Diversity and distribution of bacterial community in the coastal sediments of Bohai Bay, China-论文
- 格式:pdf
- 大小:1.42 MB
- 文档页数:10
小学上册英语第四单元测验卷(有答案)英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.The _____ (金鲨) glides through the ocean with grace. 金鲨优雅地穿梭于海洋中。
2.My dog has a fluffy _______ (毛发).3.What do plants need to grow?A. LightB. WaterC. SoilD. All of the above答案:D4. A ______ is a natural barrier formed by the landscape.5.What do we call a place where you can buy books?A. LibraryB. BookstoreC. MarketD. School答案:B6.The wind is _______ (howling) outside.7.Which gas do we breathe out?A. OxygenB. NitrogenC. Carbon DioxideD. Helium答案:C8. A __________ is a common example of a base.9.The invention of ________ has reshaped modern communication.10.Which word means "happy"?A. SadB. JoyfulC. AngryD. Tired答案:B11.What is the capital city of the Bahamas?A. NassauB. FreeportC. Marsh HarbourD. George Town答案:A12.What do we call the first meal of the day?A. LunchB. DinnerC. BreakfastD. Snack13.What do you call a person who studies geology?A. GeologistB. Earth scientistC. MinerD. Excavator答案:A14.What do we call the time when the sun rises?A. MorningB. NoonC. EveningD. Midnight15.What color is a stop sign?A. YellowB. GreenC. RedD. Blue答案:C16.The element with atomic number is __________.17.How do you say "dog" in Italian?A. CaneB. ChienC. PerroD. Hund18.My mom loves __________ (组织活动).19.We have a ________ (class) project to do.20.What do you call a person who studies plants?A. ZoologistB. BotanistC. GeologistD. Chemist答案:B21.What do we call a person who writes books?A. AuthorB. JournalistC. PoetD. Editor答案:A22.During winter, it sometimes ________ (下雪). I like to make ________ (雪人) with my friends.23.What do we use to write?A. SpoonB. PenC. ForkD. Plate答案:B24.What do we call a place where you can see many trees?A. ParkB. ForestC. GardenD. Orchard25.An ion is an atom with a _____ charge.26.My mom is a __________ (社工).27.The _______ (Wright brothers) are credited with inventing the first airplane.28.I enjoy making ________ (手工艺品) for my family.29.The process of ______ occurs when materials are transported by water.30.What do we call the process of water turning into vapor?A. MeltingB. EvaporationC. FreezingD. Condensation答案:B31. A ladybug has a red ______ (外表) with black spots.32.Chemical bonds hold ________ together in a compound.33.The ocean is _______ (非常清澈)。
DOI:10.12138力.issn.1671—9638.20216175•论著•全国细菌耐药监测网2014—2019年粪便标本细菌耐药监测报告全国细菌耐药监测网[摘要]目的了解全国粪便标本分离病原菌的菌群分布及耐药情况。
方法从2014—2019年全国细菌耐药监测网报告中提取粪便标本的相关数据(去除肠道正常定植菌群),分析肠道致病菌及其耐药率的变迁。
结果共分离菌株61809株,居前3位的是沙门菌属(82.12%)、志贺菌属(8.08%),弧菌属(4.03%),沙门菌属在每年粪便标本致病菌中占绝对优势,均在70%以上,以2018年占比最高(87.16%)。
6年间居前6位的致病菌菌种无变化,仅菌种构成比每年略有变化,沙门菌属呈上升趋势,志贺菌属呈下降趋势。
各菌属分别以未分型沙门菌(49.39%)、福氏志贺菌(46.64%),副溶血弧菌(91.20%)、嗜水气单胞菌(55.80%),肠致病性大肠埃希菌(85.02%)为主。
肠道致病菌对氨苄西林耐药率均较高,其中志贺菌属和致腹泻性大肠埃希菌(>90%)高于沙门菌属和弧菌属。
沙门菌对左氧氟沙星耐药率较低,但呈上升趋势,由低于3%上升至10%左右;志贺菌属对环丙沙星耐药率2016年较低(29.9%);除氨苄西林外,弧菌属对其他抗菌药物耐药率均较低(<6%);气单胞菌属出现了耐碳青霉烯类菌株,气单胞菌属和致腹泻性大肠埃希菌对阿米卡星耐药率较低。
结论细菌性腹泻的病原菌种类较多,以沙门菌属和志贺菌属为主,耐药情况较为严重,且不同菌属、菌种之间差异较大,应继续加强抗菌药物合理应用的管理及医院感染防控,做好耐药菌监测工作。
[关键词]粪便;全国细菌耐药监测网;抗菌药物;细菌;耐药性[中图分类号]R181.3+2Antimicrobial resistance of bacteria from fecal specimens:surveillance report from China Antimicrobial Resistance Surveillance System in2014—2019China Antimicrobial Resistance Surveil l ance System[Abstract]Objective To investigate the distribution and antimicrobial resistance of pathogens isolated from fecal specimens in China.Methods Relevant data of fecal specimens(excluding intestinal normal colonized bacteria)were extracted from surveillance report of China Antimicrobial Resistance Surveillance System(CARSS)in2014-2019, changes of intestinal pathogenic bacteria and antimicrobial resistance rates in the past6years were analyzed.ResultsA total of61809strains were isolated,the top3were Salmone l laspp,(82.12%),Shigella spp.