的解答 ···································································································· 8分16.第一次输出了6个西瓜后,剩余西瓜重新摆放如下图: ···································· 7分第二次偷出了3个西瓜后,剩余西瓜重新摆放如下图: ··········································· 7分四、创新题(本题30分)17.给出图形 ······························································································· 20分 给出说明 ····································································································· 10分 如图,该图形的面积等于()2a b +,还等于()22a ab ab b +++,即222a ab b ++.所以通过求此图形的面积可知()2222a b a ab b +=++.。
第八届“学用杯”全国数学知识应用竞赛七年级初赛(B)卷试题一、填空题(每小题6分,共30分)1.在国外留学的叔叔送给聪聪一个新奇的玩具——智能小兔子.它的新奇之处在于若第一次向正南跳一下,第二次就掉头向正北跳两下,第三次又掉头向正南跳三下……而且它每跳一下的距离均为20厘米.如果小兔子第一次向正南跳,那么跳完第80次后,它在起跳点的________(填“正南”或“正北”),距离起跳点米.2.小张的三位朋友甲、乙、丙想破译他在电脑中设置的登录密码.但是他们只知道这个密码共有五位数字.他们根据小张平时开电脑时输入密码的手势,分别猜测密码是“51932”、“85778”或“74906”.实际上他们每个人都只猜对了密码中对应位置不相邻的两个数字.由此你知道小张设置的密码是.3.2008年北京奥运会已经圆满结束了,除了赛场上的奥运选手给我们留下了深刻的印象,还有让我们更难忘的是赛场内外提供“微笑”服务的人——志愿者.在志愿者选拔中,来自北大、清华、北师大的三位大学生李志、文文、刘兵都有幸当上了志愿者,但他们三人分工不同,他们中有赛会志愿者、城市志愿者、社会志愿者.告诉你以下情况:(1)李志不在北大;(2)文文不在清华;(3)在北大的不是赛会志愿者;(4)在清华的是城市志愿者;(5)文文不是社会志愿者.根据这些条件,请你判断:(1)李志是的学生,是志愿者;(2)文文是的学生,是志愿者;(3)刘兵是的学生,是志愿者.4.小明同学参加了学校组织的“互帮互助向明天”的活动,来指导新生如何更快地融入新的学习和生活中.小明在家制作了四份小礼品,准备送给与他“结对子”的新同学,四份小礼品分别装在形状完全一样的小长方体礼盒里,每个小长方体礼盒的长、宽、高分别是3分米,1分米,1分米.他想把它们拼成一个大长方体,外面用包装纸包好,以便带到学校,那么会有种不同的拼法,在这些拼法中包装纸最少用平方分米,最多用平方分米(包装纸重叠部分不计).5.为了响应“植树造林,绿化荒山”的号召,育才中学七年级(1)班的同学在老师的带领下去山坡上种树.种完树后,老师让同学们数数一共种了多少棵树,结果大家发现:2棵2棵的数还剩1棵,3棵3棵的数还剩2棵,4棵4棵的数还剩3棵,5棵5棵的数还剩4棵,6棵6棵的数还剩5棵,7棵7棵的数正好数完.那么他们至少种了棵树.二、选择题(每小题6分,共30分)6.堰塞湖是一种由地震或其他原因引起的山体滑坡、熔岩流、泥石流或其他物质堵塞河谷或河床后贮水而形成的湖泊.唐家山堰塞湖是2008年四川省“5·12汶川大地震”形成的最大最险的堰塞湖,垮塌山体约达2 037万立方米,假设这些山体物质平均每立方米重3.5吨,若这些山体垮塌物全由载重为19吨的汽车来运输,要想一次运完,则需要这种汽车(四舍五入保留3个有效数字)( )(A)3.752×106辆(B)3.75×106辆(C)0.375×107辆(D)37.5×105辆7.某体检中心有编号为A、B、C、D、E的五台体重计,由于长时间使用,有的称重已经不太准确.已知称同一个人的体重时,它们的差别为:C比B轻0.3千克;D比C轻0.1千克;E比A轻0.1千克;C比E轻0.1千克.巧合的是,五台体重计称量的平均数是准确的体重数.现在知道只有一台体重计称重准确,请你想一想,称重准确的体重计是( )(A)A (B)B (C)D (D)E8.王老师在教学过程中善于把数学知识与实际生活联系在一起.在课堂上,他把全班同学分成五组,编号分别是A、B、C、D、E,每组的人数分别是10、7、9、8、6.游戏规则:当他数完1后,人数最少的那一组学生不动,其他各组各出一个人去人数最少的那组;当他数完2后,此时人数最少的那一组学生不动,其他各组再各出一个人去人数最少的那组……如此进行下去,那么当王老师数完2 008后,A、B、C、D、E五个组中的人数依次是( )(A)9、6、8、7、10 (B)7、9、6、10、8(C)6、8、10、9、7 (D)8、10、7、6、99.你小时候玩过积木吗?有关专家指出,搭积木游戏可以促进孩子视觉智能的成长.