高考数学一轮复习 7.1 直线的方程教案
- 格式:doc
- 大小:431.01 KB
- 文档页数:16
直线与方程复习优秀教案教案标题:直线与方程复习教学目标:1.理解直线的定义,能够识别直线的特征和性质。
2.掌握直线的各种表示方法,包括点斜式、一般式和截距式。
3.能够根据给定条件写出直线的方程,并且能够在直线和坐标系中相互转换。
4.能够应用直线的性质和方程解决实际问题。
5.培养学生的逻辑思维、分析问题和解决问题的能力。
教学重点:1.直线的特征和性质。
2.直线的表示方法与转换。
3.直线的方程的写法和应用。
教学难点:1.直线方程的应用。
教学准备:1.教材课件、笔记本电脑以及投影仪。
2.小白板、粉笔、草稿纸和橡皮擦。
3.直线和坐标系的图形素材。
教学过程:一、导入(5分钟)1.引发学生对直线的思考:请学生回答,直线有什么特征和性质?为什么我们要学习直线的方程?2.引入本节课的主要内容:通过讨论学生提出的问题,引导学生了解直线方程的重要性。
二、直线的特征和性质(10分钟)1.讲解直线的定义:直线是由无数个点连在一起形成的。
指出直线的两边无限延伸、不弯曲以及无端点等特征。
2.引导学生找出直线的性质,包括直线的斜率、方向、长度等。
三、直线的表示方法与转换(20分钟)1.介绍直线的表示方法:点斜式、一般式和截距式。
以示意图解释每种表示方法的意义和用法。
2.通过例题的演示,讲解点斜式、一般式和截距式的转换方法。
3.练习:给学生一些小练习,巩固直线表示方法和转换的理解。
四、直线的方程的写法和应用(25分钟)1.讲解直线方程的写法:写出通过给定点的直线方程、写出经过给定两点的直线方程、写出垂直于给定直线的直线方程和写出平行于给定直线的直线方程。
2.引导学生通过例题,练习直线方程的写法。
3.应用:通过实际问题,引导学生运用直线方程解决实际问题。
五、错误分析和答疑(10分钟)1.分析学生在学习过程中产生的常见错误,解释正确的做法。
2.解答学生提出的问题,澄清学生对直线和方程的疑惑。
六、课堂练习(15分钟)1.分发练习题,让学生独立完成。
2023年直线与方程教案高三【精选4篇】直线与方程教案高三篇一《直线的方程》教案一、教学目标知识与技能:理解直线方程的点斜式的特点和使用范围过程与方法:在知道直线上一点和直线斜率的基础上,通过师生探讨得出点斜式方程情感态度价值观:养成数形结合的思想,可以使用联系的观点看问题。
二、教学重难点教学重点:点斜式方程教学难点:会使用点斜式方程三、教学用具:直尺,多媒体四、教学过程1、复习导入,引入新知我们确定一条直线需要知道哪些条件呢?(直线上一点,直线的斜率)那么我们能不能用直线上这一点的坐标和直线的斜率把整条直线所有点的坐标应该满足的关系表达出来呢?这就是我们今天所要学习的课程《直线的方程》。
2、师生互动,探索新知探究一:在平面直角坐标系中,直线l过点p(0,3),斜率k=2,q(x,y)是直线l上不同于点p的任意一点,如ppt上图例所示。
通过上节课所学,我们可以得出什么?由于p,q都在这条直线上,我们就可以用这两点的坐标来表示直线l的斜率,可以得出公式:y-3x-0=2 那我们就可以的出方程y=2x+3 所以就有l上的任意一点坐标(x,y)都满足方程y=2x=3,满足方程y=2x+3的每一个(x,y)所对应的点都在直线l上。
因此我们可以的出结论:一般的如果一条直线l上任意一点的坐标(x,y)都满足一个方程,满足该方程的每一个数对(x,y)所确定的点都在直线l上,我们就把这个方程称为l的直线方程,因此,当我们知道了直线上的一点p(x,y),和它的斜率,我们就可以求出直线方程。
3、知识剖析,深化理解我们刚刚知道了如何来求直线方程,那现在同学来做做这一个例子。
设q(x,y)是直线l上不同于点p的任意一点,由于点p,q都在l,求直线的方程。
设点p(x0,,y0),先表示出这个直线的额斜率是y-y0x-x0=k,然后可以推得公式y-y0=k(x-x0)那如果当x=x0,这个公式就没有意义,还有就是分母不能为零,所以这里要注意(x不能等于x0)1)过点,斜率是k的直线l上的点,其坐标都满足方程(1)吗?p(x0,y0)(x0,y0),斜率为k的直线l上吗?2)坐标满足方程(1)的点都在经过p那么像这种由直线上一个点和一个斜率所求的方程,就称为直线方程的点斜式。
直线的方程教案(人教版)第一章:直线方程的基本概念一、教学目标1. 理解直线方程的基本概念,包括直线的一般式、点斜式和截距式。
2. 学会将直线的几何性质与方程联系起来,分析直线的斜率、截距等参数。
3. 能够根据直线的几何条件写出直线方程。
二、教学内容1. 直线的一般式方程:Ax + By + C = 02. 直线的点斜式方程:y y1 = m(x x1)3. 直线的截距式方程:x/a + y/b = 14. 直线的斜率和截距的概念。
三、教学重点与难点1. 教学重点:直线方程的三种形式及其相互转化。
2. 教学难点:直线斜率和截距的理解及其应用。
四、教学方法1. 采用讲授法,讲解直线方程的基本概念和公式。
2. 借助图形展示,直观理解直线的几何性质。
3. 例题演示,引导学生学会运用直线方程解决实际问题。
五、课时安排1课时第二章:直线的斜率与倾斜角一、教学目标1. 理解直线的斜率和倾斜角的概念,掌握它们的计算方法。
2. 学会利用直线的斜率和倾斜角分析直线的位置关系。
3. 能够运用直线的斜率和倾斜角解决实际问题。
二、教学内容1. 直线的斜率概念及其计算公式。
2. 直线的倾斜角概念及其计算方法。
3. 斜率和倾斜角的关系:k = tanθ。
三、教学重点与难点1. 教学重点:直线斜率和倾斜角的计算及其关系。
