关于用初等变换求向量组的极大无关组的方法
- 格式:doc
- 大小:12.57 KB
- 文档页数:2
第2章对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。
矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。
任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。
通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。
考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。
总而言之,初等变换不会改变矩阵的秩。
因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。
矩阵的秩,同时又可定义为不为零的子式的最高阶数。
满秩矩阵的行列式不等于零。
非满秩矩阵的行列式必为零。
既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。
另外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,r<n,有无穷多解。
齐次线性方程组的解的结构问题,可以用基础解系来表示。
当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。
通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。
非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。
在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。
矩阵的加法和数乘,与向量的运算类同。
矩阵的另外一个重要应用:线性变换(最典型例子是旋转变换)。
即可以把一个矩阵看作是一种线性变换在数学上的表述。
矩阵的乘法,反映的是线性变换的叠加。
如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。
浅谈矩阵的初等行变换在线性代数中的应用张亚龙(北京科技大学天津学院基础部㊀301830)摘㊀要:本文从矩阵的初等行变换出发ꎬ分别提出在矩阵㊁向量组㊁线性方程组㊁矩阵的特征向量㊁二次型中的一些应用ꎬ并呈现对应例题ꎬ加强学生对矩阵的初等行变换的理解与应用.关键词:初等行变换ꎻ矩阵ꎻ向量组ꎻ线性方程组中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2022)21-0029-03收稿日期:2022-04-25作者简介:张亚龙(1992-)ꎬ男ꎬ硕士ꎬ助教ꎬ从事计算数学研究.㊀㊀目前ꎬ«线性代数»这门课程是理工科和经管类必开设的一门课程ꎬ主要内容包括行列式㊁矩阵㊁线性方程组㊁向量组㊁相似矩阵㊁二次型等.矩阵的初等行变换贯穿在整个线性代数的内容中ꎬ为了方便学生学习ꎬ下面归纳总结了关于矩阵初等行变换在线性代数中的应用.1矩阵中的应用1.1求矩阵的逆若矩阵A可逆ꎬ则A-1也可逆ꎬA-1可以表示成若干个初等矩阵的乘积ꎬ因此可由矩阵的初等行变换求A-1ꎬ即(AꎬE)初等行变换ң(EꎬA-1)ꎬ我们将矩阵A和单位矩阵E都做初等行变换ꎬ当矩阵A化为单位矩阵E时ꎬ单位矩阵E就变成了A-1.例1㊀求矩阵A=1-20120221éëêêêùûúúú的逆.解㊀作一个3ˑ6的矩阵(AꎬE)ꎬ并对其做矩阵的初等行变换.(AꎬE)=1-20100120010221001éëêêêùûúúúң10012120010-14140001-12-321éëêêêêêêêùûúúúúúúú=(EꎬA-1).