5.1 数列的概念与简单表示法
- 格式:docx
- 大小:16.37 KB
- 文档页数:2
数列的概念及简单表示法一、数列的概念1.数列定义:按照一定次序排列起来的一列数叫做数列,数列中的每一个数叫做这个数列的项2.数列与函数的关系:从函数观点看,数列可以看成以正整数集N+(或它的有限子集)为定义域的函数a n=f(n).当自变量按照从小到大的顺序依次取值时所对应的一列函数值3.数列有三种表示法:是列表法、图象法和通项公式法二、数列的分类分类原则类型满足条件按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列a n+1>a n其中n∈N+递减数列a n+1<a n常数列a n+1=a n按其他标准分类有界数列存在正数M,使|a n|≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列三、数列的两种常用的表示方法1.通项公式:如果数列{a n}的第n 项a n 与n 之间的关系可以用一个函数式a n=f(n)来表示,那么这个公式叫做这个数列的通项公式2.递推公式:如果已知数列{a n}的第1 项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式四、通项公式的求法:1.观察法:仔细观察数列的项和项数之间的关系,可分离出随项数变化的部分和不变的部分,从而找到规律.如数列2 , -1,10 , -17 , 26 , -37 ,,先将数列变为 2 , -5 , 10 , -17 , 26 , -37 ,,显然3 7 9 11 13 3 5 7 9 11 13S ⎪ ⎪ ⎨ - S 分母为2n +1,分子为n 2 +1,奇数项正偶数项负,乘以(-1)n +1即可.故n +1n 2 +1 a n = (-1)2n +1 .又如数列 7,77,777, ,可写成 7 ⨯ 9, 7 ⨯ 99, 7⨯999, 999,而 9,99,999,依次又可写成10 -1,102-1,103-1, ,因此,这个数列的通项公式为a = 7 (10n -1)2. 公式法:(1) 已知数列{a n }的前 n 项和S n ,则 a n= ⎧⎪S 1⎪⎩ nn -1 n9(n = 1) (n ≥ 2) (2) 对于等差数列和等比数列,把已知条件代入其通项公式、前 n 项和公式列出方程(组)求解3.累加法:形如a n +1 = a n + f (n ),当 f (1) + f (2) + + f (n ) 的值可求时用此法 ⎧an - a n -1 = f (n -1) ⎪a - a = f (n - 2) ⎪ n -1⎨n -2 ⇒ a n = f (n -1) + f (n - 2) +... f (2) + f (1) + a 1, (n ≥ 2) ⎪... ⎪⎩a 2 - a 1 = f (1)(1) 若 f (n ) 是关于n 的一次函数,累加后可转化为等差数列求和(2) 若 f (n ) 是关于n 的指数函数,累加后可转化为等比数列求和(3) 若 f (n ) 是关于n 的二次函数,累加后可分组求和(4) 若 f (n ) 是关于n 的分式函数,累加后可裂项求和4. 累乘法:形如a = f (n )a ⎛或 a n +1 = f (n ) ⎫,当 f (1) f (2)f (n ) 可求时,用此法.⎧ a n⎪ a= f (n -1) n +1n⎪⎝a n⎭⎪ n -1 ⎪ a n -1⎪ a f (n - 2) ⎨ n -2 ⎪... ⎪ a 2 = af (1) ⎩ 1 将上述n -1个式子两边分别相乘,可得: a n = f (n -1) ⋅ f (n - 2) ⋅...⋅ f (2) f (1)a 1, (n ≥ 2)=⎩5. 构造法:当已知非常数数列的首项(或前几项)及递推公式时用此法 (1)对于一阶递推公式: a n +1 = pa n + q , ( p 为常数,p ≠ 1) 给出的数列,两边各加q 得, a+ q = p (a +q ) ,这样就构造出一个等比数列⎧a +q ⎫ ,其公比 p -1 n +1 p -1 n p -1 ⎨ n p -1⎬⎩ ⎭为 p ,首项是a +q ,∴ a + q= (a + q ) p n -1 ,即a = (a + q ) p n -1 - q 1p -1 n p -1 1 p -1 n 1p -1 p -1(2)对于二阶递推公式: a n +1 = pa n + qa n -1 (p , q 为常数) 给出的数列,设 a + xa =y (a + xa ) (*),显然⎧ y - x = p.