当孩子刚开始搭积木时,首先会学习到的是线条的排列组合,接着则是思考如何运用空间的垂直性来搭建塔楼.下面就来测试一下你搭积木的水平吧.在下列四个积木块中,能与图1完全组合拼成一个4×4×4的正方体木块的是( )10.QQ空间是一个展示自我和沟通交流的网络平台.它既是网络日记本,又可以上传图片、视频等.QQ空间等级是用户资料和身份的象征,按照空间积分划分不同的等级.当用户在10级以上,每个等级与对应的积分有一定的关系.现在知道第10级的积分是90,第11级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是490……若某用户的空间积分达到1 000,则他的等级是( )(A)15 (B)16 (C)17 (D)18三、解答题(每小题15分,共60分)11.截至到今天,离汶川大地震已有半年多的时间了,在这场中国近三十二年来最惨烈的地震灾害中,我们再一次感受到了举国上下高涨的爱国之心、同胞之情.在一次将地震伤员转移的任务中,待转移的重症伤员暂住在A、B、C、D、E五个临时救助点,其中A处有6人,B处有4人,C处有8人,D处有7人,E处有10人.每个救助点之间的位置和距离如图2所示.现在考虑用担架将这些重症伤员转移到一个集中救助点,由救护车把他们送到邻省的医院治疗.为使运送伤员所走路程总和为最小,你认为救护车应在哪个救助点停靠?12.为保持水土、美化环境,某中学准备在校门口到操场的道路两侧栽一些垂柳,要求路两侧树的棵数和间距均相等,且首、尾两端均栽上树.现在学校已备好一批树苗,若每间隔3米栽一棵,则缺少18棵;若每间隔3.5米栽一棵,则缺少10棵.(1)如果每间隔4米栽一棵,则所备树苗是剩余还是不足?剩余或缺少多少棵?(2)如果想使备用树苗够用且刚好用完,应该每间隔多少米栽一棵树?(精确到0.1米)13.小胖是一个地地道道的金庸迷,在看完黄蓉轻而易举地填出瑛姑的方阵图后,喜欢上了这类填数字游戏.一般方阵图的填写对他来说简直就是小菜一碟,可是下面的这道题却难住了他.聪明的你快来帮帮小胖吧.如图3,在3×3方格中,已知填在三个格中的数字,做填数字游戏:要求填入数字后使各行、各列以及对角线上的三个方格中数字之和相等.请你试一试.14.现有一批用原木加工好的、统一规格的圆柱体木材.第一批20段,直径80厘米,圆柱体高为250厘米.第二批18段,直径为100厘米,圆柱体的高为170厘米.将这些圆柱体木材用专门设备采用逐层剥皮的方法加工成厚为0.1厘米的薄木片如图4.将这些薄木片按其木纹的纵纹——横纹——纵纹——横纹——纵纹的顺序一层一层地粘贴,粘成五层胶合板(贴每层一般都可以拼接,但接缝处不留空隙),贴完后用机器把胶合板压平压实,边缘按规格裁齐,所得整张胶合板的尺寸为91厘米×182厘米.问这些木材可以做成整张的五层胶合板多少张?(π取3.14,假如加工时材料的损耗率为5%)四、开放题(本题共30分)15.我们知道圆的周长公式为,当半径r越大,其周长也越大.请结合这个常识联系实际学习生活写一篇有教育意义的短文.。
第七届“学用杯”全国数学知识应用竞赛模拟试题(三)(六年级组)一.填空题。
(每题10分,共100分)1.计算:⑴2021×2021×(200820071200720061⨯+⨯)= 。
⑵20.07×39+200.7×4.1+40×10.035= 。
2.如图所示的竖式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,那么“运”字所代表的数字是 。
3.古印度梵文中的趣题:有一群蜜蜂,其中51落在杜鹃花上,31落在栀子花上,数目为这两者差数3倍的蜜蜂飞向一个树枝搭成的棚架,最后剩下1只小蜜蜂在芳香的茉莉花和玉兰花之间飞来飞去。
问共有 只蜜蜂。
4.北京奥组委从20XX 年4月15日起分三个阶段向境内公众销售第29届奥运会门票,开幕式门票分为五个档次,票价分别为人民币5000元、3000元、1500元、800元和200元。
某网点第一周内开幕式门票的销售情况统计如图所示,则此网点第一周售出的门票总计 元。
5.有形状、长短、质量完全一样的6种颜色的筷子各24根。
在黑暗中至少应摸出 根筷子,才能保证摸出8双筷子(每双筷子中的两根颜色相同)。
6.用分别写有数字的四张卡片□1,□2,□3,□4可以排出不同的四位数,如1234,1342,…共24个,其中能被22整除的四位数共有 个。
7.A 国与B 国各自都有自己的货币,两国之间的货币兑换非常有趣。
在A 国,A国的2元等于B 国的3元;在B 国,B 国的2元等于A 国的3元。
每次兑换货币的数量不限,但是每次兑换后要交手续费16元(任何一国货币均可)。
一位聪明的博士,他现在在A 国,身上只有160元A 国货币,他想往返于A ,B 两国之间,通过兑换货币,使自己的钱增加到千元以上(两国货币均可)。
那么,他至少要通过边境 次。
8.对于任意正整数m ,n ,规定nn m m m C n m ⨯⨯⨯⨯+--=321)1()1(,通过计算可知,3,1221211=+=C C C ,15,744342414332313=+++=++C C C C C C C 则8878382818C C C C C +++++ = 。
一、概念1、两期比重比较指现期和基期同一个比重的比较;平均数增长率指现期平均数与基期平均数之间进行比较,一般有“均”或者“每”的关键词;2、两期比重变化类问题的选项一般为百分点(极少数以百分比形式);平均数的增长率的选项一般是百分比。