(8.08%)andVibrio spp.(4.03%),Salmone l la spp.accounted for more than70%of pathogenic bacteria in fecal specimens each year,with the highest proportion of87.16%in2018.In the past6years,there was no change in the top6 pathogenicbacteriastrains,onlyconstituentratiosofbacterialspecieschangedslightlyeachyear,Sa mone aspp.showed an upward trend,while Shige l la spp.showed a downward trend.The major bacteria were unclassified species of Salmonella(49.39%),Shigella f l exneri(46.64%),Vibrio parahaemolyticus(91.20%),Aeromonas hydroph i la(55.80%)and enteropathogenic Escherichia coli(85.02%).Resistance rate of enteropathogenic bacteria to ampicillin was high,Shige l la spp.and diarheagenic Escherichia coli(>90%)were higher than Salmone l la spp.and Vibrio spp..Resistance rate of Salmone l la to levofloxacin was low,but show a rising trend,which increased from less than3%to about10%;resistance rate of Shige l la spp.to ciprofloxacin was low(29.9%)in 2016;resistance rates of Vibrio spp.to antimicrobial agents(except ampicillin)were low(<6%);carbapenem-re-sistant Aeromonasspp strainsemerged,resistanceratesof Aeromonasspp anddiarrheagenic Escherichiaco i to amikacin were both low.Conclusion There are multiple species of pathogenic bacteria causing bacterial diarrhea,[攵稿日期]2020-11-24全国细菌耐药监测网联系邮箱:naiyaojiance@mainly Sa mone aspp . and Shige aspp . , antimicrobialresistanceisserious , di f erentbacterialspecies and strainsvarysignificantly ,itisnecessarytocontinuetostrengthenthemanagementofrationalapplicationofantimi-crobialagentsaswe l aspreventionandcontrolofhealthcare-associatedinfection ,anddoagoodjobinthesurveil- lanceofantimicrobial-resistantbacteria[Keywords ] faeces ; China Antimicrobial Resistance Surveillance System ; antimicrobial agent ; bacteria ; antimi crobialresistance全国细菌耐药监测网(China Antimicrobial Re sistance Surveillance System , CARSS , http :// www . carss. cn)成员单位已覆盖全国31个省、直辖市和自治区的1 429所医疗机构。
中国环境科学 2016,36(5):1520~1529 China Environmental Science 北运河沉积物中主要脱氮功能微生物的群落特征鲍林林1,2,3,王晓燕1,4*,陈永娟1,张苓荣1 (1.首都师范大学资源环境与旅游学院,北京 100048;2.中国科学院生态环境研究中心城市与区域生态国家重点实验室,北京 100085;3.中国科学院大学,北京 100049;4.首都师范大学首都圈水环境研究中心,北京 100048)摘要:应用分子生物学技术研究北运河沉积物中主要脱氮功能微生物,反硝化细菌和厌氧氨氧化细菌(Anammox)的群落特征,探讨了微生物群落的季节变化及其与环境因子的响应关系.结果表明,沉积物中反硝化细菌和Anammox的丰度和群落组成随季节变化差异显著.从夏季到冬季,反硝化细菌丰度逐渐增加,Anammox的丰度却逐渐降低;反硝化细菌的多样性均显著的高于Anammox的多样性,反硝化细菌是北运河沉积物中主要的脱氮微生物.从夏季到冬季,沉积物中氮和TOC含量均逐渐升高,温度是决定脱氮微生物群落特征季节变化的关键因子,TN与反硝化细菌的群落丰度显著正相关,C/N与Anammox的丰度显著正相关;反硝化细菌的群落结构主要受到硝氮和pH的影响,pH也是影响Anammox物种时空分布的主要因子.系统发育分析表明,两种脱氮微生物的主要类群均具有较高的耐污性和良好的脱氮效率,反硝化细菌主要从属于Pseudomonas和Halomonas, Anammox物种发育多样性较低,主要为浮霉菌门的Candidatus Brocadia.关键词:北运河沉积物;反硝化细菌;厌氧氨氧化细菌;季节变化;环境因子;系统发育中图分类号:X172 文献标识码:A 文章编号:1000-6923(2016)05-1520-10Diversity, abundance and distribution of nirS-type denitrifiers and Anammox bacteria in sediments of Beiyun River. BAO Lin-lin1,2,3, WANG Xiao-yan1,4*, CHEN Yong-juan1, ZHANG Ling-rong1 (1.College of Resources, Environment and Tourism, Capital Normal University, Beijing 100048, China;2.State Key Laboratory of Urban and R egional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;3.University of Chinese Academy of Sciences, Beijing 100049, China;4.Research Center of Aquatic Environment in the Capital Region, Capital Normal University, Beijing 100048, China). China Environmental Science, 2016,36(5):1520~1529Abstract:Denitrification and anaerobic ammonia oxidation are two main processes for nitrogen removal in