把方程组的解代入(*)便可构成一个等 n +1 n n n -1 ⎨xy = q比数列,继而可以求出通项公式(3)以 a = ma n 给出的数列(p , q , m 均为非零整数),当m = q 时,可以构造一个 n +1pa n + q等差数列;当m ≠ q 时,可以构造一个一阶递推公式6. 周期数列举例:通过计算前有限项发现周期,继而求出某些项或 S n1n n 等 差 数 列 及 其 前 n 项 和一、等差数列的概念1. 定义:如果一个数列从第 2 项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2. 数学语言表达式: a n +1 - a n = d ( n ∈N +,d 为常数),或a n - a n -1 = d ( n ≥2,d 为常数)3. 等差中项:如果三个数x ,A ,y 组成等差数列,那么 A 叫做 x 和 y 的等差中项,且有 A =x + y 2二、等差数列的通项公式与前n 项和公式1. 若等差数列{a n }的首项是a ,公差是d ,则其通项公式为a = a + (n -1)d = dn + a - d (n ∈ N *)n11通项公式的推广: a = a + (n - m )d ( m , n ∈N) ⇒ d =a n - a mnm+n - m2. 等差数列的前n 项和公式S= na + n (n -1) d = n (a 1 + a n ) = d n 2 + (a - 1 d )n n 12 22 1 2 (其中n ∈N +, a 1 为首项,d 为公差, a n 为第n 项)数列{a }是等差数列⇔ S = An 2+ Bn(A , B 为常数)三、等差数列的性质1. 非零常数列既是等差数列又是等比数列2. 数列{ a n }为等差数列⇔ a n = pn + q (p,q 是常数)3. 数列{λa n + b }( λ, b 为常数)仍为等差数列4. 若m + n = p + q (m , n , p , q ∈ N + ),则a m + a n = a p + a q5. 等差数列{a n }中,若项数成等差数列,则对应的项也成等差数列6. 等差数列{a n }中,隔相同的项抽出一项所得到的数列仍为等差数列p +nq 2k 2k n n 7. 若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d8. 若{a n }、{b n }是等差数列,则{ka n } 、{ka n + pb n }{a }( p , q ∈ N *)…也成等差数列 9.单调性:{a n }的公差为d ,则: (1) d > 0 ⇔ {a n }为递增数列 (2) d < 0 ⇔ {a n }为递减数列 (3) d = 0 ⇔ {a n }为常数列( k 、 p 是非零常数)、10. 若等差数列{a n }的前n 项和S n ,则S k 、S 2k - S k 、S 3k - S … 是等差数列 11. 等差数列{a n }的单调性:当d >0 时, {a n }是递增数列;当d <0 时, {a n }是递减数列;当d =0 时, {a n }是常数列12. 若{a n }是等差数列,公差为d ,则a k 、a k + m 、a k +2m …(k ,m ∈N +)是公差为md的等差数列13. 若数列{a}是等差数列,前n 项和为S ,则⎧S n ⎫也是等差数列,其首项和{a}的首 nn⎨ n ⎬ n项相同,公差是{a n⎩ ⎭}公差的 1214. 若三个数成等差数列,则通常可设这三个数分别为 x - d , x , x + d ;若四个数成等差数列,则通常可设这四个数分别为 x - 3d , x - d , x + d , x + 3d 四、等差数列前n 项的性质1. 若等差数列{a n }的前n 项和S n ,则S k 、S 2k - S k 、S 3k- S … 是等差数列2. 若数列{a } {b } 都是等差数列,其前 n 项和分别为S T ,则a n= 2n -1n,nn ,nbTn 2n -13. 若数列{a }的前n 项和S = An 2+ Bn +C (A , B 为常数,C ≠ 0) ,则数列{a n }从第二项起是等差数列sn⎨ 2n偶奇 中 偶 奇 偶偶4. 若数列{a n }是等差数列的充要条件是前n 项和公式S n = f (n ) ,是n 的二次函数或一次函数且不含常数项,即 S = An 2 + Bn (A , B 为常数,A 2 +B 2 ≠ 0)5. 