2. 教学难点:斜率和倾斜角的运用。
四、教学方法1. 采用讲授法,讲解直线斜率和倾斜角的概念及计算方法。
2. 借助图形展示,直观理解斜率和倾斜角的关系。
3. 例题演示,引导学生学会运用斜率和倾斜角分析直线位置关系。
五、课时安排1课时第三章:直线方程的求解一、教学目标1. 掌握直线方程的求解方法,包括点斜式、截距式和一般式。
2. 学会利用已知条件求解直线方程,如已知直线经过两点、已知斜率和截距等。
3. 能够运用直线方程解决实际问题。
二、教学内容1. 直线方程的求解方法:点斜式、截距式和一般式。
2. 已知直线经过两点的直线方程求解。
数学课程教案科目数学章节直线方程授课题目(教学章、节或主题):直线方程教学目的、要求(分掌握、熟悉、了解三个层次):1、通过本次课的学习初步建立学习的信心。
2、掌握直线方程的基本表达式。
3、直线方程的简单应用。
教学重点及难点:直线方程的简单应用。
教学基本内容方法及手段1、高三复习八大诀窍2、直线方程的五种基本表达式。
3、直线方程简单应用。
1、讲授法2、讨论法3、练习法作业、讨论题、思考题:见发给学生试卷。
课后小结:通过本次课的学习,学生掌握了直线方程的5种基本表达式及简单应用。
附页:教学内容高三第一轮复习8大诀窍高考(论坛)是大家学习中的重要环节,甚至可以说是每一位学生一生中的一个重要“关口”,而要顺利通过这个关口,高三一年的学习是至关重要的。
高考虽然是通过一次考试来选拔人才,但它绝不仅仅是一次知识上的考察,而是对学生高中三年,以至于进入学校十几年来的综合能力的检验。
高三的学习不同于高一、高二学习,他不是高一、高二的知识重复,而是基础知识的重组和提高,如何顺利完成高三一年的学习,不仅是每一位高三学生,也是学生家长迫切想知道的,下面是给同学的一些建议,希望能对同学在高三的学习过程中较好的处理各种困难,顺利进入高等学校。
1.关于“听话”高三学生首先要做到“听话”,这里的“听话”是全方位的。
如果你认为高三学习是第一位的,而忽视了对自己的日常行为的要求,那你就错了,学校和老师在高三一年中不会因为学习任务的加重,而放松对纪律的要求,反而会强化纪律以保证学习的正常进行。
学习上更要听话,而不听老师的教诲,认为自有一套很好的复习方法的学生(每年都有)最后会碰的“头破血流”的。
2.关于“上课”高考是个人行为,也是集体行为,复习中最重要的环节就是“听讲”,这就要求学生上课时紧跟老师,仔细听讲,积极思考,倾听别人的想法,提出自己的见解,在讨论中完成对知识、方法、能力的提高。
如果高三任课教师发生变化,大家应该尽快适应。
高中数学直线的方程教案教学目标:1. 理解直线的方程和直线的图象之间的关系。
2. 掌握直线的一般方程、点斜式方程和两点式方程的求法。
3. 能在实际问题中灵活运用直线的方程。
教学重点:1. 直线的一般方程的求法和性质。
2. 直线的点斜式方程的求法和应用。
3. 直线的两点式方程的求法和实际问题中的应用。
教学难点:1. 理解直线的一般方程和点斜式方程的转换。
2. 能应用直线的两点式方程解决实际问题。
教学准备:1. 课件:包含直线方程的相关概念和求解方法。
2. 教学用具:板书、直尺、铅笔等。
教学过程:一、导入(5分钟)教师可通过一个简单的问题引出直线方程的概念,如“如何表示一条直线在坐标系中的位置关系?”。
引导学生思考直线方程的重要性和应用场景。
二、讲解直线的一般方程(15分钟)1. 引导学生回顾直线的定义和特点。
2. 讲解直线的一般方程的定义和表示方法:Ax + By + C = 0。
3. 举例说明如何确定直线的一般方程。
三、讲解直线的点斜式方程(20分钟)1. 引导学生思考直线上已知一点和斜率的关系。
2. 讲解直线的点斜式方程的定义和表示方法:y - y₁ = k(x - x₁)。
3. 通过例题演示如何求解直线的点斜式方程。
四、讲解直线的两点式方程(20分钟)1. 引导学生思考直线上两点和直线方程的关系。
2. 讲解直线的两点式方程的定义和表示方法:(y - y₁)/(y₂ - y₁) = (x - x₁)/(x₂ - x₁)。
3. 通过例题演示如何求解直线的两点式方程并应用于实际问题。
五、活动和练习(15分钟)1. 设计一些练习题,让学生巩固所学知识。
2. 分组讨论并互相交流解题思路和答案。
六、总结和评价(5分钟)1. 给学生提出问题,让他们回顾本节课的重点知识。
2. 对学生的课堂表现进行总结评价,鼓励他们继续努力。
七、布置作业(5分钟)布置相关习题作业,巩固本节课所学内容。
教学反思:本节课主要围绕直线的方程展开讲解,通过讲解直线的一般方程、点斜式方程和两点式方程的求法,引导学生掌握直线方程的应用方法。
§1 直线方程一、考纲要求二、学习目标:1.会求直线的倾斜角和斜率; 2.熟练掌握直线方程的求法.三、重点:求直线方程; 难点:斜率范围的确定. 四、知识导学: 1.直线的斜率与倾斜角(1)倾斜角: . 规定:与轴平行或重合的直线的倾斜角为 . 直线的倾斜角取值范围是 . (2)斜率: 给定两点()()11122212,,,,,P x y P x y x x ≠,经过这两点的直线的斜率公式为k =2.直线方程的五种形式:①直线方程的点斜式: ; ②直线方程的斜截式:; ③直线方程的两点式: ;④直线方程的截距 ; ⑤直线方程的一般式: . 五、课前自学: 1.直线l 经过(0,0),A B 两点,则直线l 的斜率k = ,倾斜角为 .直线l 的方程为2. 如果0AC <且0BC <,那么直线0Ax By C ++=不通过第 象限3.若直线斜率是23,且过点)2,1(,则其方程为___________________________.4. 