nitrogen cycle. The seasonal variation of community diversity and abundance, phylogenetic composition of nirS-type denitrifiers and Anammox (anaerobic ammonia oxidation) bacteria of sediments in Beiyun River were compared based on PCR (polymerase chain reaction), T-R FLP (terminal restriction fragment length polymorphism), clone and sequencing. The abundance of nirS-type denitrifiers increased from summer to winter while the abundance of Anammox bacteria decreased significantly. What’s more, the abundance of nirS-type denitrifiers was significantly higher than Anammox in fall and winter. Community composition of the two microbial groups varied seasonally and the community diversity of nirS-type denitrifiers was much higher than Anammox bacteria. Concentrations of nitrogens and organic carbon in the sediments increased significantly from summer to winter. Environmental temperature was significantly correlated with the seasonal changes of abundance and community distribution of the two microbial groups in sediments. Correlation analysis revealed that total nitrogen had a great effect on the abundance of nirS-type denitrifiers, while C/N was significantly correlated with abundance of Anammox bacteria. NO x− and pH were also the main environmental factors determining the community distribution of nirS-type denitrifiers and Anammox bacteria in sediments. Phylogenetic analysis revealed that most of the denitrifying microbes belonged to species with relatively high pollution-resistance and efficiency of nitrogen removal. Phylogenetic diversity of nirS-type denitrifiers was much higher than that of Anammox bacteria. nirS-type denitrifiers were grouped into genera Pseudomonas and Halomonas, while Anammox was mainly bacteria belonged to Candidatus Brocadia.Key words:Beiyun River sediment;nirS-type denitrifiers;Anammox;seasonal change;environmental factors;phylogeny 收稿日期:2015-10-08基金项目:国家自然科学基金项目(41271495);国家重大水专项(2009ZX07209-001-02)* 责任作者, 教授, wangxy@5期鲍林林等:北运河沉积物中主要脱氮功能微生物的群落特征 1521人为活动的日益增强已经明显加速了氮的循环,过量氮素进入生态系统容易引发一系列全球性环境问题[1].对水生态系统来说,氮素造成的水体富营养化问题以及氮循环微生物对氮素的迁移转化作用越来越受到人们关注.氮循环中反硝化作用和厌氧氨氧化作用是去除环境中过量氮素的两个主要过程,分别由反硝化细菌和厌氧氨氧化细菌(anaerobic ammonia oxidation bacteria, Anammox)所驱动[2-3].反硝化细菌一直是环境中脱氮的主要微生物,而越来越多的研究发现,Anammox广泛的存在于海洋、土壤和湖泊等生态系统中,也具有比较可观的脱氮贡献[4].这2种脱氮微生物在环境中的群落特征和生态功能对全球氮循环的平衡具有重要作用.利用分子生物学技术,反硝化细菌nirS基因和Anammox的16S rRNA基因或肼氧化还原酶(hydrazine oxidoreductase, hzo)基因常被作为两种微生物的分子标记,以研究其在环境中的群落特征和生态功能[2,5].环境温度、污染物质浓度和溶氧等[6]都是影响这两种脱氮微生物群落结构和生态功能的重要因子.已有的研究主要探讨了河流沉积物中反硝化细菌和Anammox的活性特征[2,7-8]和脱氮效率[3-4,9],而河流生态系统中两种脱氮微生物群落特征的综合对比分析,潜在的生态功能差异和脱氮贡献,及其与环境因子的响应关系还需要深入的研究.城市河流受人类生产生活干扰剧烈,是氮污染最为突出的区域[10],其水体流速缓慢,污染物质富集于淤积的沉积物中,极易造成二次污染.所以,沉积物中脱氮微生物的群落特征和生态功能直接关系到河流生态系统污染氮素的有效转化和去除.北运河是典型的城市河流,是北京市主要的排污泄洪河道,水体氨氮严重超标,河床沉积物中也储存了大量氮素[11].通过研究北运河沉积物中反硝化细菌和Anammox的群落结构及其季节变化特征,分析微生物群落与环境因子的响应关系,以探讨两种脱氮微生物在城市河流沉积物中的潜在作用和功能差异,为河流生态系统氮素的去除及污染控制提供科学依据. 1材料与方法1.1样品采集和理化分析沿北运河京区流域范围内水系干流上选择4个采样点,如图1所示,包括马坊桥(1)、坝河口(2)、榆林庄桥(3,凉水河口)和杨洼闸下游(4).分别于2013年7月(夏季)、10月(秋季)和2014年2月(冬季),采集河流表层沉积物(3~5cm).利用便携式柱状采泥器,每个样点断面随机多点抓取河床沉积物,并取其表层部分均匀混合为1个样品,样品用无菌袋封装并4℃冷藏运输.分子实验使用样品﹣20℃冻存,其余样品用作理化参数测定.沉积物的pH值、氨氮(NH4+-N)、亚硝氮(NO2−-N)和硝态氮(NO3−-N),以及总氮(TN)和总有机碳(TOC)的测定方法参考文献[12].图1 采样点分布Fig.1 The distribution of sampling sites1.马坊桥;2.坝河口;3.榆林庄桥;4.杨洼闸后1.2 微生物PCR扩增和多态性分析采用Power Soil DNA试剂盒(MO B I O Laboratories I nc.,美国)提取沉积物(0.3g湿样)总DNA,即PCR扩增的模板DNA.反硝化细菌的PCR 扩增引物为针对亚硝酸盐还原酶基因(nirS)的nirS1522 中国环境科学 36卷1F和nirS 6R,并根据降落PCR的方法进行nirS基因扩增[13-14].Anammox采用巢式PCR,先由引物Pla46f和630r对浮霉菌属进行扩增,再将所得产物作为模板,由特异性引物Amx368f和Amx820r进行Anammox的16S rRNA基因的扩增[7,15].PCR扩增引物序列及相应温度程序如表1所示.用于T-RFLP分析的PCR产物,对前引物(nirS 1F和Amx368f)的5’端进行羟基荧光素(FAM)标记,采用限制性内切酶Takara HhaⅠ(宝生物工程有限公司,大连)酶切以进行群落多态性分析[12].