二、计算方法1、两期比重差值:现期比重-基期比重=;(其中,A和B分别对应部分和整体的现期数值,a和b是其对应的增长率)2、平均数的增长率:平均数A/B的增长率=,其中a和b对应A和B的增长率。
推导过程:若总量的现期量A,总数的现期增长率a,总量的现期量B,总数的现期增长率b,则:即:。
三、解题技巧1、两期比重变化(1)先判断方向:若a>b,则比重上升;反之下降。
(带正负号比较)(2)再判断数值:(猜)选数值(绝对值)最小的选项。
(效率最高,有极小风险)这是因为:两期比重上升或下降几个百分点=,因此实际值应远远小于|a%-b%|。
(做)数值远小于|a-b|,据此对选项进行排除,这是因为:两期比重上升或下降几个百分点=,因此实际值应远远小于|a%-b%|。
若选项仍不唯一,则需按照公式计算。
2、平均数的增长率(1)先判断方向:若a>b,平均数变大;反之变小。
(带正负号比较)(2)再判断数值:套用公式(由于分母接近于1,所以结果一般接近于a-b,略大或略小)。
四、典型题目1、求比重变化的数值【例1】2013年3月末,主要金融机构本外币工业中长期贷款余额6.46万亿元,同比增长3.2%。
其中,轻工业中长期贷款余额6824亿元,同比增长7.6%。
2013年3月末,轻工业中长期贷款余额占工业中长期贷款余额总体的比重与上年相比:()A.约上升0.4个百分点B.约上升4个百分点C.约下降0.4个百分点D.约下降4个百分点【解析】问“比重与上年相比”,选项为百分点,可判断题型为比重变化。
其中,部分为“轻工业中长期贷款余额”,增长率为7.6%,整体为“工业中长期贷款余额”,增长率为3.2%,7.6%>3.2%,比重上升,排除C、D;数值远小于7.6%-3.2%=4.4%,故本题答案为A选项,也可以在判断完方向后直接选数值最小的A选项,如果为了保险,可以套入公式进行计算再选择。
全国数学知识应用竞赛九年级初赛试题(A)卷(本卷满分150分,考试时间120分钟)温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧.愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷.一、选择题(每小题6分,共30分)1.校园内一个半径为10米的圆形草坪,如图1,一部分学生为走“捷径”,走出了一条小路AB.通过计算可知,这些学生踩坏了花草,其实仅仅少走了(假设2步为1米,结果保留整数)()A.4步B.5步C.6步D.7步2.小红的妈妈做了一个矩形枕套(长、宽不等),又在枕套四周镶上了相同宽度的花边,如图2所示,关于两个矩形,下列说法正确的是()A.两个矩形相似B.两个矩形不一定相似C.两个矩形一定不相似D.无法判断两个矩形是否相似3.如图3,方台村为了抽取水库的水来浇灌山上的果木树,准备在山坡上建一个抽水泵站.已知山坡上有A、P、Q三处可供选择,且测得A到水库C的距离为50m,P到C的距离为40m,Q到C的距离为35m,山坡的坡角∠ACB=15°.由于大气压的影响,此种水泵的实际吸水扬程AB不能超过10m,否则无法抽取水库的水,则水泵站应建在(sin15°=0.258 8,cos15°=0.965 9,tan15°=0.267 9)()A.A处B.P处C.Q处D.A、P、Q均可4.宏光学校有一面积为100米2的正方形展厅,计划铺满统一大小的正方形地板砖,现市场上有大、小两种规格产品:大地板砖对角线长为50cm,每块0.8元;小地板砖对角线长为40cm,每块0.6元,甲公司的优惠办法是:凡购买大地板砖700块以上者给予9折优惠,凡购买小地板砖1 000块以上者给予7折优惠;乙公司的优惠办法是:凡购买700元以上者,不管购买大块还是小块均按8折优惠.在质量、服务条件相同的情况下,为使学校支付的费用最少,请你为该校选择最佳购买方案()A.到甲公司购买大块地板砖B.到乙公司购买大块地板砖C.到甲公司购买小块地板砖D.到乙公司购买小块地板砖5.如图4,在某条公路上,从里程数8m开始到4 000m止,每隔8m将树与灯按图中的规则设立:在里程数8m处种一棵树,在16m处立一盏灯,在24m处种一棵树(相邻的树与树、树与灯之间的距离都是8米)……,且每两盏灯之间的距离相等.依此规则,下列里程数800m~824m之间树与灯的排列顺序中正确的是()二、填空题(每小题6分,共30分)6.王强毕业于农业技术职业学校,毕业后采用大棚栽培技术种植了一亩地的良种西瓜,第一年这亩地产西瓜625个,为了估计这亩地的收成,王强在西瓜大批上市前随机摘下10个成熟的西瓜,称重如下:西瓜质量(单位:千克) 5.5 5.4 5.0 4.9 4.6 4.3西瓜个数(单位:个) 1 2 3 2 1 1根据以上信息可以估计这亩地的西瓜质量约是千克.7.你是否用电脑进行过图案设计?图5(1)是小明在电脑上设计的小房子,然后他又进行变化,得到图5(2);小亮也在电脑上设计了一个图案,如图5(3),如果小亮也按小明变化图形时的规律对图5(3)进行变化,得到的图案是(画出简图).8.某希望小学刚刚建起,田径场还没建好,秋季运动会时,临时设置简易跑道如图6所示,两端由两个半圆组成,一周约250米,在一次400米跑比赛中,第一道从起点A要跑一圈半到终点C.