二项式解题中常用的构造策略
- 格式:doc
- 大小:184.50 KB
- 文档页数:4
二项式定理应用常见类型及其解题方法一、知识点回顾: 1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r rn C a b -叫做二项式展开式的通项。
用1r n r rr n T C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意准确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,按降幂排列。
b 的指数从0逐项减到n ,按升幂排列。
各项的次数和等于n .④系数:注意准确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数,包含符号)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈令1,,a b x ==-0122(1)(1)()n r rn n nn n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。
二项式定理问题的常见题型及其解题策略
二项式定理问题的常见题型及其解题策略
二项式定理是高中数学中最重要的定理之一,它可以用来解决各种概
率问题,常被广泛应用于数学竞赛中。
但是,学习二项式定理的学生
总会遇到困难,因为它的解题方法多变,而且容易出现各种错误。
下
面我们就来讨论一下二项式定理中的常见题型及其解题策略。
一是给定总体的概率计算问题,这类问题的解题策略是先用二项式定
理把概率问题转换成组合问题,再根据组合原理计算出概率。
二是给定概率计算总体的问题,这类问题的解题策略是先把概率转换
成组合数,然后利用组合原理求出总体的元素数量。
三是给定元素的特征计算概率的问题,这类问题的解题策略是先把特
征转换成组合数,然后根据组合原理计算出概率。
以上三类问题是二项式定理中最常见的题型,通过掌握这些解题策略,学生们就可以轻松应对二项式定理中的题目了。
【热点聚焦】二项展开式定理的问题是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r rr n T C a b -+=;(可以考查某一项,也可考查某一项的系数);(2)考查各项系数和和各项的二项式系数和; (3)二项式定理的应用.【重点知识回眸】1. 二项式定理()()011*nn n r n r rn nn n n n a b C a C a b C a b C b n N --+=+++++∈,这个公式所表示的定理叫做二项式定理,右边的多项式叫做()na b +的二项展开式,其中的系数rn C (0,1,2,3,,r n =)叫做二项式系数.式中的r n r rn C a b -叫做二项展开式的通项,用1r T +表示,即展开式的第1r +项;1r n r rr n T C a b -+=.2.二项展开式形式上的特点 (1)项数为1n +.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从0n C ,1n C ,一直到1n n C -,nn C . 3. 二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即0n n n C C =,11n n n C C -=,,m n m n n C C -=.(2)增减性与最大值:二项式系数rn C ,当12n r +≤时,二项式系数是递增的;由对称性知:当12n r +>时,二项式系数是递减的. 当n 是偶数时,中间的一项2n nC 取得最大值. 当n 是奇数时,中间两项12n nC+ 和12n nC-相等,且同时取得最大值.(3)各二项式系数的和()na b +的展开式的各个二项式系数的和等于2n ,即012r nn n n n n C C C C +++++=,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即02413512n n n n n n n C C C C C C -+++=+++=,(4)常用结论①0n C =1;②1nn C =;③m n m n n C C -=;④11m m m n n n C C C -+=+.4.二项式的应用(1)求某些多项式系数的和; (2)证明一些简单的组合恒等式;(3)证明整除性,①求数的末位;②数的整除性及求系数;③简单多项式的整除问题; (4)近似计算.当x 充分小时,我们常用下列公式估计近似值: ①()11nx nx +≈+;②()()21112nn n x nx x -+≈++;(5)证明不等式.【典型考题解析】热点一 二项式展开式的通项公式的应用【典例1】(2020·全国·高考真题(理))262()x x+的展开式中常数项是__________(用数字作答).【典例2】(2019·浙江·高考真题)在二项式9(2)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.【典例3】(2022·山西·高三阶段练习)二项式()4x ay +的展开式中含22x y 项的系数为24,则=a ______.【典例4】(2022·全国·高考真题)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答). 【总结提升】1.二项展开式中的特定项,是指展开式中的某一项,如第n 项、常数项、有理项等,求解二项展开式中的特定项的关键点如下:①求通项,利用(a +b )n 的展开式的通项公式T r +1=C r n an -r b r (r =0,1,2,…,n )求通项. ②列方程(组)或不等式(组),利用二项展开式的通项及特定项的特征,列出方程(组)或不等式(组).③求特定项,先由方程(组)或不等式(组)求得相关参数,再根据要求写出特定项.2.