二项式定理各种题型解题技巧
- 格式:docx
- 大小:192.50 KB
- 文档页数:5
二项式定理—解题技巧(老师用)1.二项式定理:0n1n1rnrrnn(ab)nCnaCnabCnabCnb(nN),2.基本概念:项数:共(r1)项rnrrrnrr通项:Tr1Cnab展开式中的第r1项Cnab叫做二项式展开式的通项。
3.注意关键点:①项数:展开式中总共有(n1)项。
②顺序:注意正确选择a,b,其顺序不能更改。
(ab)n与(ba)n是不同的。
③指数:a的指数从n逐项减到0,是降幂排列。
b的指数从0逐项减到n,是升幂排列。
各项的次数和等于n.012rn④系数:注意正确区分二项式系数与项的系数,二项式系数依次是Cn,Cn,Cn,,Cn,,Cn.项的系数是a与b的系数(包括二项式系数)。
4.常用的结论:(令值法)0122rrnn令a1,b某,(1某)nCnCn某Cn某Cn某Cn某(nN)0122rrnn 令a1,b某,(1某)nCnCn某Cn某Cn某(1)nCn某(nN)5.性质:0nkk1①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即Cn,···CnCnCn012rn②二项式系数和:令ab1,则二项式系数的和为CnCnCnCnCn2n,12rn变形式CnCnCnCn2n1。
③奇数项的二项式系数和=偶数项的二项式系数和:0242r132r1CnCnCnCnCnCnCn1n22n12④各项的系数的和:g某ab某.令某=1g(1)n1g1g121偶数项系数和:g1-g12奇数项系数和:nn⑤二项式系数的最大项:如果n是偶数时,则中间项(第1)的二项式系数项Cn2取得最大值。
2n1n1n1n3如果n是奇数时,则中间两项(第.第项)系数项Cn2,Cn2同22时取得最大值。
⑥系数的最大项:求(ab某)n展开式中最大的项,一般采用待定系数法。
设展开式中各项系数分别Ar1Arr1项系数最大,应有为A,从而解出r来。
1,A2,,An1,设第AAr1r26.二项式定理的十一种考题的解法:题型一:二项式定理的逆用;123n例:CnCn6Cn62Cn6n1.0123n解:(16)nCnCn6Cn62Cn63Cn6n与已知的有一些差距,123nCnCn6Cn62Cn6n1112n(Cn6Cn62Cn6n)61011n122nnn(CnCn6Cn6Cn61)[(16)1](71)666123n练:Cn3Cn9Cn3n1Cn.n题型二:利用通项公式求某的系数;例:在二项式(4132n某)的展开式中倒数第3项的系数为45,求含有某3的项的系数?某2n22解:由条件知Cn45,即Cn45,nn900,解得n9(舍去)或n10,由1410r23r10r2r43Tr1C(某)3r10(某)C某r10,由题意10r2r3,解得r6,4363则含有某的项是第7项T61C10某210某3,系数为210。
二项式定理的高考常见题型及解题对策题型一:求二项展开式1.“n b a )(+”型的展开式例1.求4)13(xx +的展开式;2. “n b a )(-”型的展开式例2.求4)13(xx -的展开式;3.二项式展开式的“逆用”例3.计算cC C C n nnnn n n 3)1( (279313)21-++-+-;题型二:求二项展开式的特定项1. 求指定幂的系数或二项式系数(1)求单一二项式指定幂的系数 例4.(03全国)92)21(xx -展开式中9x 的系数是 ;(2) 求两个二项式乘积的展开式指定幂的系数例5.(02全国)72)2)(1-+x x (的展开式中,3x 项的系数是 ;(3) 求可化为二项式的三项展开式中指定幂的系数 例6.(04安徽改编)3)21(-+xx 的展开式中,常数项是 ;2. 求中间项例7.(00京改编)求(103)1xx -的展开式的中间项;3. 求有理项例8.(00京改编)求103)1(xx -的展开式中有理项共有 项;4. 求系数最大或最小项(1) 特殊的系数最大或最小问题例9.(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例10.求84)21(xx +展开式中系数最大的项;题型三:利用“赋值法”及二项式性质3求部分项系数,二项式系数和例12.(99全国)若443322104)32(x a x a x a x a a x ++++=+,则2312420)()(a a a a a +-++的值为 ;例13.(04天津)若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;例14.设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;题型四:利用二项式定理求近似值例15.求6998.0的近似值,使误差小于001.0;题型五:利用二项式定理证明整除问题例16.(02潍坊模拟)求证:15151-能被7整除。
二项式定理问题的常见题型及其解题策略
二项式定理问题的常见题型及其解题策略
二项式定理是高中数学中最重要的定理之一,它可以用来解决各种概
率问题,常被广泛应用于数学竞赛中。
但是,学习二项式定理的学生
总会遇到困难,因为它的解题方法多变,而且容易出现各种错误。
下
面我们就来讨论一下二项式定理中的常见题型及其解题策略。
一是给定总体的概率计算问题,这类问题的解题策略是先用二项式定