第二道终点不变,且中途不准抢道(每道宽1米).为公平起见,第二跑道起点B应比第一跑道向前移动.9.自行车轮胎安装在前轮上行驶6 000千米后报废,若安装在后轮上只能行驶4 000千米.为了行驶尽可能远的路程,如果采用当自行车行驶一定路程后将前、后轮胎调换使用的方法,千米.10.已知,如图7,斜坡PQ坡度为41:3i ,坡脚Q旁的点N处有一棵大树MN.近中午的某个时刻,太阳光线正好与斜坡PQ垂直,光线将树顶M的影子照射在斜坡PQ上的点A 处.如果AQ=4米,NQ=1米,则大树MN的高度为.三、解答题(本大题共60分)11.(本题10分)判断决策:三个无线电厂家在广告中都声称,它们的半导体收音机产品在正常情况下,产品的平均寿命是8年,商品检验部门为了检查他们宣传的真实性,对三个厂家出售的半导体收音机寿命进行了抽样统计,结果如下(单位:年):甲厂:3、4、5、5、5、7、9、10、12、13、15;乙厂:3、3、4、5、5、6、8、8、8、10、11;丙厂:3、3、4、4、4、8、9、10、11、12、13;请你利用所学统计知识,对上述数据进行分析并回答以下问题:(1)这三个厂家的广告,分别利用了哪一种反映数据集中趋势的特征数?(2)如果你是顾客,应选购哪个厂家的产品?为什么?12.(本题15分)方案设计:东风汽车租赁公司共有30辆出租汽车,其中甲型汽车20辆,乙型汽车10辆.现将这30辆汽车租赁给A、B两地的旅游公司,其中20辆派往A地,10辆派往B地,两地旅游公司与汽车租赁公司商定每天价格如下表:每辆甲型车租金(元/天)每辆乙型车租金(元/天)A地 1 000 800B地900 600(1)设派往A地的乙型汽车x辆,租赁公司这30辆汽车一天共获得的租金为y(元),求y 与x之间的函数解析式,并写出自变量x的取值范围;(2)若要使租赁公司这30辆汽车一天所获得的租金总额不低于26 800元,请你说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这30辆汽车每天获得的租金最多,请你为租赁公司提出合理的分派方案.13.(本题15分)实践应用:下承式混凝土连续拱圈梁组合桥,其桥面上有三对抛物线形拱圈.图8(1)是其中一个拱圈的实物照片,据有关资料记载此拱圈高AB为10.0m(含拱圈厚度和拉杆长度),横向分跨CD为40.0m.(1)试在示意图(图8(2))中建立适当的直角坐标系,求出拱圈外沿抛物线的解析式;(2)在桥面M(BC的中点)处装有一盏路灯(P点),为了保障安全,规定路灯距拱圈的距离PN不得少于1.1m,试求路灯支柱PM的最低高度.(结果精确到0.1m)14.(本题20分)归纳猜想:同学们,让我们一起进行一次研究性学习:(1)如图9,已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?(2)如图10,将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图11)?请说明理由.(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).通过以上猜想你可得到什么样的结论?请写出来.四、开放题(本题30分)15.杨子晚报报道《你家用“峰谷电”合不合算?》:“峰谷电”的含义是这样的,每天8∶00到22∶00用电每千瓦时是0.56元(峰电);22∶00至次日8∶00每千瓦时是0.28元(谷电).0.52元.(1)根据你家的平时用电情况,算一算,你家用这样的“峰谷电”合算吗?(2)请根据“峰谷电”的使用,编拟一道数学实际应用问题,并给出解题过程,注明用的什么数学知识.第七届“学用杯”全国数学知识应用竞赛九年级初赛试题 (A )卷参考答案一、选择题(每小题5分,共30分)1.B 2.C 3.C 4.C 5.D二、填空题(每小题5分,共30分)6.3 1257.8.2π米9.4 80010.8米三、解答题(每小题15分,共60分)11.解:(1)因为甲厂的收音机寿命的平均数是8年,众数是5年,中位数是7年;乙厂的收音机寿命的平均数约是6.45年,众数是8年,中位数是6年;丙厂的收音机寿命的平均数约是7.36年,众数是4年,中位数是8年. ···································································· 6分 所以,甲厂选用平均数,乙厂选用众数,丙厂选用中位数; ·············································· 8分(2)因为甲厂收音机的平均寿命比乙厂、丙厂的都高,因此,顾客应选购甲厂的产品.·········································· 10分12.解:(1) 1 000(20)900800600(10)26 000100(010)y x x x x x x =-+++-=+≤≤;·········································· 6分(2)依题意,得26 00010026 800x +≥,又因为010x ≤≤,∴810x ≤≤.