表1PCR扩增引物序列及相应的温度程序Table 1 Primers and procedures for PCR amplification目的基因引物引物序列(5’-3’) 温度程序nirS 1F CCTAYTGGCCGCCRCART nirSnirS 6R CGTTGAACTTRCCGGT 95℃,5min;[95℃,30s;60℃(−0.5℃/circle),30s;72℃,1min]×10;(95℃,3 0s;55℃,30s;72℃,1min) ×25;72℃,7minPla46f GGATTAGGCATGCAAGTC16S rRNA630r CAKAAAGGAGGTGATCC95℃,3min;(95℃,1min;56℃,1min;72℃,1min)×30;72℃,10minAmx368f TTCGCAATGCCCGAAAGG16S rRNAAmx820r AAAACCCCTCTACTTAGTGCCC95℃,3min;(95℃,1min;52℃,1min;72℃,1min)×30;72℃,10min1.3微生物的定量和克隆序列分析反硝化细菌的定量分析仍以nirS基因为标记,而Anammox定量分析以hzo的拷贝数表示,所用引物为hzocl1F1(TGYAAGACYTGYCAY- TGG)和hzocl1R2(ACTCCAGATRTGCTGAC- C)[16].采用SYBR Green法,对nirS和hzo基因进行绝对定量分析(实时荧光定量PCR,RT-qPCR),定量结果为3次测试的平均值.通过蓝白斑筛选微生物的阳性克隆子,并将测试序列提交至NCBI数据库,获取序列登陆号(反硝化细菌:KJ777836-KJ778008和KM406982- KM406998;Anammox:KM008745-KM008972).利用DOTUR软件对反硝化细菌和Anammox进行独立操作单元(operational taxonomic unit, OTU)的划分,并建立相应的克隆文库,以邻位相接法(neighbor-joining)构建包括北运河沉积物的检测序列和已发表参比序列的系统发育树.1.4数据分析采用SPSS16.0、OriginPro8.1等软件对数据进行处理.整理后的T-RFLP片段种类数据由PRIMER5.0软件进行微生物群落的香农多样性(Shannon-Weiner,H’)分析.使用Canoco for Windows 4.5软件,对微生物群落的时空分布及其与沉积物环境因子的响应关系进行典范对应分析(canonical correspondence analysis, CCA).2结果与分析2.1沉积物理化参数表2表层沉积物的理化性质Table 2 Physical and chemical properties of sediments样品编号pH值NO x−-N(mg/kg)NH4+-N(mg/kg)TOC(g/kg)TN(g/kg)C/N S1 6.78 43.1529.8432.30 3.63 8.91 S2 7.77 11.39 6.59 15.20 2.28 6.66 S3 7.38 6.26 13.7656.40 4.90 11.51 S4 7.71 21.517.62 7.30 1.15 6.36 均值7.41 20.5814.4527.80 2.99 8.36F1 7.18 68.8357.1544.00 7.73 5.69F2 7.46 8.23 2.86 23.00 2.69 8.56F3 7.37 29.868.67 14.90 2.62 5.69F4 7.41 19.43 4.95 4.04 1.61 2.51均值7.36 31.5918.4021.48 3.66 5.61 W1 7.61 46.0356.0740.15 5.91 6.80 W2 7.39 14.1114.0350.68 6.24 8.12 W3 7.65 95.8111.8222.04 4.51 4.89 W4 7.56 41.4811.7122.94 4.44 5.17 均值7.55 49.3523.4133.95 5.27 6.24 注:S, Summer,夏季; F, F all,秋季; W, Winter,冬季; NO x−,为NO2−+NO3−;C/N为TOC与TN的比值,下同.各季节沉积物的主要理化参数如表2所示.5期鲍林林等:北运河沉积物中主要脱氮功能微生物的群落特征 1523此外,夏季、秋季和冬季的沉积物上覆水的平均温度(T)分别为28,12,2,℃北运河沉积物pH值范围6.78~7.77.虽然北运河水体以NH4+污染为主,但在沉积物中,除了夏季3号样点(S3)和冬季1号样点(W1)外,其余各样点的硝氮(NO x−, NO2−-N与NO3−-N的总量)的含量均明显高于NH4+.总体看来,夏季到冬季沉积物中各类污染物质含量逐渐增加,可能与其污水处理厂退水和再生水补给为主[11]有关,秋冬季降雨补给减少,污染稀释作用降低.位于杨洼闸下游4号点的沉积物(S4、F4和W4)中,TOC和TN的含量均相对低于其他样点.此外,TOC和TN的含量存在显著的正相关关系(P < 0.05).2.2群落丰度的季节变化如图2所示,nirS基因的拷贝数夏季最低(1.39×107~9.32×107copies/g),秋季次之(1.79× 1010~1.3×1011copies/g),冬季最高(5.9×1010~ 3.34× 1011copies/g);而hzo基因的拷贝数夏季最高(1.03×107~9.37×107copies/g),秋季次之(1.01× 104~1.09×104copies/g),冬季最低(0~1.00× 104copies/g).综合看来,夏季沉积物中反硝化细菌和Anammox的群落丰度相当,而秋、冬季时反硝化细菌群落丰度明显高于Anammox.由表3可见,不同季节中,各理化参数对微生物群落丰度的影响作用不同.夏季,沉积物TOC 含量、C/N与反硝化细菌、Anammox的丰度均具有显著正相关关系,Anammox的群落丰度还与沉积物TN含量相关;秋季,各形态氮素含量和pH值均对反硝化细菌的丰度具有显著影响,而与Anammox的丰度没有显著相关性;冬季,仅pH 值与反硝化细菌的丰度显著负相关,Anammox 的丰度与TOC、TN含量显著正相关.综合看来, T 是2种脱氮微生物的群落丰度季节变化的关键因子,反硝化细菌和Anammox的群落丰度分别与TN含量和C/N的变化相关性较高.图2 沉积物中nirS和hzo基因的拷贝数(copies/g) Fig.2 Average gene copies of nirS and hzo in differentseasons表3群落丰度与环境因子的Pearson相关性Table 3 Pearson’s correlations between microbial abundance and environment factors季节微生物 pH值 NO x−-N NH4+-N TOC TN C/N T 反硝化细菌 ns ns ns 0.97* ns 0.97*-SAnammox ns ns ns 0.98* 0.97* 0.99**-反硝化细菌-0.99** 0.99* 0.99** ns 0.97* ns -FAnammoxns ns ns ns ns ns -反硝化细菌-0.99** ns ns ns ns ns -WAnammox ns ns ns 0.95* 0.99* ns -反硝化细菌ns ns ns ns 0.60* ns -0.55*总Anammoxns ns ns ns ns 0.75* 0.67*注: * P<0.05, ** P<0.01; ns,无显著性.2.3群落组成的多样性表4为北运河沉积物反硝化细菌nirS基因和Anammox 16S rRNA基因的T-RFLP片段数目,及其群落多样性指数.一个T-RF片段至少代1524 中国环境科学 36卷表一种相应的微生物,群落结构可由T-RFs的组成表征.各样点检测出反硝化细菌的T-RFs 12~20种,Anammox的T-RFs 1~12种,反硝化细菌的群落多样性显著高于Anammox的多样性.秋季,反硝化细菌的T-RFs数量最多,多样性指数最低,但是夏季其T-RFs最少时多样性指数最高.秋季和冬季沉积物中Anammox的群落多样性均高于夏季的群落,其中S3和S4样品的Anammox主要检测出一种T-RF,多样性最低.Pearson相关分析表明,仅冬季的Anammox 群落多样性与沉积物NO x−存在显著相关性(r = 0.99,P < 0.05).