理把概率问题转换成组合问题,再根据组合原理计算出概率。
二是给定概率计算总体的问题,这类问题的解题策略是先把概率转换
成组合数,然后利用组合原理求出总体的元素数量。
三是给定元素的特征计算概率的问题,这类问题的解题策略是先把特
征转换成组合数,然后根据组合原理计算出概率。
以上三类问题是二项式定理中最常见的题型,通过掌握这些解题策略,学生们就可以轻松应对二项式定理中的题目了。
二项式定理题型及解题方法摘要:1.二项式定理的概念及意义2.二项式定理的基本形式3.二项式定理的应用场景4.解题方法的步骤与技巧5.典型例题分析正文:一、二项式定理的概念及意义二项式定理是数学中一个重要的定理,它揭示了二项式展开式的规律。
二项式定理的基本形式如下:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ...+ C(n, n)b^n其中,a、b为实数或复数,n为自然数,C(n, k)表示组合数,即从n个元素中取k个元素的组合数。
二、二项式定理的基本形式我们已经了解了二项式定理的基本形式,接下来看看如何利用这个定理解决问题。
三、二项式定理的应用场景1.求解二项式展开式的特定项或特定项的系数。
2.求解极限问题,如当a、b趋于0时,(a + b)^n的极限值。
3.求解不等式问题,如求(a + b)^n > 1的解集。
4.求解恒成立问题,如证明(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + ...+ C(n, n)b^n。
四、解题方法的步骤与技巧1.确定问题类型,判断是否适用于二项式定理。
2.根据问题,选取合适的二项式定理形式。
3.利用组合数公式计算特定项或特定项的系数。
4.化简式子,求解问题。
五、典型例题分析例题1:求(2x - 1)^5的展开式中,x^2的系数。
解:根据二项式定理,展开式为:(2x - 1)^5 = C(5, 0)(2x)^5 - C(5, 1)(2x)^4 + C(5, 2)(2x)^3 - C(5, 3)(2x)^2 + C(5, 4)(2x)^1 - C(5, 5)展开式中,x^2的系数为-C(5, 3) * 2^2 = -40。
例题2:求极限:当x趋于0时,(1 + x)^(1/x)的极限值。
解:根据二项式定理,(1 + x)^(1/x) = (1 + x)^(x/x) = (1 + x)^(1/x) * (1 - 1/x + 1/x^2 - 1/x^3 + ...)当x趋于0时,(1 + x)^(1/x)趋于e(自然对数的底),即极限值为e。
二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rnC (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C ab -叫做二项式展开式的通项。
用1r n r rr nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()na b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论: 令1,,a b x == 0122(1)()n r rn nnn n n n x C C x C x C x C x n N *+=++++++∈ 令1,,ab x ==- 0122(1)(1)()n r r n n n nn n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -=②二项式系数和:令1ab ==,则二项式系数的和为0122rnn nn n n n C C C C C ++++++=,变形式1221rnn nn n n C C C C +++++=-。
③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n nn n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nnn n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----令则①令则024135(1)(1),()2(1)(1),()2n nn n nn a a a a a a a a a a a a ----++-++++=+---+++=②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。
二项式定理1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。
用1r n r rr nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。
二项式定理的常见题型及解法二项式定理的问题相对较独立,题型繁多,解法灵活且比较难掌握。
二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。
二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。
本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。