因为x 是整数,∴x =8,9,10,方案有3种. ·································································· 9分 方案1:A 地派甲型车12辆,乙型车8辆;B 地派甲型车8辆,乙型车2辆;方案2:A 地派甲型车11辆,乙型车9辆;B 地派甲型车9辆,乙型车1辆;方案3:A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆.································· 12分(3)∵26 000100y x =+是一次函数,且1000k =>,∴y 随x 的增大而增大. ∴当10x =时,这30辆车每天获得的租金最多.∴合理的分配方案是A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆. ············ 15分13.(1)如右图,以A 为坐标原点,BA 所在直线为轴建立直角坐标系xAy ,因拱圈外沿所在的抛物线过原点,且以y 轴为对称轴,故可设抛物线解析式为:2y ax =, ······························································ 4分 由题意抛物线过点(2010)D -,,代入得140a =-,故拱圈外沿抛物线的解析式为: 2140y x =-. ························································································································· 8分 (2)设(10)N k -,,则:21(10) 2.5(m)40k =-⨯-=-, ∴107.5(m)MN k =+=, ································································································· 12分 ∴7.5 1.18.6PM MN PN =++=≥(m ),即路灯支柱PM 的最低高度为8.6米.(其余解法可类似给分). ······································ 15分14.解:(1)当正三角形ABC 向右翻滚一周时,其中心O 经过的路线是三条等弧,所以其中心O 经过的路程为:120π32π180R R ⨯=. ········································································ 3分 (2)中心O 经过的路程为90π42π180R R ⨯=. ···································································· 6分 (3)当n 边形向右翻滚一周时,其中心O 经过的路线是n 条等弧,这些弧的半径为R ,所对的圆心角为360n,所以中心O 经过的路程为360π2π180R n n R ⨯= . ·························· 10分 (4)是定值2πR ,理由如下: 在△ABC 中,设A B C αβγ∠=∠=∠=,,,△ABC 的外接圆⊙O 的半径为R ,把△ABC 沿直线l 向右翻滚一周时,其外心O 经过的路线是三条弧,当AC 边与直线l 重合时,C 与C '重合,A 与A '重合,B 与B '重合,连接CO 、C O '',则ACO AC O '''∠=∠,所以180OCO ACA γ''∠=∠=- ,所以(180)π180R l γ-=,同理,另两条弧长分别为:(180)π180R α-,(180)π180R β-,所以外心O 所经过的路程为2πR . ······························ 16分 通过以上猜想可得结论为:把圆内接多边形翻滚一周时,多边形的外心所经过的路程是一个定值. ······················································································································ 20分四、开放题(本题30分)15.(1)答案不惟一,可选择自己家每月(或平均每天)的用电情况,计算说明.只要合理即可得分.(本小问10分);(2)答案不惟一,本小问共20分,编写题目合理可得10分,再写出解题过程,并说明所用数学知识可得20分,以下题目可参考.题1:(用一元一次方程知识编拟)某户居民今年二月份起使用“峰谷电”,三月份经记录这两个月使用“谷电”150千瓦时,已知两月共付电费112元.问该居民使用“峰谷电”多少(“峰谷电”中,“峰电”是8∶00到22∶00用电,“谷电”是22∶00到次日8∶00,下同)题2:(用二元一次方程知识编拟)某户居民今年三月份使用“峰谷电”,付电费112元,比原来节约了60.8元,问该户居民使用“峰电”,“谷电”各多少千瓦时?题3:(用不等式知识编拟)某户居民今年三月份使用电量300千瓦时,当“峰电”占总电量的多少时,使用“峰谷电”才合算?题4:(用函数知识编拟)某户居民今年三月份起使用“峰谷电”,平均每天使用“峰电”8千瓦时,写出三月份(31天)该户居民的电费(y元)与每天“谷电”的用电量x(千瓦时)之间的函数关系式.。
年均增速计算方法
哇塞,说到年均增速计算方法,这可真是个很重要的知识点呢!