图3为物种与环境因子的CCA双轴图,反映了脱氮微生物群落主要T-RFs种类(相对丰度大于6%)的时空分布特征,及其与沉积物主要环境因子的响应关系.如图所示,反硝化细菌和Anammox的主要物种分布均具有显著的季节分异,冬、夏两季的物种组成差异最大,而且夏季各沉积物样点之间的微生物群落结构差异也比较大.表4脱氮微生物功能基因的T-RFs和多样性Table 4 T-RF fragments and diversity of nirS and 16SrRNA genes反硝化细菌AnammoxT-RFs H’ T-RFs H’S1 132.0512 1.80S2 122.04 7 1.01S3 121.92 1 0S4 122.01 1 0总 232.60 18 1.40F 1 121.81 11 1.76F 2 202.3812 1.81F 3 121.91 7 1.50F 4 121.46 6 0.84总 342.26 22 1.81W2 132.18 6 1.13W3 182.43 8 1.55W4 162.06 7 1.31总 282.41 16 1.80 2.4群落结构特征和因子响应--1.0 1.0-1.01.0AX2图3 反硝化细菌和Anammox主要T-RFs种类分布与沉积物环境因子的关系Fig.3 CCA between dominant T-RFs and sediment environmental factors■ 夏季样点; ◆秋季样点; ● 冬季样点; △ T-RFs种类反硝化细菌CCA前四个排序轴的总解释度为86.3%,AX1和AX2对物种—环境因子相关性的解释度分别为37.8%和19%,影响群落时空分布的主要因子有与AX1相关度较高的pH(-0.72)和与AX2相关的T(-0.75)和NO x−(0.66);Anammox的CCA前四个排序轴的总解释度为88.5%,AX1和AX2对物种—环境因子相关性的解释度分别为35.5%和28%, T(0.86)与AX1存在较高的相关性,而pH(0.63)与AX2相关.总体看来, pH值和T是影响反硝化细菌和Anammox群落物种时空分布的主要环境因子.2.5系统发育特征对夏季各沉积物中反硝化细菌(0.05的分异5期 鲍林林等:北运河沉积物中主要脱氮功能微生物的群落特征 1525度)和Anammox(0.02的分异度)进行了克隆文库的系统发育分析.图4所示为反硝化细菌的系统发育树,根据其系统发育关系,主要划分为两支.Cluster A 包含了43%的克隆序列,其发育多样性高于Cluster B,主要与各种沉积物环境来源的序列相似性较高.Cluster A 又可分为两个亚支,大部分的序列属于Cluster A1,而Cluster A2主要包含1号样点的克隆序列,其与发现于碱性咸水湖泊的Halomonas sp. HGD1[17]同源性较高.Cluster B 主要由2、3号样点的序列组成,与活性污泥和反应器环境中的类群同源性较高,而且2号样点的所有序列属于这个分支.此外,2号样点的序列2d20及同一OUT 的其他27个克隆序列与水稻根系土壤中检测出的Pseudomonas stutzeri RCH2的相应片段具有83%的相似性,而序列2d16与Thauera terpenica 58Eu 具有91%的相似性[18].3d20(KJ777855) (2)4d13(KJ777881) (4)3d41(KM406996) (2)Sediment of East Lake (JX852522)SNAD sludge (KC569503)Sediment of a constructed wetland (EF558393) 1d22(KJ777958) (2)1d6(KJ777942) (4)4d4(KJ777872) (2)1d15(KJ777951) (2)San Francisco Bay estuary sediment (GQ453846) Chesapeake Bay Sediment (DQ676127)Soil (EU442502)4d31(KJ777899) (2)Soil (AM419602)Jiao zhou Bay sediment (EU048513)Coastal sediment (DQ159586) 3d1(KJ777836) (2)Landfilled refuse (KC412680)1d19(KJ777955) (2)Halomonas sp. 4CR (GQ384045) 3d31(KJ777866) (2)Anaeobic-aerobic sequencing batch reactor (AB208104)Activated sludge (GU564865)Sediment in groundwater (EF177798)Pseudomonas stutzeri RCH2 (CP003071)2d20(KJ777993) (28)2d34(KJ778007) (1)2d16(KJ777989) (1)Simulated landfill bioreactor (JN024693)Thauera terpenica 58Eu (AY078266)999985705199 809873879899998969520.05Cluster B (sludge/sediment)Cluster A2Cluster A1Cluster A (sediment)图4 反硝化细菌nirS 基因序列的系统发育树Fig.4 Phylogenetic tree of nirS -type denitrifiers sequences and reference sequences from GenBank括号中粗体数字为OTU 内的序列数目,发育树分支节点上的数字为1000次Bootstrap 分析的发生概率(%),其中小于50%的值已在图中略去,左下方标尺为5%序列差异的分支长度,下同1526中 国 环 境 科 学 36卷1y16(KM008760) (8) SBR (JN006730)2y9(KM008797) (10)4y31(KM008907) (10)Candidatus Brocadia fulgida (JX243575)Constructed wetland soil (JF346212)Agricultural soil (JQ919051)Paddy soil (JN176685) Flooded paddy soil (JN176685) Cape Fear River Estuary sediment (FJ490119) High temperature oil reservoir (HM208773)4y35(KM008911) (11) 3y29(KM008862) (12)Wastewater treatment plant sludge (KJ436589)Upper Cape Fear River sediment (HM851589) Sediments of the Yangtze estuary (JX243635)1y14(KM008758) (8)Lake Rassnitzer water, 29 m depth (FJ830384) 2y19(KM008807) (8) Jiaojiang estuarine sediment (JN051530) Candidatus Brocadia fulgida (JX243329)Candidatus Brocadia fulgida (JX243637)4y29(KM008905) (4)Lake Kitaura sediment (AB624840)1y39(KM008783) (5)3y42(KM008875) (15)Hyporheic zone soil in Fuhe River (HM565016)Ground water of Zorra township, Ontario (JX392925)4y32(KM008908) (12)North Carolina groundwater (HM851666)Fertilized paddy soil (GU083895) 2y30(KM008818) (14) Peat soil (HQ637487)Candidatus Brocadia fulgida (JX243361)1y5(KM008749) (9) 3y8(KM008841) (12)7757575697 