已知展开式的某项或其系数求参数,可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.3.求解形如()()nma b c d ++的展开式问题的思路 (1)若n ,m 中一个比较小,可考虑把它展开得到多个,如222()()()(2)m m a b c d a ab b c d ++=+++,然后展开分别求解.(2)观察(a +b )(c +d )是否可以合并,如5752252()()[()()11]()11111()()x x x x x x x +-=+--=--;(3)分别得到(),()nma b c d ++的通项公式,综合考虑.4.求几个多项式积的展开式中的特定项(系数)问题,可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可. 热点二 形如()na b c ++的展开式问题【典例5】(2021·江西南昌·高三阶段练习)5144x x ⎛⎫++ ⎪⎝⎭的展开式中含3x -的项的系数为( ) A .1-B .180C .11520-D .11520【典例6】(2022·全国·高三专题练习)()52x y z +-的展开式中,22xy z 的系数是( ) A .120B .-120C .60D .30【典例7(2022·山东济南·模拟预测)()3221x x -+的展开式中,含3x 项的系数为______(用数字作答). 【规律方法】求三项展开式中某些特定项的系数的方法(1)通过变形先把三项式转化为二项式,再用二项式定理求解. (2)两次利用二项式定理的通项公式求解.(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量. 热点三 二项式系数的和与各项的系数和问题【典例8】(2022·全国·高三专题练习)已知012233C 2C 2C 2C 2C 243n nn n n n n +++++=,则123C C C C nn n n n ++++=( )A .31B .32C .15D .16【典例9】(2023·全国·高三专题练习)若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为( ) A .1或3-B .1-C .1-或3D .3-【典例10】(2022·北京四中高三开学考试)设多项式51010910910(1)(1)x x a x a x a x a ++-=++++,则9a =___________,0246810a a a a a a +++++=___________. 【规律方法】赋值法在求各项系数和中的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1). ①奇数项系数之和为a 0+a 2+a 4+…=.②偶数项系数之和为a 1+a 3+a 5+…=.热点四 二项式系数的性质【典例11】(2023·全国·高三专题练习)在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是( ) A .7B .8C .9D .10【典例12】(2022·全国·高三阶段练习)已知()610ax a x ⎛⎫+> ⎪⎝⎭的展开式中含2x -的系数为60,则下列说法正确的是( )A .61ax x ⎛⎫+ ⎪⎝⎭的展开式的各项系数之和为1 B .61ax x ⎛⎫+ ⎪⎝⎭的展开式中系数最大的项为2240xC .61ax x ⎛⎫- ⎪⎝⎭的展开式中的常数项为160-D .61ax x ⎛⎫- ⎪⎝⎭的展开式中所有二项式的系数和为32【典例13】(2022·浙江·三模)在二项式4(2)+x 的展开式中,常数项是__________,二项式系数最大的项的系数是__________. 【规律方法】1.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝ ⎛⎭⎪⎫第n2+1项的二项式系数最大;(2)如果n 是奇数,则中间两项⎝ ⎛⎭⎪⎫第n +12项与第n +12+1项的二项式系数相等并最大.2.展开式系数最大值的两种求解思路(1)由于展开式系数是离散型变量,因此在系数均为正值的前提下,求最大值只需解不等式(1)(1)2f f +-(1)(1)2f f --组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1即可求得答案.(2)由于二项展开式中的系数是关于正整数n 的式子,可以看作关于n 的数列,通过判断数列单调性的方法从而判断系数的增减性,并根据系数的单调性求出系数的最值. 热点五 二项式定理应用【典例14】(2022·全国·高三专题练习)“杨辉三角”是中国古代数学文化的瑰宝之一,最早出现在中国南宋数学家杨辉于1261年所著的《详解九章算法》一书中,法国数学家帕斯卡在1654年才发现这一规律.“杨辉三角”揭示了二项式系数在三角形数表中的一种几何排列规律,如图所示.则下列关于“杨辉三角”的结论正确的是( )A .222234510C C C C 165++++=B .在第2022行中第1011个数最大C .第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于9行的第8个数D .第34行中第15个数与第16个数之比为2:3【典例15】(2023·全国·高三专题练习(理))设0122191919191919C C 7C 7C 7a =++++,则a 除以9所得的余数为______.【典例16】(2021·山东·高三阶段练习)某同学在一个物理问题计算过程中遇到了对数据100.98的处理,经过思考,他决定采用精确到0.01的近似值,则这个近似值是________.【规律方法】1.二项式定理应用的常见题型及求解策略(1)逆用二项式定理的关键是根据所给式的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.(2)利用二项式定理解决整除问题的思路:①观察除式与被除式间的关系;②将被除式拆成二项式;③结合二项式定理得出结论.