等差数列{a n }中,若a < 0,d > 0 ( a ≤ 0 的n 的最大值为k )则S 有最小值S ,前n 项绝对值的和T n 1 = ⎧⎪-s n nn ≤ k;若a > 0,d< 0,( n a n ≥ k0 的n 的最大 ⎪⎩s n - 2s k n ≥ k + 1值为k )则S 有最大值S ,前n 项绝对值的和T = ⎧⎪s nn ≤ kn k n⎨ ⎪⎩2s k - s n n ≥ k + 16. 等差数列{a n }中,若项数为奇数2n - 1,则中间项为a , S =(2n-1)a ,S - S = n - 1 d s n + a , 奇 = 奇 偶 2 1S n - 1 若n 为偶数,则S = nd2若n 为奇数,则S - S =a (中间项)7. 等差数列{a n }中,若项数n 为奇数,设奇数项的和和偶数项的和分别为S 、S ,则sn + 1 s a n奇=;若项数n 为偶数, 奇= 2S n - 1S a n + 12五、等差数列的前 n 项和的最值等差数列{a n }中1. 若a 1>0,d <0,则S n 存在最大值2. 若a 1<0,d >0,则S n 存在最小值六、等差数列的四种判断方法1. 定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列2. 等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列3. 通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列4. 前 n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列1- S 偶 偶 奇mb n 等 比 数 列 及 其 前 n 项 和一、等比数列的概念1. 定义:如果一个数列从第 2 项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用q ( q ≠0)表示 2.数学语言表达式: a n= q ( n≥2, q 为非零常数),或 an +1 = q ( n ∈N , q 为非零常数)+a n -1 a n3. 等比中项:如果三个数x ,G ,y 组成等比数列,那么G 叫做 x 与 y 的等比中项,其中G = ±二、等比数列的通项公式及前n 项和公式1. 若等比数列{a }的首项为a ,公比是q ,则其通项公式为a = a q n -1n通项公式的推广: a n 1= a q n - mn 1a (1- q n )a - a q 2. 等比数列的前n 项和公式:当q =1 时, S n = na 1 ;当q ≠1 时, S n =11- q= 1 n1- q三、等比数列的性质 1. q = 1 ⇒{a n }为常数列2. q < 0 ⇒{a n } 为摆动数列3. 若正项数列{a n }为等比数列,则数列{log a a n }为等差数列4. 若{a }是等比数列,则{λa }(λ 为不等于零的常数),{a 2}⎧ 1 ⎫ {a r }(r ∈ Z ) 是等n n n⎨ a ⎬ n ⎩ n ⎭比数列,公比依次是q ,q 2 1 q r ,若数列{a } ,{b }都是等比数列且项数相同,则⎧ a n ⎫是等比数列, , n nq ⎨ ⎬ ⎩n ⎭ 5. 若数列{a }为等差数列,则数列{ba n}为等比数列6. 若 m + n = p + q (m , n , p , q ∈ N + ) ,则 a⋅ a = a ⋅ a ,当 p = q 时, a ⋅ a = a 2 即a p 是a m 和a n 的等比中项mnpqm n p7. 相隔等距离的项组成的数列仍是等比数列,即a k 、a k + m 、a k +2m …仍是等比数列,公比为xy1 1 1 1 2n ⎩ n ⎩ q m (即若项数成等差数列,则对应的项也等比数列)8. 任意两数a , b 都存在等差中项为a + b,但不一定都存在等比中项,当且仅当a , b 同号时 2才存在等比中项为9. 任意常数列都是等差数列,但不一定都是等比数列,当且仅当非零的常数列即是等差数列又是等比数列10. 等比数列{a n }的单调性:(1) 当q >1, a >0 或 0< q <1, a <0 时,数列{a n }是递增数列 (2) 当q >1, a <0 或 0< q <1, a >0 时,数列{a n }是递减数列 (3) 当q =1 时,数列{a n }是常数列11. 当q ≠-1,或q =-1 且 n 为奇数时,S n 、S 2n - S n 、S 3n - S 仍成等比数列,其公比为q n12. 