9999656491906173 61608559580.005Cluster ACluster BCandidatus Brocadia图5 Anammox 16S rRNA 基因序列的系统发育树Fig.5 Phylogenetic tree of Anammox bacterial 16S rRNA sequences and reference sequences from GenBankAnammox 的系统发育树也主要划分为两支(图5),Cluster A 包含了65.9%的测试序列,主要与土壤、沉积物以及活性污泥等环境来源的类群同源性较高,而Cluster B 与土壤和地下水等环境来源物种的相似性很高.Cluster A 和Cluster B 均与长江河口潮间带沉积物中的Candidatus Brocadia 属的序列[19]具有较高的同源性,可见,Candidatus Brocadia 是北运河沉积物中主要的Anammox 类群. 3 讨论3.1 脱氮微生物群落特征的季节变化对北运河夏季、秋季和冬季沉积物中脱氮微生物群落特征的研究表明,反硝化细菌的群落丰5期鲍林林等:北运河沉积物中主要脱氮功能微生物的群落特征 1527度明显高于Anammox.反硝化细菌一直是环境中主要的脱氮类群,而且群落丰度与脱氮微生物的活性具有正相关性[2,9],由此看来,具有显著丰度优势的反硝化细菌也是北运河沉积物中的主导脱氮微生物.长江河口湿地[19]和美国New River河口[2],其沉积物中主要的脱氮贡献者也均为反硝化细菌.此外,微生物群落丰度存在显著的季节变化,夏季到冬季反硝化细菌的丰度逐渐增加,Anammox的丰度却显著降低.已有研究也有类似的结果,辽河口沉积物中反硝化细菌的数量春季最多,秋季次之,夏季最少[14],且马恩河(法国)秋、冬季沉积物的反硝化活性高于春、夏季的活性[8],均表明干冷季节河流沉积物反硝化细菌群落丰度和相应的功能更具优势.莱州湾沉积物中的研究发现,冬季反硝化细菌的群落丰度更高,夏季的Anammox群落丰度高于冬季[5],太湖流域河流沉积物夏季和初秋的Anammox脱氮活性也高于冬季的活性[20],可见,与反硝化细菌相反, Anammox在暖湿季节的群落特征和功能活性更具优势.群落多样性的结果表明,北运河沉积物中反硝化细菌的群落多样性显著高于Anammox,进一步验证反硝化细菌在脱氮作用中的群落优势.此外,脱氮微生物的群落结构,尤其是Anammox,具有显著的季节分异.已有研究认为,沉积物微生物群落结构的季节分异,与河流季节性的温度和降水变化有关,如湿季(夏季)和干季(秋季)微生物的优势种类组成明显不同[21].3.2反硝化细菌和Anammox的物种进化特征环境中的反硝化细菌主要包括Pseudomonas、Paracoccus、Rhizobium和Achromobacter等类群[22],系统发育分析的结果表明,北运河沉积物大部分反硝化细菌的克隆序列(Cluster B)都与Pseudomonas同源.孔强等[23]曾在天津段北运河中分离培养了一株好氧反硝化细菌,鉴定其为Pseudomonas sp.,而且该类群具有良好的TN和NO3−降解效率.可见, Pseudomonas sp.类群是北运河沉积物中的主要反硝化细菌.此外,Cluster B中部分序列还与索氏菌属(Thauera)相关类群的相似性很高.Thauera 是广泛存在于各种类型废水处理装置中的功能类群[24],也含有nirS基因片段,具有亚硝酸盐还原功能,与Pseudomonas的nirS基因具有很高的相似性[18]. Cluster A主要与Halomonas的反硝化细菌同源.Halomonas是一类耐盐性很强的中度嗜盐菌,属于极端微生物,主要分布于高盐含量、污染的或碱性的环境中[25],Berendes等[26]就从城市的污水处理厂中分离出一株参与反硝化作用的Halomonas desiderata sp.,研究表明Halomonas 类群的反硝化细菌也具有显著的脱氮作用[17].在氮污染严重的北运河沉积物中,Pseudomonas、Halomonas和Thauera相关类群的反硝化细菌分布广泛,对北运河过量氮素的去除具有重要作用.浮霉菌门的Anammox主要包括Candidatus Brocadia、Kuenenia、Scalindua和Jettenia属,北运河沉积物中Anammox的主要发育类群从属于Candidatus Brocadia.研究表明, Candidatus Brocadia和Candidatus Jettenia是高氮含量的泥炭土壤中主要的Anammox [27],而且Candidatus Brocadia也是污泥反应器中的主要类群,能够耐受高浓度的NO2−,脱氮效果显著[28].由此看来, Candidatus Brocadia作为北运河沉积物中主要的Anammox类群,显著的耐污、脱氮特征也反映出其对北运河污染环境的适应和一定的脱氮贡献,当然,Anammox的脱氮贡献大小及其与反硝化细菌的共同作用,还需要进一步对脱氮活性进行定量研究.3.3主要环境因子的影响作用微生物的群落特征是与环境变化相互作用的结果.因子分析表明反硝化细菌的群落丰度与NO x−、NH4+和TN的含量具有显著正相关关系,其物种的时空分布也与NO x−相关.北运河水体流速缓慢,为沉积物反硝化细菌营造了较好缺氧环境,所以,氮素的可利用性是决定脱氮微生物群落结构和功能作用的重要因子.Zhao等[29]在太湖流域的研究发现,沉积物反硝化速率随NH4+含量的增加而升高,而且当高含氮污水排入河流时,氮素的去除效率也相应的提高;长江河口沉积物的反硝化细菌数量和反硝化速率也与NH4+浓度呈显著正相关关系[9].相关研究还表明,径流NO3−浓度1528 中国环境科学 36卷升高,水库内沉积物的反硝化活性随之升高[30],可见,氮相关营养盐水平对反硝化细菌的群落分布和功能活性具有重要的影响作用[31-32].研究表明,Anammox在氧化还原过渡区NH4+和NO3−共存的环境条件下分布更为广泛,氮的可利用性对Anammox的生长也很重要[33].但是,莱州湾河口沉积物的Anammox群落丰度与NO3−含量呈负相关[5],东江沉积物中的研究也发现,Anammox的丰度与NO2−显著负相关[34],这可能与过高的氮含量对沉积物Anammox群落生长具有抑制作用有关[35].从本文的研究结果看来,NO x−与NH4+的含量从夏季到冬季逐渐升高, Anammox群落丰度也逐渐降低,虽然两者之间并没有显著的相关性,但氮含量增加与Anammox群落丰度的具体响应值得深入探讨.因子分析结果还表明,沉积物C/N的值与Anammox的群落丰度显著正相关,已有研究表明在污水处理系统中,Anammox在高氨氮低C/N(2左右)的条件下才具有较高脱氮效率[36],可见,北运河沉积物C/N含量与Anammox的群落功能可能也存在积极的响应关系,有待进一步论证.此外,有机质含量对脱氮微生物群落特征也有一定的影响作用,钱塘江沉积物中有机碳是决定沉积物Anammox分布和群落多样性(负相关)的主要因子[37],东湖沉积物有机质的含量与nirS 基因拷贝数正相关[38],本文表明夏、秋季的TOC 与微生物群落丰度具有显著的响应关系.季节性的温度变化对反硝化细菌和Anammox群落丰度和物种时空分布的影响作用最为显著,综合河流水文化学的季节性变化,脱氮微生物与环境因子的响应更为复杂,所以,要阐明其与脱氮微生物相互作用的具体机制,还需要更深入的全面的探究. 4结论4.1从夏季到冬季,北运河沉积物中主要氮含量和TOC逐渐增加,受闸坝上游水体的拦截作用和闸坝下游水体流速激增的扰动影响,4号样点沉积物中的TOC和TN含量相对较低.反硝化细菌的群落丰度从夏季到冬季逐渐增加,Anammox 丰度却显著降低;两种微生物的群落结构具有显著的季节差异.反硝化细菌的群落多样性显著高于Anammox的多样性.综合看来,反硝化细菌是北运河沉积物中主要的脱氮微生物.4.2季节变化是影响反硝化细菌和Anammox 群落丰度和物种组成的关键因子,TN和C/N分别与反硝化细菌和Anammox的群落丰度显著正相关,反硝化细菌的群落结构主要受到硝氮和pH值的影响,pH值也是决定Anammox群落物种时空分布的主要因子.4.3系统发育分析表明,水体氮污染严重的北运河中,沉积物的脱氮微生物类群都具有良好的耐污性和较高的脱氮效率,反硝化细菌主要与沉积物和活性污泥等环境中的类群同源,从属于Pseudomonas和Halomonas;Anammox与土壤、沉积物、活性污泥和地下水等来源的类群相关,主要为浮霉菌门的Candidatus Brocadia.