归纳总结 正切函数的性质与图象
y ta x , n x R , x k, k Z
y2
定义域:
{x|
xk,kZ}
2
值 域: R
2
2
周期性:正切函数是周期函数,
? 最小正周期是 .
o
2
2
x
? 奇偶性: 奇函数 是否还有其它的对称中心
单调性:在开( 区 k间 ,k)k,Z内都是. 增函数
? 2 2
对称性:对称中心是
(k , 0), k Z
2
正切函数在整个定义域内是 增函数吗
问题辨析
思考: 正切函数在整个定义域内是增函数吗?
y
y y1
2
O
3
取 x 1 3 ,x 2 5 4 , x 1 , x 2 在 定 义 域 内 , 且
x 1 x 2 ,y 1 t a n x 1 ,y 2 t a n x 2 ,
23 23
23
所以该函数的周期为2.
由 π k ππxππ k π ,k Z解得
2
2 32
52kx12k,kZ
3
3
所以该函数的单调递增区间为:
(52k,12k),kZ
3
3
应用新知
总结:
一般地,函数
y Atan( x) ,xR且x k (kZ)
2
(其中A,,为常数,A且 0,0)求定义域和单调
间时应进行整体代周换期,为T :
课堂练习
1.利用正切函数的单调性比较下列各组中两个正切值的大小:
(1)tan138 < tan143
(2)tan(13) > tan(17).
4
5
2.求函数ytan(2x3)的单调区间.