经过点()5,2A -,且在两坐标轴上截距相等的直线方程是 .5.已知直线l 倾斜角变化范围为]43,4[ππ,则其斜率变化范围是______________.6.m 为任意实数时,直线(1)(21)5m x m y m -+-=-必过定点 .7.已知两点)1,3(),3,2(B A -,过点)1,2(-P 的直线l 与线段AB 有公共点,则直线l 的斜率k 及倾斜角α的取值范围六、合作、探究、展示:例1:若直线l 满足如下条件,分别求其方程:⑴斜率为34且与两坐标轴围成的三角形面积为6⑵经过两点A(1,0),B(m,1)⑶过点(-2,-1)且在两坐标轴上截距相等,求直线方程例2. 在ABC 中,BC 边上的高所在的直线方程为210,x y A -+=∠的平分线所在的直线方程为0,y =若点B 的坐标为(1,2),求点A 和点C 的坐标.例3. 过点P (2,1)作直线l 分别交正半轴于A 、B 两点。
高三数学第一轮复习直线和圆的方程详细教案知识结构第一节直线的倾斜角和斜率学习目标1.了解直线的方程、方程的直线的定义;2.掌握直线的倾斜角、直线的斜率的定义及其取值范围;3.掌握过两点的直线的斜率公式,会运用公式求出有关直线的斜率和倾斜角.重点难点本节重点:正确地理解斜率的概念,熟练地掌握已知直线上两点求直线斜率的公式,这是学好直线这部分内容的关键.本节难点:正确理解直线倾斜角定义中的几个条件,如直线与x轴相交与不相交,按逆时针方向旋转、最小正角等.求倾斜角时,要特别注意其取值范围是高考中,由于本节内容是解析几何成果中最基础的部分,一般是隐含在综合题中进行考查.典型例题【分析】【解】【点评】【分析】【解】【点评】【解法一】代数方法:套两点斜率公式.【解法二】【点评】“解析几何的特点之一是数形结合,数无形时少直观,形无数时难入微.”在学习数学时,应该记住华罗庚的这段话.教材上还涉及证明三点共线的练习题,怎样证明三点共线呢?请看下面例4.【分析】证明三点共线,可以用代数方法、几何方法,可以用直接证法、间接证法,你能想出至少一个方法吗?下面是同学们讨论出的几种证法供参考.【证法一】【证法二】【证法三】第二节直线的方程学习目标掌握直线方程的点斜式、两点式、参数式、一般式,并能根据条件熟练地求出直线的方程式.重点难点本节重点:直线方程的点斜式和一般式,点斜式是推导直线方程其他形式的基础,一般式是直线方程统一的表述形式.本节难点:灵活运用直线方程的各种形式解题.在高考中几乎每年都要考查这部分内容,题型以选择题、填空题居多.典型例题【分析】关键是确定直线方程中的待定系数.【解】【点评】学习直线的方程常犯的错误是忽略方程各种形式的应用条件,因此造成丢解.本例中各个小题均为两解,你做对了吗?第(4)小题的解法一要用到下节学到的公式,解法二用到课外知识,供有兴趣的同学欣赏.【解法一】【解法二】【解法三】【点评】灵活运用直线方程的各种形式,常常要和平面几何的有关知识相结合.本题还有别的解法,不再一一列举.【解法一】【解法二】【解法三】【证明】【点评】【分析】【解法一】【解法二】【解法三】【点评】第三节两条直线的位置关系学习目标1.掌握两条直线平行与垂直的条件,以及两条直线的夹角和点到直线的距离公式.2.能够根据直线的方程判断两条直线的位置关系.重点难点本节重点:两条直线平行与垂直的条件,点到直线的距离公式.本节难点:了解解析几何的基本思想,并用解析几何方法研究角.在高考中,两条直线的位置关系几乎年年必考,常常单独出现在选择题和填空题中,或作为综合题的一部分出现在解答题中.典型例题学习了本节以后,应该对两条直线平行与垂直的充要条件,怎样求直线的斜率、距离与角有哪些公式等问题进行归纳小结,以便提纲挈领地掌握有关知识,并灵活运用这些知识解决问题.1.两条直线平行、垂直的充要条件是什么?答:2.怎样求直线的斜率?答:3.距离和角有哪些公式?能灵活运用吗?答:【解】用下面的例题检验是否理解和掌握了以上这些内容.1.两条直线的位置关系【解】2.两条直线所成的角【解】【解法一】【解法二】3.有关交点的问题(A)1 (B)2 (C)3 (D)4【解法一】【解】【解法二】4.点到直线的距离【错误的解】【正确的解】【解法一】【解法二】【解法三】【解法四】第四节简单的线性规划学习目标1.了解用二元一次不等式表示平面区域.2.了解线性规划的意义,并会简单的应用.重点难点典型例题学习了简单的线性规划以后,常见的题型是用二元一次不等式表示平面区域,以及用线性规划的知识来解决一些简单的问题.下面的例题可检验是否掌握了这些内容.1.二元一次不等式表示的区域【分析】【解】【点评】例2 试讨论点线距离公式中,去掉绝对值符号的规律?【分析】【解】【点评】2.线性规划初步例3钢管长11.1米,需要截下1.5米和2.5米两种不同长度的小钢管,问如何截取可使残料最少?【分析】关键是利用约束条件,列出线性目标函数.【解】【评析】例4 用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有().(A)5种(B)6种(C)7种(D)8种【解法一】【解法二】【解法三】列表数点.故选(C).【点评】本题为1999年全国高考试题第14题,难度系数0.47.如果有利用二元一次不等式表示平面区域的知识,此题将不再困难.【分析】甲的解法错误,错在(1)、(2)(3)、(4),反之不行,用必要不充分条件代替原条件,使解的范围扩大,[6,10]是[5,11]的子集.乙的解法正确.本题数形结合,利用本节的知识还可以有以下的解法.【解】【点评】第六节曲线和方程学习目标1.掌握曲线的方程、方程的曲线等概念.2.了解解析几何的基本思想和解析法,学习运动变化、对立统一等辩证唯物主义思想.