因为p1,…,pm,是一个基,其他向量pj可以这个基 的线性组合表示:
pj
a
i 1
m
ij
pi
(pj
a
i 1
m
运筹学教程
ij
p i ) 0
pj
a
i 1
(0)
m
ij
p i 相减,然后乘上一个正数θ ,加上
i 1
m
pi xi
b
经过整理得到:
( p j a ij p i )
rL×(-al-1j) +rL-1
0 -(bL/aLj)+bL-1 L alj×(1/alj)=1
运筹学教程
所以,P1,P2,…,Pl-1,Pj,Pl+1,…,Pm,是一个基。
进行初等行变换,将第L行乘上1/alj,再分别乘以
-aij,(i=1,…,l-1,l+1,…,m)加到各行,增广矩阵
的左边变成一个单位矩阵,
cj
…
cn
CB
c1 c2 . cm cj-zj
基
x1 x2 . xm
b
b1 b2 . bm
x1
1 0 . 0
…
xm …
xj
a1j a2j . amj
…
xn
a1n a2n . amn
j c n c i a in
i 1 m
0
…
0
…
运筹学教程
第二步:最优性检验
计算检验数,检查:
所有检验数是否≤ 0?
运筹学教程
式中p1,„,pm 为基变量,同其所对应的 x1,x2,„..,xm为基变量;其它变量 xm+1,xm+2,„„,xn为非基变量。令所有的非基变量 等于零。