因此ꎬA-1=12120-14140-12-321éëêêêêêêêùûúúúúúúú.1.2求矩阵的秩矩阵秩的定义是非零子式的最高阶数ꎬ我们知道初等变换不改变矩阵的秩ꎬ对矩阵A做初等行变换化为行阶梯形矩阵Bꎬ由行列式的性质可知ꎬ矩阵A和矩阵B的非零子式最高阶数相同ꎬ所以矩阵A与矩阵B的秩相等.例2㊀求矩阵A=1-1210100112-242003001éëêêêêêùûúúúúú的秩.解㊀对矩阵A做初等行变换化为行阶梯形矩阵.92A=1-1210100112-242003001éëêêêêêùûúúúúúң1-121001-2010060-200000éëêêêêêùûúúúúú=B因为矩阵B中有三个非零行ꎬ即R(B)=3ꎬ所以R(A)=3.2在向量组中应用2.1求向量组的秩由于任何矩阵Aꎬ它的行秩=列秩=R(A)ꎬ因此我们只需将向量组中的向量均按列构成一个矩阵Aꎬ向量组的秩就等于矩阵A的秩.例3㊀求向量组α1=(1ꎬ-2ꎬ2)ꎬα2=(1ꎬ-4ꎬ0)ꎬα3=(1ꎬ-2ꎬ2)的秩.解㊀以αT1ꎬαT2ꎬαT3为列向量构成矩阵Aꎬ并对矩阵A进行初等行变换ꎬ把A化为阶梯形矩阵B.A=111-2-4-2202éëêêêùûúúúң1110-200-20éëêêêùûúúúң111010000éëêêêùûúúú=Bꎬ得R(A)=R(B)=2ꎬ又因为向量组α1ꎬα2ꎬα3的秩等于矩阵A的秩ꎬ即向量组α1ꎬα2ꎬα3的秩为2.2.2求向量组的极大无关组由于初等行变换不改变矩阵列向量的线性关系ꎬ因此可由初等行变换求解向量组的极大无关组.例4㊀求向量组α1=(1ꎬ2ꎬ3ꎬ0)ꎬα2=(-1ꎬ-2ꎬ0ꎬ3)ꎬα3=(2ꎬ4ꎬ6ꎬ0)ꎬα4=(1ꎬ-2ꎬ-1ꎬ0)的一个极大线性无关组.解㊀以αT1ꎬαT2ꎬαT3ꎬαT4为列向量构成矩阵Aꎬ并对矩阵A进行初等行变换ꎬ把A化为行最简形矩阵B.㊀A=1-1212-24-2306-10300éëêêêêêùûúúúúúң1020010000010000éëêêêêêùûúúúúú=B非零行首非零元1所在的列作极大线性无关组ꎬ因此向量组α1ꎬα2ꎬα3ꎬα4的一个极大线性无关组为α1ꎬα2ꎬα4.3在线性方程组中的应用通过一系列的初等行变换ꎬ将系数矩阵或增广矩阵化为行最简形矩阵ꎬ判断方程组是否有解ꎬ有解的情况下ꎬ求出通解.3.1解齐次线性方程组例5㊀求解齐次线性方程组2x1+x2-x3+3x4=0x1+2x2+3x3+x4=03x2+7x3-x4=0x1-x2-4x3+2x4=0ìîíïïïïïï解㊀对系数矩阵A进行初等行变换ꎬ化为行最简形矩阵ꎬA=21-131231037-11-1-42éëêêêêêùûúúúúúң12310173-1300000000éëêêêêêêùûúúúúúúң10-53530173-1300000000éëêêêêêêêùûúúúúúúú得同解方程组为x1=53x3-53x4x2=-73x3+13x4ìîíïïïï其中x3ꎬx4为自由未知量ꎬ令自由未知量x3x4æèççöø÷÷依次取10æèçöø÷ꎬ01æèçöø÷ꎬ得基础解系η1=53-7310æèçççççççöø÷÷÷÷÷÷÷ꎬη2=-531301æèçççççççöø÷÷÷÷÷÷÷ꎬ所以齐次线性方程组的通解为c1η1+c2η2ꎬ(c1ꎬc2为任意常数).3.2解非齐次线性方程组例6㊀求非齐次线性方程组x1+x2=52x1+x2+x3+2x4=15x1+3x2+2x3+2x4=3ìîíïïïï的通解.解㊀对增广矩阵B进行初等行变换ꎬ化为行最简形矩阵.03B=110052112153223éëêêêùûúúúң1012-401-1-29000-2-4éëêêêùûúúúң1010-801-101300012éëêêêùûúúú可以得出系数矩阵的秩等于增广矩阵的秩ꎬ并且小于未知量的个数ꎬ因此方程组有无数个解.