等比差数列{a n }: a n +1 = qa n + d , a 1 = b (q ≠ 0) 的通项公式为⎧b + (n -1)d q = 1⎪ a n = ⎨bq n+ (d - b )q n -1 - d ;⎪q -1 q ≠ 1 ⎧nb + n (n -1)d(q = 1)其前 n 项和公式为 s n ⎪ ⎨(b - d ) 1- q + d n(q ≠ 1)⎪1- q q -1 1- q(四)判断给定的数列{a n }是等比数列的方法(1)定义法: an +1 = q (不为 0 的常数)⇔数列{a a n}为等比数列(2)中项法: a ⋅ a= a2⇔数列{a }为等比数列mn +2n +1n(3)前n 项和法:数列{a n }的前n 项和S n = A - Aq n (A 是常数, A ≠ 0, q ≠ 0, q ≠ 1 )⇔数列{a n }为等比数列= nS 1 1 ⎨ - S 数 列 求 和一、公式法1. 等差数列的前n 项和公式: S n2. 等比数列的前n 项和公式 (1) 当q =1 时, S n = na 1= na 1+n (n -1) d = n (a 1 + a n)2 2a (1- q n )a - a q(2) 当q ≠1 时, S n = 11- q = 1 n1- q3. 已知数列{a n }的前 n 项和S n ,则 a n= ⎧⎪S 1⎪⎩ nn -1 (n = 1) (n ≥ 2) 4. 差比数列求和:通项为a n b n 型,其中{a n }是等差数列,{b n }是等比数列,称为差比数列.求和方法为(设 d , q 分别是{a n },{b n }的公差、公比):令S n = a 1b 1 + a 2b 2 + + a n b n …①,两边同乘以q 得qS n = a 1b 1q + a 2b 2q + + a n b n q , ∴qS n = a 1b 2 + a 2b 3 + + a n b n +1 …②,①-②得 (1- q )S n = a 1b 1 + (a 2 - a 1)b 2 + + (a n - a n -1)b n - a n b n +1 = a 1b 1 + d b 2 + d b 3 + + d b n -1 + d b n - a n b n +1 = a 1b 1 + d (b 2 + b 3 + + b n -1 + b n ) - a n b n +1= a 1b 1 + d ⨯b (1- qn) 1- q-a nb n +1,∴当q ≠ 1时, Sn = a 1b 1 - a n b n +1 + d ⨯ 1- q b (1- q n) (1- q )2二、观察法:仔细观察数列的项和项数之间的关系,可分离出随项数变化的部分和不变的部分,从而找到规律.1.数列 2 , -1,10 , - 17 , 26 , - 37 , ,先将数列变为 2 , - 5 , 10 , - 17 , 26 , - 37, ,分母379 111335 79 11 13n +1n 2 +1 为2n +1,分子为n 2 +1,奇数项正偶数项负,乘以(-1)n +1即可.故a = (-1)2n +1 .2.又如数列 7,77,777, ,可写成 7 ⨯ 9, 7 ⨯ 99, 7 ⨯999,9 9 9,而 9,99,999,依次又可写成10 -1,102-1,103 -1, ,因此,这个数列的通项公式为a = 7 (10n -1)n9n⎪ ⎪ 3. 周期数列举例:通过计算前有限项发现周期,继而求出某些项或 S n三、累加法:形如a n +1 = a n + f (n ),当 f (1) + f (2) + + f (n ) 的值可求时用此法⎧an - a n -1 = f (n -1) ⎪a - a = f (n - 2) ⎪ n -1⎨n -2 ⇒ a n = f (n -1) + f (n - 2) +... f (2) + f (1) + a 1, (n ≥ 2) ⎪... ⎪⎩a 2 - a 1 = f (1)(1) 若 f (n ) 是关于n 的一次函数,累加后可转化为等差数列求和(2) 若 f (n ) 是关于n 的指数函数,累加后可转化为等比数列求和(3) 若 f (n ) 是关于n 的二次函数,累加后可分组求和(4) 若 f (n ) 是关于n 的分式函数,累加后可裂项求和四、累乘法:形如a= f (n )a ⎛或 a n +1 = f (n ) ⎫,当 f (1) f (2)f (n ) 可求时用此法.⎧ a n⎪ a= f (n -1) n +1n⎪⎝a n⎭⎪ n -1 ⎪ a n -1⎪ a f (n - 2) ⎨ n -2 ⎪... ⎪ a 2 = af (1) ⎩ 1 将上述n -1个式子两边分别相乘,可得: a n = f (n -1) ⋅ f (n - 2) ⋅...