重点难点本节重点:了解曲线的点集与方程的解集之间的一一对应关系,从而掌握曲线的方程和方程的曲线这两个重要概念,并掌握由曲线的已知条件求方程的方法和步骤,熟悉解析法.本节难点:理解曲线和方程的概念,以及求曲线的方程的方法.在高考中,曲线和方程常是重点考查的内容,出现在解答题中.典型例题学习了本节后主要要掌握求曲线的方程的步骤,以及用解析法解题的步骤,以下归纳供参考.求曲线的方程的步骤是:一建--选取适当的点和直线,建立坐标系;二设--设曲线上点,以及利用已知条件设出其他有关点的坐标等;三列式--根据动点符合的条件,列出含、的方程0;四化简--化方程0为最简形式;五证明--证曲线上点的坐标都是方程的解,以这个方程的解为坐标的点都在曲线上(这一步不要求写出).解析法的主要步骤是:一建--建立适当的坐标系.建系原则是使已知条件好用,使表达式简明,运算简便.因此,尽量利用已知点和已知直线;二设--选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程;三算--通过运算,得到所要的结果.用以下例题检验是否理解和掌握了这些内容.1.怎样求轨迹方程【解法一】【解法二】【点评】【错误解法】【正确解法】【点评】【解法一】【解法二】【点评】2.解析法与综合法【证法一】【证法二】【证法三】【证法四】【点评】不同证法,以解析法较简便,复数将在高三年级学习,这里的证法实质和解析法一样,不过是换个说法.【分析】【解】【点评】解析法与综合法的特点,从中你体会到了吗?解析法的优点是程序固定(一建二设三算),操作简便,但一般运算量较大;综合法的优点是思路灵活,但如何添加辅助线不易掌握.【解法一】【解法二】【解法三】【解法四】【点评】“是否可以用代数中的计算过程代替几何中的证明?”“让代数和几何中一切最好的东西互相取长补短”等是笛卡儿创立解析几何的初衷.解析几何既然是用代数方法来研究几何对象的特征和性质,当然对运算能力要求较高.运算能力是一种计算化了的推理能力,是逻辑思维能力与计算知识、方法、技能和技巧的结合.在解析几何中,如果不注意运算方法上的特点和技能,就可能陷入有思路但算不出或很难算出正确结果的窘境,如本题的思路一、二.解析几何中常用的运算方法和技能是:①注意利用平面几何知识,如思路四;②不忘利用定义,尤其是圆锥曲线的定义解题;③充分利用一元二次方程根与系数的关系,并不忘对判别式的要求,如思路三;④合理利用曲线系;⑤数形结合,依形判数,就数论形;⑥灵活运用字母的可轮换性,减少同类量的重复运算.以上方法和技能,要在实际解题中逐步掌握.第七节圆的方程学习目标1.掌握圆的标准方程和一般方程,理解圆的参数方程.2.初步了解直线和圆中反映出的运动变化、对立统一等辩证思想和观点.重点难点本节重点:圆的标准方程、一般方程、参数方程及其相互转化.本节难点:直线和圆的综合运用.在高考中,圆的方程在选择题、填空题、解答题等各类题型中出现.本节要掌握三种类型的问题,之一是求圆的方程,之二是直线和圆的综合题,之三是应用直线和圆的知识解决一些问题.1.圆的方程有哪些形式?典型例题用下面的例题检验是否理解和掌握了圆的方程的三种形式:【解法一】【解法二】【解法三】【点评】怎样求圆的方程?这三条思路具有典型意义.【解法一】【解法二】【点评】【解法一】【解法二】【点评】【分析】关键确定圆心坐标和半径.【解】【点评】本题为1997年全国高考理科第25题,难度系数0.20.难在什么地方呢?第一文字叙述较长,有同学读不懂题;第二涉及众多知识,有同学不会运用;第三丢解,忽略了不同的位置关系.会不会用知识和怎样用知识,是一个人有没有能力和能力高低的重要标志,努力吧!2.直线和圆综合题【分析】【解】【点评】【解法一】【解法二】【分析】【点评】【解】【点评】【解法一】【解法二】【点评】分类是自然科学的基本方法,数学中的分类讨论的思想方法,就是依据数学对象的共同点和差异点,将其区分为不同种类,分类讨论并归纳结论,这一思想方法,在近代数学和现代数学中占有重要地位,是应该学习和掌握的重要思想方法.3.怎样利用直线和圆的知识解题?【分析】数形结合,将代数式或方程赋予几何意义.【解】【点评】从“数”中认识“形”,从“形”中认识“数”,数形结合相互转化,是数学思维的基本方法之一.“数学是一个有机的统一体,它的生命力的一个必要条件是所有的各个部分不可分离地结合.”(希尔伯特)数形结合的思维能力不仅是中学生的数学能力、数学素养的主要标志之一,而且也是学习高等数学和现代数学的基本能力.本题是利用直线和圆的知识求最值的典型题目.【解法一】【解法二】【解法三】【点评】。
高中数学直线的方程教案高中数学直线的方程教案1教学目标:(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.(2)理解直线与二元一次方程的关系及其证明(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.教学用具:计算机教学方法:启发引导法,讨论法教学过程:下面给出教学实施过程设计的简要思路:教学设计思路:(一)引入的设计前边学习了如何根据所给条件求出直线方程的方法,看下面问题:问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.肯定学生回答,并纠正学生中不规范的表述.再看一个问题:问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:【问题1】“任意直线的方程都是二元一次方程吗?”(二)本节主体内容教学的设计这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.