(3) 近似计算要首先观察精确度,然后选取展开式中若干项. 2.特别提醒: (1)分清是第项,而不是第项.(2)在通项公式中,含有、、、、、这六个参数,只有、、、是独立的,在未知、的情况下,用通项公式解题,一般都需要首先将通式转rn rr n C ab -1r +r 1r n r r r n T C a b -+=1r T +rn C a b n r a b n r n r化为方程(组)求出、,然后代入通项公式求解.(3)求二项展开式中的一些特殊项,如系数最大项,常数项等,通常都是先利用通项公式由题意列方程,求出,再求所需的某项;有时则需先求,计算时要注意和的取值范围以及 它们之间的大小关系.(4)在中,就是该项的二项式系数,它与,的值无关;而项的系数是指化简后字母外的数.(5)在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要与确定,该项就随之确定; ②是展开式中的第项,而不是第项;③公式中,,的指数和为且,不能随便颠倒位置; ④对二项式展开式的通项公式要特别注意符号问题.⑤在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.【精选精练】一、单选题1.(2022·全国·高三阶段练习(理))612x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为( ) A .160 B .120 C .90D .602.(2022·全国·高三专题练习)()()52x y x y +-的展开式中的33x y 项系数为( ) A .30B .10C .-30D .-103.(2022·黑龙江哈尔滨·高三开学考试)在812x x ⎫⎪⎭的展开式中5x 的系数为( )A .454B .458-C .358D .74.(2022·湖南·高三开学考试)已知()522x a x x ⎛⎫+- ⎪⎝⎭的展开式中各项系数的和为3-,则该展开式中x 的系数为( ) A .0B .120-C .120D .160-5.(2022·全国·高三专题练习)设()011nn n x a a x a x +=++⋅⋅⋅+,若1263n a a a ++⋅⋅⋅+=,则展开式中系数最大的项是( ) A .315xB .320xC .321xD .335x6.(2023·全国·高三专题练习)511x x ⎛⎫+- ⎪⎝⎭展开式中,3x 项的系数为( )n r r n n r 1r n r r r n T C a b -+=rn C a b 1r T +n r 1r T +1r +r a b n a b ()na b -A .5B .-5C .15D .-15二、多选题7.(2023·全国·高三专题练习)62⎛⎫+ ⎪⎝⎭x x 的展开式中,下列结论正确的是( ) A .展开式共6项 B .常数项为160C .所有项的系数之和为729D .所有项的二项式系数之和为648.(2022·湖北·黄冈中学高三阶段练习)已知660(2)ii i x a x =+=∑,则( )A .123456666a a a a a a +++++=B .320a =C .135246a a a a a a ++>++D .1034562234a a a a a a +=+++9.(2022·河北张家口·三模)已知52(1)(0)b ax x b x ⎛⎫-+> ⎪⎝⎭的展开式中x 项的系数为30,1x 项的系数为M ,则下列结论正确的是( ) A .0a > B .323ab b -=C .M 有最大值10D .M 有最小值10-三、填空题10.(2022·全国·高三专题练习(文))“杨辉三角”是二项式系数在三角形中的一种几何排列,如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.若在“杨辉三角”中从第二行右边的1开始按“锯齿形”排列的箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,…,则在该数列中,第35项是______.11.(2022·河北·三河市第三中学高三阶段练习)在3nx x ⎛⎫+ ⎪⎝⎭的展开式中,所有二项式系数的和是16,则展开式中的常数项为 ____.12.(2022·全国·高三专题练习)(1)已知()31nx -的展开式中第2项与第5项的二项式系数相等,则n =__________.(2)1921C C n nn n --+=__________.13.(2019·浙江·高考真题)在二项式9(2)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.14.(2022·浙江省春晖中学模拟预测)二项式3nx x ⎫⎝的展开式中共有11项,则n =___________,常数项的值为___________.15.(2022·全国·高三专题练习)在()413x +的展开式中,二项式系数之和为_________;各项系数之和为_________.(用数字作答) 四、解答题16.(2019·江苏·高考真题)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =. (1)求n 的值;(2)设(13)3n a =+*,a b ∈N ,求223a b -的值.。