参考文献:[1] Fowler D, Coyle M, Skiba U, et al. The global nitrogen cycle inthe twenty-first century [J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2013,368:20130164.[2] Lisa J A, Song B, Tobias C R, et al. Impacts of freshwaterflushing on Anammox community structure and activities in the New River Estuary, USA [J]. Aquatic Microbial Ecology, 2014, 72(1):17-31.[3] Ward B B. How nitrogen is lost [J]. Science, 2013, 341(6144):352-353.[4] Hu B L, Shen L D, Xu XY, et al. Anaerobic ammonium oxidation(Anammox) in different natural ecosystems [J]. Biochemical Society Transactions, 2011,39(6):1811-1816.[5] Zhang X L, Agogué H, Dupuy C, et al. Relative abundance ofammonia oxidizers, denitrifiers, and Anammox bacteria in sediments of hyper-nutrified estuarine tidal flats and in relation to environmental conditions [J]. Clean Soil Air Water, 2014,42(6):815-823.[6] 龚俊,张晓黎.微生物在近海氮循环过程的贡献与驱动机制[J]. 微生物学通报, 2013,40(1):44-58.[7] Wang S Y, Zhu G b, Peng Y Z, et al. Anammox bacterialabundance, activity, and contribution in riparian sediments of the Pearl River Estuary [J]. Environmental Science and Technology, 2012,46(16):8834-8842.[8] Laverman A M, Garnier J A, Mounier E M, et al. Nitrous oxideproduction kinetics during nitrate reduction in river sediments [J].Water Research, 2010,44(6):1753-1764.5期鲍林林等:北运河沉积物中主要脱氮功能微生物的群落特征 1529[9] 李佳霖,白洁,高会旺,等.长江口海域夏季沉积物反硝化细菌数量及反硝化作用 [J]. 中国环境科学, 2009,29(7):756-761. [10] Ren Y F, Xu Z W, Zhang X Y, et al. Nitrogen pollution and sourceidentification of urban ecosystem surface water in Beijing [J]. Frontiers of Environmental Science & Engineering, 2014,8(1):106-116.[11] 荆红卫,张志刚,郭婧.北京北运河水系水质污染特征及污染来源分析 [J]. 中国环境科学, 2013,33(2):319-327.[12] 鲍林林,陈永娟,王晓燕.北运河沉积物中氨氧化微生物的群落特征 [J]. 中国环境科学, 2015,35(1):179-189.[13] Braker G, F esefeldt A, Witzel K P. Development of PCR primersystems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples [J]. Appllied and Environmental Microbiology, 1998,64(10):3769-3775.[14] 樊景凤,陈佳莹,陈立广,等.辽河口沉积物反硝化细菌数量及多样性的研究 [J]. 海洋学报, 2011,33(3):94-102.[15] 沈李东,胡宝兰,郑平,等.西湖底泥中厌氧氨氧化菌的分子生物学检测.环境科学学报, 2011,31(8):1609-1615.[16] Li M, Hong Y G, Klotz M G, et al. A comparison of primer setsfor detecting 16s rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments [J].Applied Microbiology and Biotechnology, 2010,86(2):781-790. [17] González-Domenech C M, Martínez-Checa F, Béjar V, et al.Denitrification as an important taxonomic marker within the genus Halomonas [J]. Systematic and Applied Microbiology, 2010,33(2):85-93.[18] Song B, Ward B B. Nitrite reductase genes in halobenzoatedegrading denitrifying bacteria [J]. FEMS Microbiology Ecology, 2003,43(3):349-357.[19] Hou L J, Zheng Y L, Liu M, et al. Anaerobic ammoniumoxidation (Anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary [J]. Journal of Geophysical Research: Biogeosciences, 2013,118(3):1237-1246. [20] Zhao Y Q, Xia Y Q, Kana T M, et al. Seasonal variation andcontrolling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China [J].Chemosphere, 2013,93(9):2124-2131.[21] Bucci J P, Szempruch A J, Caldwell J M, et al. Seasonal changesin microbial community structure in freshwater stream sediment in a North Carolina River Basin [J]. Diversity, 2014,6(1):18-32. [22] Walter G Z. Cell biology and molecular basis of denitrification [J].Microbiology and Molecular Biology Reviews, 1997,61(4):533-616.[23] 孔强,任宗明,付荣恕.北运河沉积物中好氧反硝化菌的分离鉴定及脱氮效率研究 [J]. 供水技术, 2010,4(3):1-4.[24] 毛跃建,张晓军,张宝让,等.专一性PCR和变性梯度胶电泳协助从焦化废水处理装置中分离优势功能菌Thauera属菌株 [J].微生物学报, 2008,48(12):1634-1641.