学生或独立研究,或合作研究,教师巡视指导.经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:思路一:…思路二:………教师组织评价,确定最优方案(其它待课下研究)如下:按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.综合两种情况,我们得出如下结论:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?学生们不难得出:二者可以概括为统一的形式.这样上边的结论可以表述如下:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?师生共同讨论,评价不同思路,达成共识:回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即(1)当时,方程可化为这是表示斜率为、在轴上的截距为的直线.(2)当时,由于、不同时为0,必有,方程可化为这表示一条与轴垂直的直线.因此,得到结论:在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.【动画演示】演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的'抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.(三)练习巩固、总结提高、板书和作业等环节的设计略高中数学直线的方程教案2一、教学目标【知识与技能】进一步掌握直线方程的各种形式,会根据条件求直线的方程。
直线的方程教案人教版一、教学目标1. 理解直线方程的概念,掌握直线方程的表示方法。
2. 能够运用直线方程解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
二、教学内容1. 直线方程的概念和表示方法2. 直线方程的求解方法3. 直线方程的应用三、教学重点与难点1. 直线方程的概念和表示方法2. 直线方程的求解方法3. 直线方程在实际问题中的应用四、教学方法1. 采用问题驱动法,引导学生主动探究直线方程的概念和表示方法。
2. 通过案例分析,让学生掌握直线方程的求解方法。
3. 运用小组讨论法,培养学生团队合作解决问题的能力。
五、教学过程1. 导入新课:通过展示生活中的直线现象,引发学生对直线方程的思考。
2. 讲解直线方程的概念和表示方法:引导学生掌握直线方程的基本概念,了解直线方程的表示方法。
3. 案例分析:给出实际问题,让学生运用直线方程进行求解。
4. 小组讨论:让学生分小组讨论直线方程在实际问题中的应用,分享解题心得。
5. 总结与反馈:对学生的学习情况进行总结,对学生的疑问进行解答。
六、教学评价1. 评价学生对直线方程概念和表示方法的掌握程度。
2. 评价学生运用直线方程解决实际问题的能力。
3. 评价学生在团队合作中的表现和问题解决能力。
七、教学资源1. 教材:人教版高中数学教材。
2. 课件:直线方程的演示课件。
3. 案例题库:提供一定数量的直线方程应用案例。
4. 小组讨论工具:如白板、彩色笔等。
八、教学进度安排1. 教案编写:根据教学目标和内容进行详细教案编写。
2. 教学实践:根据教案进行教学实践,确保教学目标的实现。
3. 教学反馈:根据学生的学习情况及时进行教学反馈,调整教学方法和进度。
九、教学拓展1. 引导学生思考直线方程在不同领域的应用,如物理学、工程学等。
2. 引导学生探索直线方程的进一步研究,如曲线方程、多维空间中的直线方程等。
十、教学反思1. 对整个直线方程教案进行反思,总结教学过程中的优点和不足。
第七章直线和圆的方程●网络体系总览●考点目标定位(1)理解直线的斜率的概念,掌握过两点的直线的斜率公式.掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行与垂直的条件、两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的关系.(3)了解二元一次不等式表示平面区域.(4)了解线性规划的意义,并会简单的应用.(5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.●复习方略指南1.本章在高考中主要考查两类问题:基本概念题和求在不同条件下的直线方程.基本概念重点考查:(1)与直线方程特征值(主要指斜率、截距)有关的问题;(2)直线的平行和垂直的条件;(3)与距离有关的问题等.此类题大都属于中、低档题,以选择题和填空题形式出现,每年必考.中心对称与轴对称问题虽然在《考试大纲》中没有提及,但也是高考的重点,复习时也应很好地掌握.2.直线与圆、圆锥曲线的位置关系等综合性试题的难度较大,一般以解答题形式出现(此类问题下一章重点复习).3.由于一次函数的图象是一条直线,因此有关函数、数列、不等式、复数等代数问题往往借助直线方程进行解决,考查学生的综合能力及创新能力.在复习本章时要注意如下几点:1.要能分辨线段的有向与无向概念上的混淆,有向线段的数量与有向线段长度的混淆,能否分清这两点是学好有向线段的关键.2.在解答有关直线的问题时,要注意(1)在确定直线的斜率、倾斜角时,首先要注意斜率存在的条件,其次是倾斜角的范围;(2)在利用直线的截距式解题时,要注意防止由于“零截距”而造成丢解的情况;(3)在利用直线的点斜式、斜截式解题时,要注意检验斜率不存在的情况,防止丢解;(4)要灵活运用定比分点公式、中点坐标公式,在解决有关分割问题、对称问题时可以简化运算;(5)掌握对称问题的四种基本类型的解法;(6)在由两直线的位置关系确定有关参数的值或其范围时,要充分利用分类讨论、数形结合、特殊值检验等基本的数学思想方法.7.1 直线的方程●知识梳理1.