第7章 晶体的其它衍射效应及复杂衍射花样特...分析
- 格式:ppt
- 大小:189.00 KB
- 文档页数:26
晶体衍射知识点晶体衍射是研究晶体结构和性质的重要手段,它通过测量射线与晶体相互作用后的衍射现象,得到晶体的构型和原子排列信息。
本文将介绍晶体衍射的基本原理、实验方法、以及在科学研究、材料分析等方面的应用。
一、晶体衍射基本原理晶体衍射基于波动理论,利用射线(如X射线、电子束等)与晶体相互作用时的衍射现象推导晶体结构信息。
晶体衍射的基本原理包括以下几点:1. 布拉格方程:布拉格方程描述了衍射峰的产生条件,即衍射峰的位置和晶体的晶格常数及入射射线的波长有关。
它的数学表达式为:nλ = 2dsinθ其中,n表示衍射级别,λ表示入射射线的波长,d表示晶面间距,θ表示衍射角。
2. 晶格结构:晶体由一定方式排列的原子或离子构成,晶体衍射的核心在于晶格结构的信息。
晶体的晶格常数、晶胞大小和原子间的相对位置等都可以通过衍射模式得到。
3. 动态散射理论:晶体衍射的解释可以借助于动态散射理论,即入射波在晶体中被散射后,在不同方向上的干涉现象。
这种散射和干涉的原理,解释了衍射峰的形成。
二、晶体衍射的实验方法1. X射线衍射:X射线衍射是应用最广泛的晶体衍射实验方法之一。
它利用高能X射线与晶体相互作用后的衍射现象来研究晶体的结构和性质。
X射线衍射实验需要专用的仪器设备,如X射线发生器、样品台、衍射仪等。
2. 中子衍射:中子衍射是另一种常用的晶体衍射实验方法。
相比于X射线,中子的波长较长,穿透性强,对晶体结构的研究更为敏感。
中子衍射实验通常在中子源实验室进行,需要使用中子源和衍射仪器。
3. 电子衍射:电子衍射是利用电子束与晶体相互作用产生衍射现象的实验方法。
电子具有波粒二象性,电子束的波长与晶体的晶格尺寸相当,因此可以用来研究晶体结构。
电子衍射实验可以在透射电子显微镜或电子衍射仪上进行。
三、晶体衍射的应用晶体衍射在科学研究和材料分析中有着广泛的应用,以下列举几个典型应用领域:1. 晶体结构研究:晶体衍射是研究晶体结构的关键方法。
物理学中的晶体衍射现象
晶体是由大量的原子、离子或分子在空间中按一定的周期性排列形成的固态物质。
而晶体的衍射现象则是一种特殊的现象,它在物理学中具有重要的意义。
晶体的衍射现象起源于物质的粒子性本质。
作为微观粒子,原子、离子和分子具有电磁波的波粒二象性。
当它们被某种能流所照射时,会受到散射或衍射,从而产生具有特定规律的暗纹或亮斑。
在晶体中,原子的排列呈现出高度的规则性。
当电磁波(通常为X射线或中子)照射到晶体上时,它们会被晶体中的原子所散射,形成一个特定的衍射图案。
这个衍射图案通常由许多亮斑和暗纹组成,每个亮斑对应着晶体中某个方向的原子平面,相邻的亮斑之间的距离则反映了晶体的晶格常数。
因此,通过衍射图案的分析,我们可以了解晶体内部的结构信息。
晶体的衍射现象不仅在理论研究中具有重要的意义,也在实际应用中发挥着重要的作用。
例如,在现代材料科学中,晶体的衍射图案可以帮助研究人员确定材料的结构、制备过程中的晶体缺陷以及材料的性质等问题。
此外,在生命科学中,X射线衍射也被广泛应用于蛋白质晶体学研究。
通过分析蛋白质晶体的衍射图案,科学家们可以了解蛋白质分子的三维结构信息,从而为开发新药物和治疗疾病提供重要的基础研究。
总的来说,物理学中的晶体衍射现象具有丰富的内涵和重要的应用价值。
它不仅是物质的微观本质的体现,也是解决科技问题和推动社会进步的重要工具之一。
晶体的衍射名词解释晶体是物质中由原子、离子或分子排列而成的高度有序的结构。
晶体学研究晶体的形态、结构和物理性质,而晶体衍射则是晶体学中的重要分支,它在分析晶体结构和物理特性方面起着重要的作用。
本文将解释一些与晶体衍射相关的名词,帮助读者更好地理解晶体学的基本原理和应用。