⋅ f (2) f (1)a 1, (n ≥ 2)五、构造法:当已知非常数数列的首项(或前几项)及递推公式时用此法1. 对于一阶递推公式: a n +1 = pa n + q , ( p 为常数,p ≠ 1) 给出的数列,两边各加qp -1得, a +q = p (a +q) ,这样就构造出一个等比数列⎧a + q ⎫ ,其公比为 n +1p -1 np -1 ⎨ n p -1⎬⎩ ⎭p ,首项是a +q ,∴ a + q= (a + q ) p n -1 ,即a = (a + q ) p n -1 - q 1p -1 n p -1 1 p -1 n 1p -1 p -12. 对于二阶递推公式: a n +1 = pa n + qa n -1 (p , q 为常数) 给出的数列, =⎩设 a + xa =y (a + xa ) (*),显然⎧y - x = p.把方程组的解代入(*)便可构成一个等n +1n n n -1⎨xy = q比数列,继而可以求出通项公式3. 以 a= ma n 给出的数列( p , q , m 均为非零整数),当m = q 时,可以构造一个等n +1pa n + q差数列;当m ≠ q 时,可以构造一个一阶递推公式 4. 形如a n +1 = pa n + q (其中 p , q 均为常数且 p ≠ 0 )型的递推式:(1) 若 p = 1时,数列{ a n }为等差数列 (2) 若q = 0 时,数列{ a n }为等比数列(3) 若 p ≠ 1 且q ≠ 0 时,数列{ a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种:法一:设a n +1 + λ = p (a n + λ) ,展开移项整理得a n +1 = pa n + ( p -1)λ ,与题设a = pa + q 比较系数(待定系数法)得λ =q, ( p ≠ 0) ⇒ a + q = p (a + q)n +1np -1 n +1p -1n p -1⇒ a + q= p (a + q ) ,即⎧a + q ⎫构成以a + q为首项,以 p 为公比的等比 np -1 n -1 p -1 ⎨ n p -1⎬ 1 p -1⎩ ⎭数列.再利用等比数列的通项公式求出⎧a + q ⎫的通项整理可得a . ⎨ n p -1⎬ n法二:由a= pa ⎩ ⎭ + q 得a = pa + q (n ≥ 2) 两式相减并整理得a n +1 - a n= p , 即 n +1 n n n -1 a - an n -1{a n +1 - a n }构成以a 2 - a 1 为首项,以 p 为公比的等比数列.求出{a n +1 - a n }的通项再转化为累加法便可求出a n .5. 形如a n +1 = pa n + f (n ) ( p ≠ 1) 型的递推式: (1) 当 f (n ) 为一次函数类型(即等差数列)时:法一:设a n + An + B = p [a n -1 + A (n -1) + B ] ,通过待定系数法确定 A 、B 的值,转化成以a 1 + A + B 为首项,以 p 为公比的等比数列{a n + An + B } ,再利用等比数列的通项公式求出{a n + An + B } 的通项整理可得a n .法二:当 f (n ) 的公差为d 时,由递推式得: a n +1 = pa n + f (n ) , a n = pa n -1 + f (n -1)两式相减得: a n +1 - a n = p (a n - a n -1 ) + d ,令b n = a n +1 - a n 得: b n = pb n -1 + d 转化为“4”求出 b n ,再用累加法便可求出a n .(2) 当 f (n ) 为指数函数类型(即等比数列)时:法一:设a n + λ f (n ) = p [a n -1 + λ f (n -1)],通过待定系数法确定λ 的值,转化成以 a 1 + λ f (1) 为首项,以 p 为公比的等比数列{a n + λ f (n )} ,再利用等比数列的通项公式求出{a n + λ f (n )} 的通项整理可得a n .法二:当 f (n ) 的公比为q 时,由递推式得: a n +1 = pa n + f (n ) ——①,a n = pa n -1 + f (n -1) ,两边同时乘以q 得a n q = pqa n -1 + qf (n -1) ——②,由①②两式相减得a - a q = p (a - qa ) ,即 a n +1 - qa n= p ,在转化为类型Ⅴ㈠便可求出a . n +1 n n n -1 a - qa nn n -1法三:递推公式为an +1 = pa n + q n (其中p ,q 均为常数)或a = pa n + rq n (其中p ,q, r 均为常数)时,要先在原递推公式两边同时除以q n +1 ,得:a n +1 = p • a n + 1 ,引入辅助数列{b }(其中b = a n ),得: b = p b + 1 再应用类型 q n +1 q q n qn n q nn +1 q n q“4”的方法解决。