直线的倾斜角、斜率及直线的方向向量(1)直线的倾斜角在平面直角坐标系中,对于一条与x轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°.可见,直线倾斜角的取值范围是0°≤α<180°.(2)直线的斜率倾斜角α不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示,即k =tan α(α≠90°).倾斜角是90°的直线没有斜率;倾斜角不是90°的直线都有斜率,其取值范围是(-∞,+∞).(3)直线的方向向量设F 1(x 1,y 1)、F 2(x 2,y 2)是直线上不同的两点,则向量21F F =(x 2-x 1,y 2-y 1)称为直线的方向向量.向量121x x -21F F =(1,1212x x y y --)=(1,k )也是该直线的方向向量,k 是直线的斜率.(4)求直线斜率的方法①定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tanα.②公式法:已知直线过两点P 1(x 1,y 1)、P 2(x 2,y 2),且x 1≠x 2,则斜率k =1212x x y y --.③方向向量法:若a =(m ,n )为直线的方向向量,则直线的斜率k =mn . 平面直角坐标系内,每一条直线都有倾斜角,但不是每一条直线都有斜率.斜率的图象如下图.对于直线上任意两点P 1(x 1,y 1)、P 2(x 2,y 2),当x 1=x 2时,直线斜率k 不存在,倾斜角α=90°;当x 1≠x 2时,直线斜率存在,是一实数,并且k ≥0时,α=arctan k ,k <0时,α=π+arctan k .2.直线方程的五种形式(1)斜截式:y =kx +b .(2)点斜式:y -y 0=k (x -x 0).(3)两点式:121y y y y --=121x x x x --. (4)截距式:a x +by =1. (5)一般式:Ax +By +C =0.●点击双基1.直线x tan 7π+y =0的倾斜角是 A.-7π B.7π C.7π5 D .7π6 解析:k =-tan 7π=tan (π-7π)=tan 7π6且7π6∈[0,π). 答案:D2.过两点(-1,1)和(3,9)的直线在x 轴上的截距是A.-23B.-32C.52 D .2解析:求出过(-1,1)、(3,9)两点的直线方程,令y =0即得.答案:A3.直线x cos α+3y +2=0的倾斜角范围是 A.[6π,2π)∪(2π,6π5] B.[0,6π]∪[6π5,π)C.[0,6π5] D .[6π,6π5] 解析:设直线的倾斜角为θ,则tan θ=-31cos α.又-1≤cosα≤1, ∴-33≤tan θ≤33.∴θ∈[0,6π]∪[6π5,π). 答案:B4.直线y =1与直线y =3x +3的夹角为___________.解法一:l 1:y =1与l 2:y =3x +3的斜率分别为k 1=0,k 2=3.由两直线的夹角公式得 tan α=|21121k k k k +-|=3,所以两直线的夹角为60°. 解法二:l 1与l 2表示的图象为(如下图所示)y =1与x 轴平行,y =3x +3与x 轴倾斜角为60°,所以y =1与y =3x +3的夹角为60°.答案:60°5.下列四个命题:①经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示;②经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(x 2-x 1)(x -x 1)=(y 2-y 1)(y -y 1)表示;③不经过原点的直线都可以用方程a x +by =1表示;④经过定点 A (0,b )的直线都可以用方程y =kx +b 表示.其中真命题的个数是A.0B.1C.2 D .3解析:对命题①④,方程不能表示倾斜角是90°的直线,对命题③,当直线平行于一条坐标轴时,则直线在该坐标轴上截距不存在,故不能用截距式表示直线.只有②正确.答案:B●典例剖析【例1】 已知△ABC 的三个顶点是A (3,-4)、B (0,3)、C(-6,0),求它的三条边所在的直线方程.剖析:一条直线的方程可写成点斜式、斜截式、两点式、截距式和一般式等多种形式.使用时,应根据题目所给的条件恰当选择某种形式,使得解法简便.由顶点B 与C 的坐标可知点B 在y 轴上,点C 在x 轴上,于是BC 边所在的直线方程用截距式表示,AB 所在的直线方程用斜截式的形式表示,AC 所在的直线方程利用两点式或点斜式表示均可,最后为统一形式,均化为直线方程的一般式.解:如下图,因△ABC 的顶点B 与C 的坐标分别为(0,3)和(-6,0),故B 点在y 轴上,C 点在x 轴上,即直线BC 在x 轴上的截距为-6,在y 轴上的截距为3,利用截距式,直线BC 的方程为6 x +3y =1, 化为一般式为x -2y +6=0.由于B 点的坐标为(0,3),故直线AB 在y 轴上的截距为3,利用斜截式,得直线AB 的方程为y =kx +3.又由顶点A (3,-4)在其上,所以-4=3k +3.故k =-37. 于是直线AB 的方程为y =-37x +3,化为一般式为7x +3y -9=0. 由A (3,-4)、C (-6,0),得直线AC 的斜率k AC =)6(304----=-94. 利用点斜式得直线AC 的方程为y -0=-94(x +6),化为一般式为4x +9y +24=0.