即它的同解方程组为x1=-x3-8x2=x3+13x4=2ìîíïïïïꎬ其中x3为自由未知量ꎬ令自由未知量x3=0ꎬ得特解α0=-81302æèççççöø÷÷÷÷.导出组的同解方程组为x1=-x3x2=x3x4=0ìîíïïïïꎬ其中x3为自由未知量ꎬ令x3=1ꎬ得对应齐次线性方程组的基础解系η=-1110æèççççöø÷÷÷÷ꎬ所以线性方程组的通解为α0+cη=-81302æèççççöø÷÷÷÷+c-1110æèççççöø÷÷÷÷ꎬ其中c为任意常数.4在矩阵特征向量中的应用上面我们介绍了用初等行变换求解线性方程组ꎬ计算矩阵的特征向量就会涉及到解齐次线性方程组.例7㊀求矩阵A=22-225-4-2-45éëêêêùûúúú的特征向量.解㊀由A-λE=2-λ2-225-λ-4-2-45-λ=-(1-λ)2(λ-10)=0ꎬ得矩阵的特征值λ1=10ꎬλ2=λ3=1.当特征值λ1=10时ꎬ解齐次线性方程组(A-10E)X=0ꎬ即A-10E=-82-22-5-4-2-45éëêêêùûúúúң201011000éëêêêùûúúúң1012011000éëêêêêêùûúúúúú得基础解系η1=-12-11æèççççöø÷÷÷÷ꎬ故A的对应于特征值λ1=10的全部特征向量为c1-12-11æèççççöø÷÷÷÷ꎬ其中c1为任意非零常数.当λ2=λ3=1时ꎬ解齐次线性方程组(A-E)X=0ꎬ即A-E=12-224-4-2-44éëêêêùûúúúң12-2000000éëêêêùûúúúꎬ其基础解系为η2=-210æèçççöø÷÷÷ꎬη3=201æèçççöø÷÷÷ꎬ故A的对应于特征值λ2=λ3=1的全部特征向量为c2-210æèçççöø÷÷÷+c3201æèçççöø÷÷÷ꎬ其中c2ꎬc3是不全为零的任意常数.㊀矩阵的初等行变换贯穿于整个线性代数章节中ꎬ熟练应用初等行变换是学好线性代数的基础ꎬ学生要在平时学习中ꎬ学会归纳总结ꎬ使每个知识点建立联系.参考文献:[1]同济大学数学系.工程数学线性代数[M].北京:高等教育出版社ꎬ2014.[2]郝秀梅ꎬ姜庆华.线性代数[M].北京:经济科学出版社ꎬ2017.[责任编辑:李㊀璟]13。
关于用初等变换求向量组的极大无关组的方法在研究中,研究者经常需要通过求解向量组的极大无关组来实现向量组元素的排序,以便于更好地研究和进一步分析该类数据。
由于向量组的极大无关组的求解相对比较严格,因此需要考虑到更加效率的求解方法。
于此,本文将针对用初等变换求解向量组的极大无关组进行深入分析,旨在为研究者提供一种更有效的求解方法。
首先,本文确定了初等变换方法的具体运用,即在向量组矩阵中,每行对应1个向量,每列对应1个属性,对应元素为该属性对应的分量值。
通过行列式的性质,可以把行列式分解为一系列的初等变换,将原矩阵变换为“阶梯”矩阵。
其次,本文做出了一个重要的假设:向量组全部元素均不相同,也即矩阵中没有相同的行或列。
借助这一假设,初等变换就变得更加方便,且可快速完成。
紧接着,本文提出了一种很简单、快捷的解法,即将矩阵拆分成多个不同的小矩阵,每个小矩阵分别求解一组极大无关组,最后将求得的多组无关组合并,获得最终的极大无关组。
最后,本文总结了用初等变换求解向量组的极大无关组的方法,包括原矩阵的行列式的分解,基于假设的初等变换,以及将矩阵拆分成多个不同的小矩阵求解等步骤。
此外,本文还指出,经过多次的实验和验证,该方法在求解向量组的极大无关组时候比传统方法效率更高,具有很强的可行性。
本文提出用初等变换求向量组的极大无关组的方法,为研究者提
供了一种更有效的求解方案。
未来,可以进一步深入探索初等变换方法在求解向量组的极大无关组这一领域的应用,以及在此基础上深入研究出更多种方法,从而给研究者提供更多的求解选项。