那咱们来好好聊聊它的步骤和注意事项哈。
首先呢,要明确起始值和结束值,这就好比是跑步比赛的起点和终点。
然后呢,用结束值除以起始值,这就像是计算你跑了多远。
接着呢,开年数的次方,这就好像是把这段路程平均到每一年。
最后呢,减去 1 就是年均增速啦!这里面要注意的是,起始值和结束值一定要准确哦,不然可就差之毫厘谬以千里啦!
在计算的过程中呀,安全性和稳定性也是很重要的呢!就像盖房子,根基要稳。
如果数据不准确或者计算过程出了差错,那得出的结果不就像根基不牢的房子一样摇摇欲坠嘛!所以一定要认真仔细,确保每一步都没问题。
那年均增速计算方法都有哪些应用场景和优势呢?哎呀呀,这可多了去啦!比如在经济领域,可以用来分析一个国家或地区的经济增长情况,这就像是给经济发展拍了张快照,能让我们清楚地看到它是跑得快还是跑得慢。
在企业中,能帮助评估业务的增长趋势,就像给企业做了个体检,看看是不是健康成长。
它的优势就是简单直观呀,能快速让我们了解一个事物的发展速度。
咱再结合个实际案例说说。
比如说一家公司,第一年的利润是 100 万,第五年的利润是 500 万,那用年均增速计算方法一算,就能知道这五年它的利润平均每年增长多少。
如果算出来增长很快,那是不是说明这家公司发展得很不错呀!
所以呀,年均增速计算方法真的是超级实用的,就像一把神奇的钥匙,能帮我们打开了解事物发展的大门!大家一定要好好掌握哦!。
第七届学用杯全国数学知识应用竞赛整理表姓名:职业工种:申请级别:受理机构:填报日期:第七届“学用杯”全国数学知识应用竞赛九年级初赛(B)卷试题一、选择题(每小题6分,共30分)1.北京奥运会金牌创造性地将白玉圆环嵌在其中(如图1),这一设计不仅是对获胜者的礼赞,也形象地诠释了中华民族自古以来以“玉”比“德”的价值观.若白玉圆环面积与整个金牌面积的比值为k,则下列各数与k最接近的是()A.B.C.D.2.图2是由线和小棒吊挂4个小球,其中3个小球质量相同,1个是特殊的;图中的数字表示小棒的端点到支点的长度(即物理学中的力臂);假若小棒和线的重量均忽略不计;现在整个装置处于平衡,那么此特殊球应是()3.用同样大小的正方形瓷砖铺一块正方形地面,两条对角线铺黑色的,其它地方铺白色的(如图3).铺满这块地面一共用了白色瓷砖484块,那么黑色瓷砖共用()A.45块B.48块C.22块D.23块4.在“仓库世家”游戏中,游戏规则为“只要将所有木箱归位,便可过关,♀可以左右上下转身,♀推动木箱只可前进,无法后拉,按8、2、4、6可上、下、左、右移动.(△代表木箱,☆代表木箱应到的目的地,□代表空地,■代表墙壁,移动一次只动一个格)其中某一关是如图4(1),设计移动方案可以为:♀→4→8→2→6→6→6.图4(2)为又一关,则移动方案可以为:♀→()A.482666886884222B.482884666884222C.482884884666222D.2226668848844825.同学们都见过并玩过呼拉圈吧!我们把呼拉圈看作一个圆,现在某人在正常运动中,呼拉圈总是在一个水平面内沿人的腰部滚动(人的腰部近似看成一个圆,如图5).现设某人的腰围是70cm(转呼拉圈处),呼拉圈的直径为140cm.那么,当呼拉圈沿此人的腰部滚动100周时,呼拉圈自转的圈数约为()A.48B.72C.84D.98二、填空题(每小题6分,共30分)6.如图6,四边形ABCD为某一住宅区的平面示意图,其周长为800m,为了美化环境,计划在住宅区周围5m内(虚线以内,四边形ABCD之外)作为绿化带,则绿化带的面积为.7.芳芳和明明要玩一个游戏:两人轮流在一个正方形硬纸上放同样大小的硬币,规则是:每人每次只能放一枚,让硬币平躺在桌面上,任何两枚硬币不能重合.谁放完最后一枚,使得对方再也找不到空地放下一枚硬币的时候,谁就赢了.如果芳芳走第一步,她应该放在哪里才可能稳操胜券?请说明你的理由..8.在计算机屏幕上,相继出现了类似无锡“大阿福”式样(一种玩具,古时候就很有名气)的6副面孔.图7是它们依次出现的先后顺序.这些面孔的出现是按照一种简单而确定的逻辑得来的.那么,根据这6副面孔可以推测第7副面孔应是.(画出草图)9.李大伯第一次种植大棚菜,在塑料大棚内密植了100棵黄瓜秧,收获时,每棵黄瓜秧平均只收获2千克黄瓜,听说邻居每棵黄瓜秧可收获近5千克黄瓜,他便向县农业技术员请教,农业技术员查看了情况后说:种植太密,不通风,并告诉他如何改进.已知每少栽一棵秧苗,一棵黄瓜秧平均可多收0.1千克黄瓜,那么请你帮李伯伯计算减少棵黄瓜收获最多,最多收获千克.10.西清公园的喷水池边上有半圆形的石头(半径为1.68m)作为装饰(如图8),其中一块石头正对前方6m处的彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为56πcm.如果同一时刻,一直立70cm的杆子的影长为1.8m,则灯柱的高为(精确到0.01m).