数学知识点:数列的概念及简单表示法_知识点总结
一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。
从函数角度看数列:
数列可以看作是一个定义域为正整数集N'(或它的有限子集{l,2,3,…,n})的函数,即当自变量从小到大依次取值时对应的一列函数值,这里说的函数是一种特殊函数,其特殊性为自变量只能取正整数,且只能从I开始依次增大.可以将序号作为横坐标,相应的项作为纵坐标描点画图来表示一个数列,从数列的图象可以看出数列中各项的变化情况。
特别提醒:
①数列是一个特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,学习规律,即用共性来解决特殊问题;
②还要注意数列的特殊性(离散型),由于它的定义域是N'或它的子集{1,2,…,n},因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性.。
《数列的概念与简单表示法》教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。
强调数列的有序性,即数列中每个数的位置是固定的。
1.2 数列的项解释数列中的每一个数称为数列的项。
举例说明数列的项与数列的关系。
1.3 数列的表示方法介绍数列的表示方法,包括顺序列举法和通项公式法。
举例说明如何用通项公式表示数列。
第二章:数列的通项公式2.1 通项公式的定义引导学生理解通项公式是用来表示数列中任意一项的公式。
强调通项公式中变量的含义和作用。
2.2 常见数列的通项公式举例讲解等差数列和等比数列的通项公式。
引导学生通过观察数列的特点来确定通项公式。
2.3 通项公式的应用解释如何利用通项公式来求解数列中的特定项。
举例说明通项公式在解决数列问题中的应用。
第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的个数。
引导学生理解项数与数列的定义和表示方法的关系。
3.2 数列的单调性讲解数列的单调性,包括递增和递减。
举例说明如何判断数列的单调性。
3.3 数列的周期性解释数列的周期性是指数列中存在重复的项的模式。
举例说明如何判断数列的周期性。
第四章:数列的求和4.1 数列的求和公式引导学生理解数列的求和是指将数列中所有项相加得到的结果。
讲解数列的求和公式,包括等差数列和等比数列的求和公式。
4.2 数列的求和应用解释如何利用数列的求和公式来求解数列的和。
举例说明数列的求和公式在解决数列问题中的应用。
4.3 数列的求和性质讲解数列的求和性质,包括数列的错位相减法和分组求和法。
举例说明如何利用数列的求和性质来简化计算。
第五章:数列的综合应用5.1 数列的极限引导学生理解数列的极限是指数列项趋近于某个值的过程。
讲解数列的极限的定义和性质。
5.2 数列的极限应用解释如何利用数列的极限来解决数列问题。
举例说明数列的极限在数学分析中的应用。
5.3 数列的实际应用讲解数列在实际问题中的应用,包括数列在物理学和经济学中的例子。
数列的概念与简单表示法要点一、数列的概念数列概念:按照一定顺序排列着的一列数称为数列. 要点诠释:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 数列的项:数列中的每一个数叫做这个数列的项.各项依次叫做这个数列的第1项,第2项,…;排在第n 位的数称为这个数列的第n 项.其中数列的第1项也叫作首项;项在数列中的位置序号称为项数.要点诠释:数列的项与项数是两个不同的概念。
数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号.类比集合中元素的三要素,数列中的项也有相应的三个性质: (1)确定性:一个数是否数列中的项是确定的; (2)可重复性:数列中的数可以重复;(3)有序性:数列中的数的排列是有次序的.数列的一般形式可以写成:1a ,2a ,3a ,…,n a ,…,或简记为{}n a .其中n a 是数列的第n 项.要点诠释:{}n a 与n a 的含义完全不同,{}n a 表示一个数列,n a 表示数列的第n 项. 要点二、数列的分类 根据数列项数的多少分: 有穷数列:项数有限的数列. 无穷数列:项数无限的数列. 根据数列项的大小分:递增数列:从第2项起,每一项都大于它的前一项的数列。