一、求二项展开式1.“(“+〃)"”型的展开式例1.求(3« + J)4的展开式:解:原式=(亨)4 = 3 y/x X-=3Gt),+ 0: 3靖 +(3x)2 + d 由)+。
:]A= -4(8 lx4 + 84x3 + 54x2 +12x +1) =81x2 +84x+—+ -4 + 54厂x 厂2."(“一匕)"”型的展开式例2.求(36一,=)4的展开式:分析:解决此题,只需要把(34一3)4改写成[36+(—一的形式然后按照二项展开式yjx y]X 的格式展开即可。
本题主要考察了学生的“问题转化”能力。
3.二项式展开式的“逆用”例3.计算1—3C:+9C:—27C:+~・+(-1)"3"C;:解:原式=<7>d(一到+C:(-3)2+C:(—3)3+....+ C»3)” =(1-3)” =(-2)”二、通项公式的应用1.确定二项式中的有关元素a反 Q? 9例4.已知(一一1一)’的展开式中工3的系数为一,常数4的值为______________x V 2 4解:= C;(色尸(J) = G;(-l)r-2^ •,产「x V 23 Q令三•一9 = 3,即〃=8依题意,得C;(一1)8・27.。
内=“解得。
=一12.确定二项展开式的常数项例5.(五一二,)1°展开式中的常数项是]5-5 5解:7;+1 =c;Q ^)i0-r (--y=(-\yc;0-x 令5—7r= 5 即r= 6. 所以常数项是(-l )6c* =2103 .求单一二项式指定器的系数例6.(』一一-)9展开式中X 9的系数是 _____________ 2%解:心=仁“产(-/ =仁”2(一'7=仁(-;)“心令18 - 3x = 9,则广=3,从而可以得到的系数为:。
二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。
用1r n r rr nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()nr rn nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()nr r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈ 5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0nn n C C =, (1)k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=, 变形式1221rnn n n n n C C C C +++++=-。
③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn n n n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④奇数项的系数和与偶数项的系数和:⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2nnC 取得最大值。
如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n nC-,12n nC+同时取得最大值。
⑥系数的最大项:求()na bx +展开式中最大的项,一般采用待定系数法。
设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。
6.二项式定理的十一种考题的解法:题型一:二项式定理的逆用;例:12321666 .nn n n n n C C C C -+⋅+⋅++⋅=题型二:利用通项公式求nx 的系数;例:在二项式n的展开式中倒数第3项的系数为45,求含有3x 的项的系数? 练:求291()2x x-展开式中9x 的系数? 题型三:利用通项公式求常数项;例:求二项式210(x 的展开式中的常数项?练:求二项式61(2)2x x-的展开式中的常数项? 练:若21()nx x+的二项展开式中第5项为常数项,则____.n = 题型四:利用通项公式,再讨论而确定有理数项;例:求二项式9展开式中的有理项?题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若n 展开式中偶数项系数和为256-,求n .练:若n 的展开式中,所有的奇数项的系数和为1024,求它的中间项。
题型六:最大系数,最大项; 例:已知1(2)2n x +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少? 练:在2()na b +的展开式中,二项式系数最大的项是多少?练:在(2nx 的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少?例:写出在7()a b -的展开式中,系数最大的项?系数最小的项? 例:若展开式前三项的二项式系数和等于79,求1(2)2n x +的展开式中系数最大的项? 练:在10(12)x +的展开式中系数最大的项是多少? 题型七:含有三项变两项;例:求当25(32)x x ++的展开式中x 的一次项的系数?练:求式子31(2)x x+-的常数项? 题型八:两个二项式相乘;例:342(12)(1)x x x +-求展开式中的系数.