三、解答题(第11、12、13题各15分,第14题20分,第15题25分,共90分)11.实践应用:台风“圣帕”所带来的强降水造成了许多地方洪水泛滥成灾,田地被冲毁十分严重,几户承包者的田地都被冲成了一片,灾后他们必须按原来的面积进行重新勘测划分,其中有张老汉家的一块,他已不知道原来那一块的面积是多少,几经回忆才想起原来那块地的形状是一个直角梯形,直角腰的两端恰好又各有一块大石头,另一腰的中点处有一棵大树.大家一看,两块大石头A、B及大树P还在(如图9所示),请问,如何知道张老汉原来那块地的面积?写出你的测量方案,并用字母表示相关的数据后计算出面积.12.实验探究:同学们,你注意过烟盒里的香烟是如何摆放的吗?已知,一个烟盒的长为56mm,宽为22mm,高为87mm,一根烟的直径是8mm,若把20根香烟摆放在烟盒中,请你探究合理的摆放方法.13.信息处理:某市在全面建设小康社会的25项指标中,有16项完成了序时进度,其中10项已达到小康指标值.根据所给的数据和图表,完成下列各题:(1)该市居民家庭年收入以及人均住房建筑面积的一项调查情况如图10(1)和图10(2),从图10(1)中可以得出:家庭收入的众数为美元;家庭收入的平均数为美元.小康指标规定:城镇、农村居民人均住房建筑面积应分别在35m2和40m2以上.观察图10(2),从2002年到2004年城镇、农村人均住房建筑面积的年平均增长率分别为.(2)若人均住房建筑面积的年平均增长率不变,那么到2007年城镇居民人均住房建筑面积能否达到小康指标值?请说明理由.14.猜想归纳:为了建设经济型节约型社会,“先锋”材料厂把一批三角形废料重新利用,因此工人师傅需要把它们截成不同大小的正方形铁片.(1)如图11①,若截取△ABC的内接正方形DEFG,请你求出此正方形的边长;(2)如图11②,若在△ABC内并排截取两个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;(3)如图11③,若在△ABC内并排截取三个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;(4)猜想:如图11④,假设在△ABC内并排截取n个相同的正方形,使它们组成的矩形内接于△ABC,则此正方形的边长是多少?(已知:AC=40,BC=30,∠C=90°)15.方案设计:“春江花月”生活区有一块长36米、宽26米的矩形场地,欲建成一个供居民休闲的小花园.计划在正中央建一个半径为3米的喷水池,其余部分面积的一半进行绿化,现生活区向居民征集设计方案,如果你是小区的居民,请你至少给出两种设计方案(要求美观大方,标出有关数据,并解释其可行性).第七届“学用杯”全国数学知识应用竞赛九年级初赛(B)卷试参考答案一、1.B2.D3.A4.A5.C二、6.25π+4 000(m)7.芳芳的第一步应放正方形硬纸板的中心位置.这时,明明放一枚硬币,芳芳总可以在硬纸板上放一枚硬币,使它与明明的硬币关于中心对称,直到明明无处可放,芳芳就赢了.8.如图1.9.40,36010.4.11m三、11.解:量出AB的长,记为a米,过点P作AB的垂线PQ,并量出它的长,记为b米,则张老汉原来那块地的面积为ab平方米.理由是:设原来那块地为直角梯形ABCD(如图2),其中AD∥BC,P是DC的中点,因为PQ ⊥AB,AD、BC也都垂直于AB,所以AD∥PQ∥BC,作DE⊥PQ于E,PF⊥BC于F.则四边形AQED、BFPQ都是矩形,所以AQ=DE,BQ=PF.又PD=PC,所以易知△DEP≌△PFC,所以DE=PF,从而AQ=BQ,所以PQ是梯形ABCD的中位线,所以梯形ABCD的面积为ab.12.解:(1)若并列摆放,如图3①,因为烟的直径为8mm,所以AD方向上能并排放(根)烟,而在AB方向上,因为8×3=24>22,所以只能放两根,即烟盒只能放2×7=14(根)烟,此法不行.(2)若错位摆放,如图3②,连接、、,则=8mm,△为等腰三角形,过作,则E是的中点.7(mm).所以在Rt△中,(mm).故排列后中排所需空间长度(mm),三排所需宽度为AB=22mm,故此摆放符合要求.13.解:(1)2 400;2 080;0.2和0.4;(2)能达到小康指标.理由如下:因为城镇人均住房建筑面积的年增长率为0.2,所以有,故到2007年城镇人均住房建筑面积能达到小康指标.14.解:(1)在图4①中作△ABC的高CN交GF于M,在Rt△ABC中,∵AC=40,BC=30,∴AB=50,CN=24.由GF∥AB,得△CGF∽△CAB,∴.设正方形的边长为x,则,解得.即正方形的边长为.(2)方法同(1),如图4②.△CGF∽△CAB,则.设小正方形的边长为x,则,解得.即小正方形的边长为.(3)同(1)、(2)可得小正方形的边长为.(4)每个小正方形的边长为.15.本题答案不惟一,现给出两种方案.