递减数列:从第2项起,每一项都小于它的前一项的数列。
常数数列:各项相等的数列。
摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 要点三、数列的通项公式与前n 项和数列的通项公式表示,那么这个公式就叫做这个数列的通项公式.如数列:0,1,23,…的通项公式为1n a n =-(*n N ∈);1,1,1,1,…的通项公式为1n a =(*n N ∈);1,12,13,14,…的通项公式为1n a n=(*n N ∈);要点诠释:(1)并不是所有数列都能写出其通项公式; (2)一个数列的通项公式有时是不唯一的。
数列的概念与简单表示法
A 组 考点能力演练
1.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( )
A .143
B .156
C .168
D .195 2.(2015·杭州质检)已知数列{a n }满足a 1=0,a n +1=
a n -33a n +1(n ∈N *),则a 20=( ) A .0 B .- 3 C. 3 D.32
3.在数列{a n }中,a 3=8,a n +1=⎩⎪⎨⎪⎧
a n +2(n 为奇数),2a n (n 为偶数),则a 5等于( ) A .12 B .14 C .20 D .22
4.在数列{a n }中,有a n +a n +1+a n +2(n ∈N *)为定值,且a 7=2,a 9=3,a 98=4,则此数列{a n }的前100项的和S 100=( )
A .200
B .300
C .298
D .299
5.已知在数列{a n }中,a 1=2,a 2=7,若a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 016的值为( )
A .8
B .6
C .4
D .2
6.已知在数列{a n }中,a 1=1,a 2=0,若对任意的正整数n ,m (n >m ),有a 2n -a 2m =a n -
m a n +m ,则a 2 015=________.
7.若数列{(n -a )2}是递增数列,则实数a 的取值范围是________.
8.(2016·蚌埠检查)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧ a n 2, a n 为偶数,3a n +1, a n 为奇数,
如果a 1=1,则a 1+a 2+…+a 2 014=________.
9.已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5,设c n =⎩⎪⎨⎪⎧
a n ,a n ≤
b n ,b n ,a n >b n .若在数列{
c n }中,c 8>c n (n ∈N *,n ≠8),求实数p 的取值范围. 10.已知数列{a n }中,a n =1+1a +2(n -1)
(n ∈N *,a ∈R ,且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;
(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.
B 组 高考题型专练
1.(2012·高考大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )
A .2n -1 B.⎝⎛⎭⎫32n -1
C.⎝⎛⎭⎫23n -1
D.12n -1 2.(2011·高考四川卷)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )
A .3×44
B .3×44+1
C .45
D .45+1
3.(2014·高考新课标全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8
=2,则a 1=________. 4.(2012·高考上海卷)已知f (x )=11+x
.各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.
5.(2015·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭
⎬⎫1a n 前10项的和为________.。