也可用两点式,得直线AC 的方程为040---y =)6(3)6(----x ,再化简即可.评述:本题考查了求直线方程的基本方法.【例2】 已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P(2,3),求过两点Q 1(a 1,b 1)、Q 2(a 2,b 2)(a 1≠a 2)的直线方程.剖析:利用点斜式或直线与方程的概念进行解答.解:∵P (2,3)在已知直线上, 2a 1+3b 1+1=0, 2a 2+3b 2+1=0.∴2(a 1-a 2)+3(b 1-b 2)=0,即2121a a b b --=-32. ∴所求直线方程为y -b 1=-32(x -a 1).∴2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0.评述:此解法运用了整体代入的思想,方法巧妙.思考讨论∴依“两点确定一直线”,那么你又有新的解法吗?提示: 由 2a 1+3b 1+1=0,2a 2+3b 2+1=0,知Q 1、Q 2在直线2x +3y +1=0上.【例3】 一条直线经过点P (3,2),并且分别满足下列条件,求直线方程:(1)倾斜角是直线x -4y +3=0的倾斜角的2倍;(2)与x 、y 轴的正半轴交于A 、B 两点,且△AOB 的面积最小(O 为坐标原点).剖析:(2)将面积看作截距a 、b 的函数,求函数的最小值即可.解:(1)设所求直线倾斜角为θ,已知直线的倾斜角为α,则θ=2α,且tan α=41,tan θ=tan2α=158,从而方程为8x -15y +6=0.(2)设直线方程为a x +by =1,a >0,b >0,代入P (3,2),得a 3+b2=1≥2ab 6,得ab ≥24,从而S △AOB =21ab ≥12,此时a 3=b 2,∴k =-a b =-32.∴方程为2x +3y -12=0.评述:此题(2)也可以转化成关于a 或b 的一元函数后再求其最小值.深化拓展若求|PA|·|PB|及|OA|+|OB|的最小值,又该怎么解呢?提示:可类似第(2)问求解.●闯关训练夯实基础1.直线x-2y+2k=0与两坐标轴所围成的三角形面积不大于1,那么k的范围是A.k≥-1B.k≤1C.-1≤k≤1且k≠0D.k≤-1或k≥11|解析:令x=0,得y=k;令y=0,得x=-2k.∴三角形面积S=2xy|=k2.又S≤1,即k2≤1,∴-1≤k≤1.又∵k=0时不合题意,故选C.答案:C2.(2004年湖南,2)设直线ax+by+c=0的倾斜角为α,且sinα+cosα=0,则a、b满足A.a+b=1B.a-b=1C.a+b=0D.a-b=0解析:0°≤α<180°,又sinα+cosα=0,α=135°,∴a-b=0.答案:D3.(2004年春季北京)直线x -3y +a =0(a 为实常数)的倾斜角的大小是____________.解析:k =33,即tan α=33. ∴α=30°.答案:30°4.(2005年北京东城区目标检测)已知直线l 1:x -2y +3=0,那么直线l 1的方向向量a 1为____________(注:只需写出一个正确答案即可);l 2过点(1,1),并且l 2的方向向量a 2与a 1满足a 1·a 2=0,则l 2的方程为____________.解析:由方向向量定义即得a 1为(2,1)或(1,21). a 1·a 2=0,即a 1⊥a 2.也就是l 1⊥l 2,即k 1·k 2=-1. 再由点斜式可得l 2的方程为2x +y -3=0.答案:(2,1)或(1,21) 2x +y -3=0 5.已知直线l 的斜率为6,且被两坐标轴所截得的线段长为37,求直线l 的方程.解法一:设所求直线l 的方程为y =kx +b .∵k =6,∴方程为y =6x +b .令x =0,∴y =b ,与y 轴的交点为(0,b );令y =0,∴x =-6b ,与x 轴的交点为(-6b ,0). 根据勾股定理得(-6b )2+b 2=37, ∴b =±6.因此直线l 的方程为y =6x ±6.解法二:设所求直线为ax +by =1,则与x 轴、y 轴的交点分别为(a ,0)、(0,b ).由勾股定理知a 2+b 2=37. 又k =-ab =6,a 2+b 2=37,-ab =6.a =1, a =-1,b =-6 b =6.因此所求直线l 的方程为x +6-y=1或-x +6y =1,即6x -y ±6=0.6.在△ABC 中,已知点A (5,-2)、B (7,3),且边AC 的中点M 在y 轴上,边BC 的中点N 在x 轴上.(1)求点C 的坐标; (2)求直线MN 的方程.解:(1)设点C (x ,y ),由题意得25x +=0,23y +=0,得x =-5,y =-3.故所求点C 的坐标是(-5,-3).(2)点M 的坐标是(0,-25),点N 的坐标是(1,0),直线MN 的方程是0250---y =101--x , 即5x -2y -5=0. 培养能力7.某房地产公司要在荒地ABCDE (如下图)上划出一块长方形地面(不改变方位)建造一幢八层的公寓楼,问如何设计才能使公∴或 解此方程组可得寓占地面积最大?并求出最大面积.(精确到1 m 2)解:如下图,在线段AB 上任取一点P ,分别向CD 、D E 作垂线划得一块长方形土地,建立如下图所示的直角坐标系,则AB 的方程为30x+20y =1.设P (x ,20-32x ),则长方形面积S =(100-x )[80-(20-32x )] (0≤x ≤30).化简得S =-32x 2+320x +6000(0≤x ≤30).