专题51 二项式定理常见的解题策略【高考地位】二项式定理有关问题,是中学数学中的一个重要知识点,在历年的高考中几乎每年都有涉及. 因此掌握二项式定理问题的常见题型及其解题策略是十分必要的. 其考试题型主要有:求展开式中指定的项、求展开式中某一项的系数或二项式系数、求展开式中的系数和等,其难度不会太大,但题型可能较灵活.在高考中通常是以易题出现,主要以选择题、填空题和解答题的形式考查,其试题难度属中档题.【方法点评】类型一求展开式中指定的项或某一项的系数或二项式系数使用情景:求展开式中指定的项或某一项的系数或二项式系数解题模板:第一步首先求出二项展开式的通项;第二步根据已知求出展开式中指定的项或某一项的系数或二项式系数;第三步得出结论.例1.展开式中第3项的二项式系数为()A.6 B.-6 C.24 D.-24【答案】A【变式演练1】二项式展开式中,项的系数为.【答案】【解析】试题分析:,所以由得系数为考点:二项式定理【方法点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.【变式演练2】的展开式中项的系数为20,则实数.【答案】【解析】试题分析:二项式展开式的通项为,令,解得,故展开式中项的系数为,解得.考点:二项式定理.【变式演练3】求的展开式中的系数.【答案】.考点:二项式定理.类型二二项式系数的性质与各项系数和使用情景:二项式系数的性质与各项系数和解题模板:第一步观察题意特征,合理地使用赋值法;第二步区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质;第三步得出结论.例2【2018某某某某模拟】若的展开式中的二项式系数和为,的系数为,则为()A. B. C. D.【答案】B【解析】故选【变式演练4】在的展开式中,各二项式系数的和为128,则常数项是__________.【答案】14.考点:1、二项式定理的应用.类型三二项式定理的应用使用情景:使用二项式定理处理整除问题解题模板:第一步通常把底数写成除数(或与余数密切相关联的数)与某数的和或差的形式;第二步再用二项式定理展开,但要注意两点:一是余数的X围,a=cr+b,其中余数b∈[0,r),r是除数,切记余数不能为负,二是二项式定理的逆用.;第三步得出结论.例3 .设a∈Z,且0≤a<13,若512 012+a能被13整除,则a=()A.0 B.1 C.11 D.12【答案】D.【解析】点评:在使用二项式定理展开,但要注意两点:一是余数的X围,a=cr+b,其中余数b∈[0,r),r是除数,切记余数不能为负,二是二项式定理的逆用.【变式演练5】S=C+C+…+C除以9的余数为________.【答案】7.【解析】考点:二项式定理.【高考再现】1. 【2017课标1,理6】展开式中的系数为A.15 B.20 C.30 D.35【答案】C【解析】试题分析:因为,则展开式中含的项为,展开式中含的项为,故前系数为,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的不同.2.【2017课标3,理4】的展开式中33的系数为A.B.C.40 D.80【答案】C3.【2017某某,13】已知多项式32=,则=________,=________.【答案】16,4【解析】试题分析:由二项式展开式可得通项公式为:,分别取和可得,令可得【考点】二项式定理【名师点睛】本题主要考查二项式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用.4.【2017某某,理11】已知的展开式中含有项的系数是,则.【答案】【解析】试题分析:由二项式定理的通项公式,令得:,解得.【考点】二项式定理【名师点睛】根据二项式展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项式展开式的通项求解. 本题能较好地考查考生的思维能力、基本计算能力等.5.【2016年高考某某理数】设i为虚数单位,则的展开式中含x4的项为(A)-15x4(B)15x4(C)-20i x4(D)20i x4【答案】A6.【2016年高考理数】在的展开式中,的系数为__________________.(用数字作答)【答案】60.【解析】试题分析:根据二项展开的通项公式可知,的系数为,故填:.考点:二项式定理.【名师点睛】1.所谓二项展开式的特定项,是指展开式中的某一项,如第项、常数项、有理项、字母指数为某些特殊值的项.求解时,先准确写出通项,再把系数与字母分离出来(注意符号),根据题目中所指定的字母的指数所具有的特征,列出方程或不等式来求解即可;2、求有理项时要注意运用整除的性质,同时应注意结合的X围分析. 7. 【2016高考新课标1卷】的展开式中,x3的系数是.(用数字填写答案)【答案】考点:二项式定理8 【2016高考某某理数】的展开式中x2的系数为__________.(用数字作答)【答案】【解析】试题分析:展开式通项为,令,,所以的.故答案为.考点:二项式定理9. 【2016高考某某理数】若(a x2+)5的展开式中x5的系数是—80,则实数a=_______. 【答案】-2【解析】试题分析:因为,所以由,因此考点:二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项公式,往往是考试的重点.本题难度不大,易于得分.能较好的考查考生的基本运算能力等.10.【2015高考某某,理12】在的展开式中,的系数为.【答案】【反馈练习】1.【2018某某桂梧高中联考】的展开式的第4项的系数为()A. B. C. D.【答案】A【解析】由题意可得的展开式的第4项为,选A.2.【2018某某某某长安区联考】若,则的展开式中常数项为A. 8B. 16C. 24D. 60【答案】C【解析】∵∴的通项公式为令,即∴二项式展开式中常数项是,故选C3.【2018东北名校联考】若,则()A. B. C. D.【答案】A【解析】由二项展开式的通项公式,可知都小于.则.在原二项展开式中令,可得.故本题答案选.4.【2018某某两校联考】的展开式中的系数是()A. 56B. 84C. 112D. 168【答案】D【解析】根据和的展开式的通项公式可得,的系数为,故选D.5.【2018某某某某摸底联考】的展开式中项的系数为()A. 80B.C.D. 48【答案】B【解析】由题意可得,令r=1,所以的系数为-80.选B.6.【2018某某某某一中摸底】二项式展开式中的常数项为()A. B. C. D.【答案】B7.【2018某某某某摸底联考】的展开式中,的系数为()A. 60B.C. 240D.【答案】C【解析】,选C.8.【某某省某某市2016届高三第二次模拟考试数学(理)试题】展开式中除常数项外的其余项的系数之和为.