波粒二象性在解释晶体衍射之前,有必要了解波粒二象性。
量子力学的基本原理之一就是物质既具有粒子性又具有波动性。
例如,电子、中子和光子都具有这种性质。
波粒二象性的存在意味着晶体中的粒子(如X射线或电子束)在传播过程中表现出像波一样的行为,从而可以发生衍射现象。
衍射衍射是波动现象中一种特殊现象,它描述的是当波传播遇到一个阻碍物或通过一个有规则结构的介质时,波会沿着特定方向传播,并在空间中产生干涉效应。
在晶体衍射中,入射波(如X射线或电子束)在晶体的原子结构中发生衍射,从而形成特定的衍射图样,提供了关于晶体结构的有用信息。
布拉格定律布拉格定律是晶体衍射中的重要定律,由父子科学家布拉格提出。
布拉格定律描述了晶体衍射图样的形成条件。
根据布拉格定律,当入射波(如X射线或电子束)与晶体的晶格平面相互作用时,仅当衍射波的入射角和出射角满足特定的关系时,衍射图样才会出现明显的干涉峰。
这个关系可以用公式表示为:2dsinθ = nλ,其中d是晶体的晶格常数,θ是入射和出射波的夹角,n是整数,λ是入射波的波长。
衍射图样衍射图样是晶体中衍射波和散射波相互作用后在检测器上形成的图案。
衍射图样的特征具有非常高的精细度,可以提供有关晶体的结构信息。
根据不同的晶体和衍射实验条件,衍射图样可能呈现出不同的形状,如衍射环、干涉极大、干涉极小等。
相位问题在解读晶体衍射图样时,相位问题是一个关键的挑战。
在衍射图样中,亮暗的分布模式提供了关于晶体结构的信息,但相位信息是无法直接观测到的。
解决相位问题是晶体学中的一个重要课题,涉及到复杂的数据处理和重建算法,以确定衍射图样中亮暗变化的背后结构。
第五节复杂电子衍射花样一、多晶衍射花样的分析多晶体样品的电子衍射花样和X射线粉末照相法所得到的花样的几何特征非常相似,是由一系列不同半径的同心圆环所组成的。
这种环形花样的产生,是由于受到入射束幅照的样品区域内存在着大量取向杂乱的细小晶体颗粒,d值相同的同一{hkl}晶面族内符合衍射条件的晶面组所产生的衍射束,构成以入射束为轴、2θ为半顶角的圆锥面,它与照相底板的交线即为半径R=λL/d 的圆环(图1)。
实际上,属于同一{hkl} 晶面族、但取向杂乱的那些晶面组的倒易阵点,在空间构成以O*为中心、g=1/d为半径的球面,它与爱瓦尔德球面的交线是一个圆。
衍射花样中的圆环,就是这一交线的投影放大象。
d值不同的晶面族,将产生半径不同的圆环。
图1 多晶体样品电子衍射花样的产生多晶衍射花样的分析,其目的也不外乎两方面:一是利用已知晶体样品标定相机常数,二是鉴定大量弥散的抽取复型粒子或其他多晶粒子的物相。
多晶花样的分析,一般采用以下步骤:1、测量每个衍射环的半径R1、R2、R3、……。
为减少测量误差,通常测量衍射环的直径2R,然后计算得R;2、计算R,并分析R比值得递增规律,确定各衍射环得N值,并写出衍射环得指数{hkl};3、对于已知物质,也可根据d=λL/ R 计算各衍射环得晶面间距,对照ASTM卡片写出环的指数;对于未知物质,如果已知相机常数,可计算晶面间距d值,估计衍射环的相对强度,根据三强线的d值查ASTM索引,找出数据接近的几张卡片,仔细核对所有d值和相对强度,并参考已经掌握的其他资料,确定样品的物相。
二、复杂花样的分析除了简单花样的规则斑点以外,在单晶电子衍射花样中常常出现一些“额外的斑点”或其他图案,构成所谓的复杂花样。
复杂花样的种类较多,常见的有下列几种:1、因爱瓦尔德球的曲率半径有限,可能有不止一个晶带的晶面组参与衍射而出现的高阶劳厄带斑点;2、因晶体结构的变化如有序化固溶体产生的超点阵衍射斑点;3、因入射电子在样品晶体内受到多次散射而导致的双衍射和菊池衍射花样;4、孪晶花样;5、由于晶体的形状、尺寸、位向以及缺陷所引起的衍射斑点的变形和位移。