方案一:如图5①,设计一个矩形绿化带,使绿化带四周的小路宽度都相等.设小路宽度为x米,则矩形的长为(36-2x)米,宽为(26-2x)米,从而有:(36-2x)(26-2x)-9=(36×26-9),整理得,4x-124x+468-4.5=0,解得,x≈26.7>26米(不合题意,舍去),x≈4.2米.所以图中小路宽4.2米.方案二:如图5②,在矩形场地的四个角分别设计四个相同的四分之一圆形绿化区.设四分之一圆形绿化区的半径为r米,则πr=(36×26-9π),r≈12(米).12+12<26,所以符合题意.注:本题为开放题,答案不惟一,只要合理、正确即可得分,给出一种方案得一半分,每多一种方案可加5分.全国2010年1月高等教育自学考试财务报表分析(一)试题课程代码:00161一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个备选项中只有一个选项是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.在进行财务报表分析时,债权人更关注的信息是( )A.偿债能力B.营运能力C.发展能力D.盈利能力2.综合企业历史财务数据和现实经济状况提出的理想评价标准是( )A.经验基准B.行业基准C.历史基准D.目标基准3.下列各项负债中,不属于...长期负债的是( )A.长期借款B.应付债券C.长期应付款D.递延所得税4.与管理层的风险态度有较大联系的资产分类标志是( )A.资产流动性B.资产的使用形态C.资产来源D.资产的使用频率5.下列关于保守型资本结构的描述,正确的是( )A.企业的财务风险相对较高,资本成本较高B.企业的财务风险相对较低,资本成本较高C.企业的权益资金较少,企业负债比率较高D.企业的权益资金较少,资本成本较低6.下列各项中,不属于...“销售商品、提供劳务收到的现金”项目是( )A.本期销售商品、提供劳务收到的现金B.前期销售商品提供劳务本期收到的现金C.前期预收的款项D.企业销售材料和代购代销业务收到的现金7.在企业高速成长阶段,投资活动的现金流量往往是( )A.流入量大于流出量B.流出量大于流入量C.流入量等于流出量D.不一定8.下列财务比率中,最为稳健的偿债能力指标是( )A.资产负债率B.流动比率C.速动比率D.现金比率9.下列各项中,不能..说明短期偿债能力与长期偿债能力区别的是( )A.长短期偿债能力反映的偿还期限不同B.长短期偿债能力涉及的债务偿付支出性质不同C.长短期偿债能力涉及的债务偿付资产不同D.长短期偿债能力的稳定性不同10.可用来补充说明和评价企业流动性的指标是( )A.流动资产周转率B.营运资本周转率C.营业周期D.产品周期11.下列各项中,反映企业全部资产使用效率的指标是( )A.净资产收益率B.资产总额C.总资产周转率D.利润总额12.某企业年度主营业务收入为268 000元,流动资产平均占用额为67 000元,则该企业流动资产周转天数为( )A.4天B.15天C.60天D.90天13.杜邦分析系统中,提高总资产收益率的途径是( )A.加强销售管理,提高销售净利率B.加强资产管理,降低总资产周转率C.加强负债管理,降低资产负债率D.树立风险意识,控制财务风险14.某企业上年的销售净利率为7.74%,资产周转率为1.27,今年的销售净利率为8.78%,资产周转率为1.08,则今年的总资产收益率与上年相比,其变化趋势是( )A.下降B.不变C.上升D.难以确定15.三年股利平均增长率的计算公式为( )A.(第一年每股股利+第二年每股股利+第三年每股股利)/3B.(本年每股股利-三年前每股股利)/3C.(本年每股股利/三年前每股股利)1/3-1D.(第一年股利增长率+第二年股利增长率+第三年股利增长率)/316.衡量企业发展能力的首要指标是( )A.销售增长率B.资产增长率C.资本增长率D.利润增长率17.下列各项中,不属于...关联方关系存在的主要形式是( )A.该企业的合营企业B.该企业的联营企业C.该企业的子公司D.该企业共同控制的合营企业的合营者18.可以信赖并用于报表分析的财务报表是( )A.持无保留意见审计报告的财务报表B.持无法表示意见审计报告的财务报表C.持保留意见审计报告的财务报表D.持否定意见审计报告的财务报表19.综合能力最强的盈利能力指标是( )A.销售净利率B.总资产收益率C.净资产收益率D.每股收益20.某企业2008年平均总资产为8 000万元,实际销售收入净额为5 500万元,实现净利润为380万元,平均资产负债率为60%,则该企业的净资产收益率为( )A.6.67%B.6.91%C.11.88%D.17.27%二、多项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的五个备选项中至少有两个是符合题目要求的,请将其代码填写在题后的括号内。