【答案】考点:二项式定理.9.【2018某某某某八中摸底】在的展开式中,含的项的系数是()A. 60B. 160C. 180D. 240【答案】D【解析】二项式的通项公式为,令,所以含的项的系数是,故选D10.【2018某某名校五校联考】的展开式中常数项为( )A. B. C. D. 25【答案】C【解析】的通项为,,根据式子可知当或时有常数项,令 ; 令;故所求常数项为,故选C.11.【2018某某某某一中二模】在二项式的展开式中,各项系数之和为,各项二项式系数之和为,且,则展开式中常数项的值为()A. 6B. 9C. 12D. 18【答案】B12.【2018某某德阳三校联考】已知,则___________.【答案】【解析】含的项的系数为,故填.13. 【2018某某四校联考】在的二项展开式中,的项的系数是_______.(用数字作答)【答案】70【解析】根据二项式定理, 的通项为,当时,即r=4时,可得.即项的系数为70.14.【2018某某某某一模】在的展开式中,常数项是__________.【答案】【解析】第一个括号取,第二个括号为∴常数项是故答案为:15.【2018某某某某六校联考】若,且,则的值为__________.【答案】116.【2018某某山大附中四调】,则__________.【答案】28【解析】令,则,设的展开式含有项,,令,,所以.17.【2018某某凌源三校联考】在的展开式中,含项的为,的展开式中含项的为,则的最大值为__________.【答案】【解析】展开式的通项公式为:,令可得:,则,。
二项式中“最大项、最小项”的求解策略二项式定理中涉及最大项、最小项的问题比较多,问题的给出都是满足一定条件的指定项或特殊项,通常都可以利用通项来解决.在求解中,要注意系数的符号对求解的影响及项的系数与二项式系数的异同.1.二项式系数最大项问题例1 已知1(2)2n x +的展开式中,第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项.分析:要注意展开式中二项式系数与项的系数的区别,根据条件.先确定n 的值,再根据二项式系数的性质求解. 解:1(2)2n x +的展开式中,第5项、第6项、第7项的二项式系数分别为456,,n n n C C C .由题意得4652n n n C C C +=,即221980n n -+=.∴n =7或n =14. 当n =7时,展开式中二项式系数最大的项为4T 和5T , ∴343347135()(2)22T C x x ==,4344571()(2)702T C x x ==. 当n =14时,展开式中二项式系数最大的项为8T ,∴77778141()(2)34322T C x x ==.评注:求二项式()n a b +系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时中间一项的二项式系数最大.2.二项展开式中系数最大项问题例2 已知(13)nx +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.解:末三项的二项式系数分别为21,,n n n n n n C C C --, 由题设,得21121n n n nn n C C C --++=,即211121n n C C ++=. ∴22400n n +-=, ∴15(16n n ==-舍去).∵11515(3)3r r r r r r T C x C x +==•,设r T 项,1r T +项和2r T +的系数分别为1,r r t t +,和2r t +,则1111151152153,3,3r r r r r r r r r t C t C t C --++++=•=•=•.设1r t +最大,则11151511151533,33r r r r r r r r C C C C --++⎧•≥•⎪⎨•≥•⎪⎩ 可知r =11或r =12. ∴展开式中系数最大的项是111111121212121513153,3T C x T C x =•=•.例3 求7(12)x -展开式中系数最大的项.解:展开式共有8项,系数最大的项必为正项,即在第一、三、五、七这四项中取得,又因7(12)x -括号内的两项中后项系数的绝对值大于前项系数绝对值,故系数最大的项必在中间或偏右,故只需比较5T 和7T 两项系数大小即可.443577661777(2)1(2)4T C C T C C -==>-系数系数,所以系数最大的项是第五项,44457(2)560T C x x =-=. 评注:求二项展开式中系数最大的项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得,也可通过对问题的分析和推理,使解题过程得到简化.3.二项展开式中指定项系数最大(小)项问题例 4 已知()(1)(12)(,)m n f x x x m n N +=+++∈的展开式中含x 项的系数为11,求()f x 展开式中2x 项系数的最小值.解:∵()f x =0011222()()()m n m n m n C C C C x C C x ++++++,∴112211m n C C m n +⨯=+=,∴112m n =-∴2222242355m n C C n n +=-+=2233514()816n -+ ∵n N +∈,∴n =3时,上式有最小值22.即()f x 展开式中2x 项系数的最小值是22.评注:对于此类问题,可利用二项式定理展开,求出2x 项的系数,再将问题转化为二次函数知识进行求解.4.展开式中最大项(数值)问题例5设x =50(1)x +展开式中第几项最大?解:设第r +1项为1r T +且最大,则有11505011112505029r r r r r r r r r r r r C C T T r T T C C --+++++⎧≥≥⎧⎪⇒⇒=⎨⎨≥≥⎩⎪⎩. ∴50(1)x +展开式中第30项最大.评注:此类问题同第二类问题类似,常设出它的最大项,列不等式组,再确定该项.。