练:610(1(1+求展开式中的常数项. 练:2*31(1)(),28,______.nx xx n N n n x+++∈≤≤=已知的展开式中没有常数项且则 题型九:奇数项的系数和与偶数项的系数和;例:2006(,,,_____.x x S x S ==在的二项展开式中含的奇次幂的项之和为当题型十:赋值法;例:设二项式1)nx的展开式的各项系数的和为p ,所有二项式系数的和为s ,若 272p s +=,则n 等于多少?练:若nx x ⎪⎪⎭⎫⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为多少? 例:200912320092009120123200922009(12)(),222a a a x a a x a x a x a x x R -=+++++∈++⋅⋅⋅+若则的值为 练:55432154321012345(2),____.x a x a x a x a x a x a a a a a a -=+++++++++=若则 题型十一:整除性; 例:证明:22*389()n n n N +--∈能被64整除练习:设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A.0 B.1 C.11D.12【例1】 已知772210…)21x a x a x a a x +++=-(求: ⑴ a 0 (2)a 0+1237a a a a ++++;(3)76543210a a a a a a a a -+-+-+-(5) 1357a a a a +++;(6) 0246a a a a +++. (7)017||||||a a a +++ (8)7654321765432a a a a a a a ++++++1..设(1-ax )2 018=a 0+a 1x +a 2x 2+…+a 2 018x 2 018,若a 1+2a 2+3a 3+…+2 018a 2 018=2 018a (a ≠0),则实数a =________.2..若(1+x +x 2)n =a 0+a 1x +a 2x 2+…+a 2n x 2n ,则a 0+a 2+a 4+…+a 2n 等于( ) A.2nB.3n -12C.2n +1D.3n +123..(1-3x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,求|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5|=( ) A.1 024B.243C.32D.244.(2019·湘潭三模)若(1+x )(1-2x )8=a 0+a 1x +…+a 9x 9,x ∈R ,则a 1·2+a 2·22+…+a 9·29的值为( )A.29B.29-1C.39D.39-15.已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C n n 等于( )A.63B.64C.31D.326.若423401234(2x a a x a x a x a x =++++,则2202413()()a a a a a ++-+的值为_____(用数字作答).7.设复数x =2i 1-i(i 是虚数单位),则C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x2 019=( ) A.i B.-i C.-1+iD.-i -18.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A.39 B.310 C.311D.3129.(2018·汕头质检)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.10(2017·全国Ⅲ卷改编)(x +y )(2x -y )5的展开式中x 3y 3的系数为________.11..已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C n n 的值等于()A.64B.32C.63D.318.(2014浙江)在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则(3,0)f +(2,1)f +(1,2)f +(0,3)f =A .45 B .60 C .120 D . 2109.(2014新课标1)8()()x y x y -+的展开式中27x y 的系数为 .(用数字填写答案)10.(2017浙江)已知多项式32(1)(2)x x ++=543212345x a x a x a x a x a +++++,则4a =___,5a =___.11.使得()3nx n N+⎛+∈ ⎝的展开式中含常数项的最小的n 为A .4B .5 C .6 D .712.(2017新课标Ⅲ)5()(2)x y x y +-的展开式中33x y 的系数为A .-80 B .-40 C .40 D .8013.(2019全国III 理4)(1+2x 2 )(1+x )4的展开式中x 3的系数为A .12 B .16 C .2014.(2017新课标Ⅰ)621(1)(1)x x++展开式中2x 的系数为A .15 B .20 C .30 D .35。