配方,易得x =5,y =350时,S 最大,其最大值为6017 m 2.8.(文)已知点P (1,-1),直线l 的方程为2x -2y +1=0.求经过点P ,且倾斜角为直线l 的倾斜角一半的直线方程.解:设直线l的倾斜角为α,则所求直线的倾斜角为2α,由已知直线l 的斜率为tan α=22及公式tan α=2tan12tan 22αα-,得tan22α+22·tan 2α-1=0.解得tan 2α=3-2或tan 2α=-3-2.由于tan α=22,而0<22<1,故0<α<4π,0<2α<8π.因此tan 2α>0.于是所求直线的斜率为k =tan 2α=3-2.故所求的直线方程为y -(-1)=(3-2)(x -1),即(3-2)x -y -(3-2+1)=0.(理)设直线l 的方程是2x +By -1=0,倾斜角为α. (1)试将α表示为B 的函数;(2)若6π<α<3π2,试求B 的取值范围;(3)若B ∈(-∞,-2)∪(1,+∞),求α的取值范围. 解:(1)若B =0,则直线l 的方程是2x -1=0,∴α=2π;若B ≠0,则方程即为y =-B2x +B1,∴当B <0时,-B 2>0,α=arctan (B2 ),而当B >0时,-B 2<0,α=π+arctan (-B2),-arctan B2 (B <0),2π(B =0), π-arctan B2(B >0).(2)若α=2π,则B =0,若α≠2π,则tan α<-3或tan α>33,即-B 2<-3(B >0)或-B 2=>33(B <0),∴-23<B <0或0<B <323.综上,知-23<B <323.(3)若B <-2,则-B 2<1,∴0<tan α<1,0<α<4π;若B >1,则-B2>-2,∴0>tan α>-2,π-arctan2<α<π.综上,知π-arctan2<α<π或0<α<4π.探究创新9.某市现有自市中心O 通往正西和东北方向的两条主要公路,为了解决交通拥挤问题,市政府决定修一条环城路,分别在通往正西和东北方向的公路上选取A 、B 两点,使环城公路在A 、B 间为线段,要求AB 环城路段与中心O 的距离为10 km ,且使A 、B 间的距即α=f (B )=离|AB |最小,请你确定A 、B 两点的最佳位置(不要求作近似计算).解:以O 为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,建立如下图所示的坐标系.设A (-a ,0)、B (b ,b )(其中a >0,b >0),则AB 的方程为00--b y =ab ax ++, 即bx -(a +b )y +ab =0. ∵10=22)(||b a b ab ++,∴a 2b 2=100(a 2+2b 2+2ab )≥100(2222b a ⋅+2ab )=200(1+2)ab .∵ab >0,∴ab ≥200(2+1).当且仅当“a 2=2b 2”时等号成立, 而|AB |=22)(b a b ++=10ab ,∴|AB |≥20(2+1).a 2=2b 2,ab =10ab a b 2222++,a =10)22(2+,b =1022+此时|OA |=a =10)22(2+,|OB |=10)22(2+,∴A 、B 两点的最佳位置是离市中心O 均为10)22(2+km处.●思悟小结直线的倾斜角、斜率及直线在坐标轴上的截距是刻画直线位置状态的基本量,应正确理解;直线方程有五种形式,其中点斜式要当即时,|AB |取最小值,熟练掌握,这五种形式的方程表示的直线各有适用范围,解题时应注意不要丢解;含参数的直线方程问题用数形结合法常常简捷些.●教师下载中心 教学点睛1.注意斜率和倾斜角的区别,让学生了解斜率的图象.2.直线方程的点斜式、两点式、斜截式、截距式等都是直线方程的特殊形式,其中点斜式是最基本的,其他形式的方程皆可由它推导.直线方程的特殊形式都具有明显的几何意义,但又都有一些特定的限制条件,因此应用时要注意它们各自适用的范围,以避免漏解.3.如何建立平面坐标系内满足一定条件的直线的方程是本节的主要问题;通用的解决方法是待定系数法;根据所知条件选择恰当的直线方程的形式是解题的关键;克服各类方程局限性的手段是分类讨论;开阔思路分析问题的措施是数形结合.拓展题例【例1】 在直线方程y =kx +b 中,当x ∈[-3,4]时,y ∈[-8,13],求此直线方程.解:当x 的区间的左端点与y 的区间的左端点对应,x 的区间的右端点与y 的区间的右端点对应时,得3k+b=84k+b=13⎧⎨⎩ 解得k=3b=1⎧⎨⎩∴直线方程为y =3x +1.当x 的区间的左端点与y 的区间的右端点对应,x 的区间右端点与y 的区间的左端点对应时,得-3k+b=134k+b=-8⎧⎨⎩ 解得k=-3b=4⎧⎨⎩∴所求的直线方程为y =-3x +4.【例2】 已知两点A (-1,2)、B (m ,3). (1)求直线AB 的斜率k 与倾斜角α; (2)求直线AB 的方程; (3)已知实数m ∈[-33-1,3-1],求直线AB 的倾斜角α的取值范围.解:(1)当m =-1时,直线AB 的斜率不存在,倾斜角α=2π.当m ≠-1时,k =11+m , 当m >-1时,α=arctan 11+m , 当m <-1时,α=π+arctan 11+m .(2)当m =-1时,AB :x =-1,当m ≠1时,AB :y -2=11+m (x +1). (3)1°当m =-1时,α=2π;2°当m ≠-1时,∵k =11+m ∈(-∞,-3]∪[33,+∞),∴α∈[6π,2π)∪(2π,3π2].故综合1°、2°得,直线AB 的倾斜角α∈[6π,3π2].。