排列组合二项定理考试内容:分类计数原理与分步计数原理.排列.排列数公式.组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质.考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.排列组合二项定理知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..的排列...重复..元素从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列.1. ⑴对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示.⑷排列数公式:注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m nm n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题.对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m nm mm nmn-=+--==Λ ⑶两个公式:①;m n n mn CC -= ②m n m n m n C C C11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C1-m n,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn种,依分类原理有mn m n m n C C C11+-=+.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑸①几个常用组合数公式 ②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n Λ(利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C Λ. vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++Λ证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅--ΛΛ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-. ②有n 件不同商品,若其中A 、B 排在一起有2211A A n n ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?m m n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m π个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n!/ m !;解法二:(比例分配法)mm n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C Λ)1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mm mm n mn m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义.⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用na a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,2x 4并且都排在某r 个指定位置则有r k r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有mn A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的) ⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。
高中数学二项式定理解题技巧高中数学中,二项式定理是一个非常重要的概念和定理。
它在代数运算、排列组合、数列等多个数学领域都有广泛的应用。
掌握二项式定理的解题技巧对于高中数学的学习至关重要。
本文将介绍几种常见的二项式定理解题技巧,并通过具体的例子来说明。
一、二项式定理的基本形式二项式定理的基本形式是:$(a+b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b^1 + C_n^2 a^{n-2} b^2 + ... + C_n^n a^0 b^n$其中,$C_n^k$表示组合数,即从n个不同元素中选取k个元素的组合数。
二、二项式定理的展开在解题过程中,我们经常需要将一个二项式展开成多项式。
这时,我们可以利用二项式定理来简化计算。
例如,要将$(x+y)^4$展开成多项式,我们可以直接应用二项式定理:$(x+y)^4 = C_4^0 x^4 y^0 + C_4^1 x^3 y^1 + C_4^2 x^2 y^2 + C_4^3 x^1 y^3 + C_4^4 x^0 y^4$展开后,我们可以得到:$(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$三、二项式定理的应用1. 二项式系数的性质二项式系数具有一些重要的性质,我们可以利用这些性质来简化计算。
例如,对于任意正整数n,我们有:$C_n^0 = C_n^n = 1$$C_n^k = C_n^{n-k}$这些性质可以帮助我们快速计算二项式系数。
2. 组合数的性质组合数具有一些重要的性质,我们可以利用这些性质来解决排列组合问题。
例如,对于任意正整数n和k,我们有:$C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$这个性质可以帮助我们求解排列组合问题中的一些特殊情况。
3. 数列的应用二项式定理在数列中也有广泛的应用。
例如,我们可以利用二项式定理来求解二项式系数的和。
例如,要求解$\sum_{k=0}^{n} C_n^k$,我们可以利用二项式定理展开:$\sum_{k=0}^{n} C_n^k = \sum_{k=0}^{n} C_n^k a^k b^{n-k}$其中,我们可以取a=b=1,得到:$\sum_{k=0}^{n} C_n^k = (1+1)^n = 2^n$这个结果告诉我们,二项式系数的和等于2的n次方。
二项式拓展之:解排列组合常用的方法排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++L种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯L种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.相邻元素捆绑策略例1.【2012 辽宁5】一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为A .33!⨯B .()333!⨯ C .()43!D .9!【命题意图】本题主要考查相邻的排列问题,是简单题.【命题意图】每家3口人坐在一起,捆绑在一起3!,共3个3!,又3家3个整体继续排列有3!种方法,总共有()43!,故选C.练习题:1.7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
二项式解题中常用的构造策略浙江省定海第一中学(316000)符海龙在数学解题中,分析题中的条件和结论,构造一个与原问题相关的辅助模型,通过对辅助模型的研究达到解题目的,这种转化方法称之为构造法。
构造法是数学解题中最富有活力的数学转化方法之一,如能恰当地运用,不仅能把问题变繁杂为简明、变隐晦为直观、变离散为集中、变抽象为具体,达到难题巧解的目的,而且还能大大丰富学生的想象能力,培养学生解题的整体意识和创造性思维能力。
1、联想问题背景有些数学问题,孤立地运用题设条件难以求解时,不妨把问题于特定的背景下,构造问题的原型,寻求解题的入口。
例1设n 为正整数,证明:nn 222≤nnC 2≤n 22 分析:变换组合数n n C 2,图通过演算得出结论,繁难。
联想问题的背景,nn C 2为二项式系数,于是显现出解题入口,构造二项式来证明。
n n C 2为(x+y)2n 展开式中的最大的二项式系数,令x=y=1,则有(1+1)2n =n n n n n n C C C C 2221202+++++ ,在此大背景下,问题立即获证。
2、构建恒等式有的问题,不能从已知条件中作局部调整就可导出结论,必须从要求的结论出发,作整体设计,构造某一恒等式,经推理、运算、多次转化,才能凑配出解题所需的条件。
例2 求证:(0n C )2+(1n C )2+…+(nn C )2=!!)!2(n n n ⋅ 分析:构造恒等式(1+x)n(1+x)n=(1+x)2n。
左边展开式中x n的系数是:0n C n n C +1n C 1-n n C +…+n n C 0nC =(0n C )2+(1n C )2+…+(nn C )2右边展开式中x n的系数是:n n C 2=!!)!2(n n n ⋅,即命题成立。
(也可构造集合,有个n 白球和n 个黑球,从这2n 个球中取出n 个球的方法有nn C 2种;另一方面,又可以这样分类:这n 个球的取法可分为取个i 白球和n-i 个黑球,取法为i n C i n nC -种(i=0,1,2,…n),由加法得。
) 3、构建集合模型集合中数学的基本概念之一。
它为数学提供了一种广泛的理论基础,利用集合论方法,我们可以看出表面上彼此很不相近的数学问题的共性。
因此,很多问题可建立“集合模型”解决。
例3求证:nnn n n n C C C C 221=++++分析;nnn n n C C C C ++++ 210是集合A={a 1,a 2,a 3,…,a n }的子集的个数,而子集无非是由元素组成,确定A 的子集的个数可以分为如下几个步骤:第一步:确定子集中是否包含a 1,有2种;第二步:确定子集中是否包含a 2,有2种;……第n 步:确定子集中是否包含a n ,有2种;根据乘法原理知,A 的子集个数共有2n,故原等式成立。
4、构建排列组合模型排列、组合在中学数学中占有重要位置,其分析问题,解决问题的方法独特,利用这种方法,建立使用“排列组合模型”,可使一些问题得到较为新颖的解法。
例4求证:(1+m)n=1+m 1n C +m 22n C +… +m nn n C ,m ,n 都是自然数。
分析:本题可建立这样的模型:n 名旅客到(1+m)家旅馆投宿,问有多少种不同的投宿方法:这个问题可以这样解决:一方面逐人考虑,安排n 名旅客分n 步骤,每名旅客都有(1+m)种投宿方法,由乘法原理共有(1+m)n方法;另一方面按到某家旅馆可能的人数0,1,2,…,n 。
考虑安排分为(n+1)类,从n 名旅客中任选r 名到某家旅馆投宿有rn C 种选法,剩下的(n-r )名到另外的m 家旅馆投宿有m n-r种方法,根据乘法原理到某家旅馆投宿为r 的分配方法有m n-rr n C = m n-rr n n C -(r=0,1,2,…,n )种;再由加法原理共有1+m 1n C +m 22n C +… +m nn nC 种分配方法。
两种考虑方法,结果一样,所以等式成立。
5、构建复数模型法复数模型法,就是将所求命题的元素用复数来表示,然后用复数的性质求解命题。
例5若(1+x+x 2)1000的展开式为a 0+a 1x+a 2x 2+a 3x 3+…+a n x n,求a 0+a 3+a 6+…+a 1998的值。
分析: 令x=1可得31000=a 0+a 1+a 2+a 3+…+a 2000;令x=ω可得0=a 0+a 1ω+a 2ω2+a 3ω3+…+a 2000ω2000;(其中ω=-21+i 23,则ω3=1且ω2+ω+1=0) 令x=ω2可得 0=a 0+a 1ω2+a 2ω4+a 3ω6+…+a 2000ω4000。
以上三式相加可得31000= 3(a 0+a 3+a 6+…+a 1998) 所以 a 0+a 3+a 6+…+a 1998=3999。
6、构建组合对偶式配偶是解题的一种重要策略,它能使原来较难的问题得以巧妙的解决,有着变繁为简、化难为易之功效。
在教学中,有意识的注意这方面的训练,使学生较好的掌握这一解题策略。
对于培养学生的思维品质、解题能力的提高无疑是的益的。
例6设n=1990,求n 21(1-319909951998994634223333n n n n n C C C C C -++-+ )的值。
分析:将所求式子变形为A=n 21(1-231990199019981998664423333n n n n n C C C C C -++-+ )。
显然它是n 21(-1+3i)n的展开式的部分之和,即复数的实部。
不妨取展开式的其余的项的和为A 的对偶式 B=n 21i(-31989198919971997553313333n n n n n C C C C C -++-+ )。
则A+B=n21(-1+3i)n =ωn =6633⨯ωω=ω=-21+i 23,所以A=-21。
7、构建基本不等式基本不等式是证不等式的常用手段,有的二项式问题可转化基本不等式来求。
例7 若n ∈N ,且n ≠1,求证:n n n>+)21(! 分析:左边的“n 次幂”与右边的“n 个数的积”是一个和谐因素,考虑到解题的突破口将问题改述为,求证:21+n >n n ⋅⋅⋅⋅⋅⋅⋅321,显见,“和” >“积”,再将问题改述为,求2)1(+n n > n n n ⋅⋅⋅⋅⋅⋅⋅321,即为2)1(+n n =1+2+3+…+n ,这样由基本不等式公式得“1+2+3+…+n >n n n ⋅⋅⋅⋅⋅⋅⋅321”。
命题成立。
(本题也可构造特殊配偶形式分析:n!=1·2·3·…·(n-1)·n ,倒排配偶n!=n ·(n-1)·…·3·2·1, 则(n!)2=(1·n)[2·(n-1)] ·…·[(n-1)·2](n ·1)<2)21(+n (221+-n )2·…·(212-+n )2·(21n +)2=(21n +)2n,命题成立。
) 8、构建组合数性质应用组合数理论,对有关自然数命题的证明可达到意想不到的效果。
例8是否存在常数a 、b 、c ,使得等式1·22+2·32+…+n(n+1)2=121n(n+1)(an 2+bn+c)对于一切自然数都成立,并证明你的结论。
分析:这是一个特殊数列求和问题。
初看难求其和,但根据其各项的特点,逆用组合数公式进行探求,n(n+1)2= n(n+1)[(n+2)-1]= n(n+1)(n+2)- n(n+1)=632+n C -221+n C 根据组合数性质,原式左边1·22+2·32+…+n(n+1)2=(633C -222C )+(634C -223C )+…+(632+n C -221+n C )=6(33C +34C +…+32+n C )-2(22C +23C +…+21+n C )=643+n C -233+n C =121n(n+1)(3n 2+11n+10),对照右边知存在常数a=3,b=11,c=10,满足题设要求。
9、构建倒序相加构造一些特殊的对偶形式(如倒序),再加以挖掘、显示、或稍加变形即可应用,就能探求最佳解题方案。
例9设a 、b ∈R +,且ba 11+=1。
求证:对于一切自然数n ,有(a+b)n -a n -b n ≥22n -2n+1 分析:令P=(a+b)n -a n -b n 作为本体。
则P=C 1n a n-1b+2n C a n-2b 2+…+1-n n C ab n-1倒序排序得孪体P=1-n n C ab n-1+2-n n C a 2b n-2+…+ C 1n a n-1b 相加得2P= C 1n (a n-1b+ ab n-1)+ 2n C (a n-2b 2 +a 2b n-2)+ …+1-n n C (ab n-1 +a n-1b) ≥2C 1n n n b a +22n C n n b a + …+21-n n C n n b a=2n n b a ( C 1n +2n C +…+1-n n C )=2n n b a (2n -2),P ≥(2n-2) n n b a又知ba 11+=1,ab=a+b ≥2ab ,ab ≥4,故P ≥(2n -2) n 4 即P ≥22n -2n+1 10、构建分组或图形 分组思想,其核心是根据问题的实际情况,以分组后组与组之间的共性更利于分离和显示为原则,以分组后更便于简化运算、运用有关概念和结论。
例10求证:1!•2!•3!•…•n!=)543()!(2221--⋅⋅⋅⋅n n n n分析:只需证明1!•2!•3!•…•n!(3•42•53•…•n n-2)=(n!)n-1,针对一端n-1个n!之积的特点,将它分组而拆项,有[(1•2)⨯( 3•4•5•…•n)]• [(1•2•3)⨯( 4•5•…•n)]…[(1•2•3•4•5•…•n)]= 2!•3!•…•n!(3•42•53•…•n n-2)=(n!)n-1。
即命题得证。
(图形法)(n-1)行11、构建一个中间目标建立一个与初始条件和最终目标都比较接近的中间目标,以中间目标作为跳板从初始条件过渡到最终目标。
例11 已知i 、m 、n 是正整数,且1<i ≤m<n ,求证:(1+m)n > (1+n)m。
分析:如何建立中间目标呢?先找到组合数与2n-1之间的关系。
想到(1+m)n=∑=ni i niCm 0,(1+n)m=∑=mi imiC n 0展开式中的m ii nC = m i!i P i n ,n i i m C = n i !i P im ,构造中间目标i n i P m >im i P n 是否成立(1<i ≤m ),由m<n 得 mn=nm ;m(n-1)>n(m-1);m(n-2)>n(m-2);……;m(n-i+1)>n(m-i+1)即中间目标 i n i P m >i m i P n 成立。