[25] Gaboyer F, Vandenabeele-Trambouze O, Cao J, et al.Physiological features of Halomonas lionensis sp. nov., a novel bacterium isolated from a Mediterranean Sea sediment [J].Research in Microbiology, 2014,165(7):490-500.[26] Berendes F, Gottschalk G, Heine-Dobbernack E, et al. Halomonasdesiderata sp. nov, a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works [J]. Systematic and Applied Microbiology, 1996,19(2):158-167.[27] Hu B L, Rush D, Van der Biezen E, et al. New anaerobic,ammonium-oxidizing community enriched from peat soil [J].Applied and Environmental Microbiology, 2011,77(3):966-971. [28] Langone M, Yan J, Haaijer S C, et al. Coexistence of nitrifying,Anammox and denitrifying bacteria in a sequencing batch reactor [J]. Frontier in Microbiology, 2014,5(28):1-12.[29] Zhao Y Q, Xia Y Q, Li B L, et al. Influence of environmentalfactors on net N2and N2O production in sediment of freshwater rivers [J]. Environmental Science and Pollution Research, 2014,21(16):9973-9982.[30] Wall L G, Tank J L, Royer T V, et al. Spatial and temporalvariability in sediment denitrification within an agriculturally Influenced reservoir [J]. Biogeochemistry, 2005,76(1):85-111. [31] Abell G C J, Ross D J, Keane J P, et al. Nitrifying anddenitrifying microbial communities and their relationship to nutrient fluxes and sediment geochemistry in the Derwent Estuary, Tasmania [J]. Aquatic Microbial Ecology, 2013,70(1):63-75. [32] 高志强,朱玲,朱伟,等.珠江口表层沉积物nirS型反硝化微生物多样性 [J]. 海洋与湖沼, 2012,43(6):1114-1121.[33] Sáenz J P, Hopmans E C, Rogers D, et al. Distribution ofanaerobic ammonia-oxidizing bacteria in a subterranean estuary [J]. Marine Chemistry, 2012,136-137:7-13.[34] Sun W, Xu M Y, Wu W M, et al. Molecular diversity anddistribution of Anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong [J].Journal of Applied Microbiology, 2014,116(2):464-476.[35] Jin R C, Y ang G F, Y u J J, et al. The inhibition of the Anammox process:a review [J]. Chemical Engineering Journal, 2012,197:67-79.[36] 王欢,裴伟征,李旭东,等.低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮 [J]. 环境科学, 2009,30(3):815-821.[37] Hu B L, Shen L D, Zheng P, et al. Distribution and diversity ofanaerobic ammonium-oxidizing bacteria in the sediments of the Qiantang River [J]. Environmental Microbiology Reports, 2012, 4(5):540-547.[38] Hou J, Cao X Y, Song C L, et al. Predominance ofammonia-oxidizing archaea and nirK-gene-bearing denitrifiers among ammonia-oxidizing and denitrifying populations in sediments of large urban eutrophic lake (Lake Donghu) [J].Canadian Journal of Microbiology, 2013,59(7):456-464.作者简介:鲍林林(1990-),女,四川绵阳人,博士研究生,主要从事生态环境治理和流域生态诊断研究.发表论文11篇.。
Food safety is a critical issue that affects public health and wellbeing.In this essay, we will explore the importance of food safety,the challenges faced in maintaining it,and the measures that can be taken to ensure the safety of our food supply.Importance of Food SafetyFood safety is paramount because it directly impacts our health.Contaminated food can lead to foodborne illnesses,which can range from mild to severe,and in some cases,can be lifethreatening.Ensuring food safety helps to prevent these illnesses and protect consumers from the risks associated with consuming unsafe food products. Challenges in Maintaining Food Safety1.Contamination:Food can be contaminated at various stages,from production to consumption.This includes contamination from bacteria,viruses,parasites,and chemical substances.2.Food Handling:Improper handling of food by untrained individuals can lead to crosscontamination,where harmful bacteria are transferred from one food item to another.3.Storage Conditions:Inadequate storage conditions,such as improper temperature control,can foster the growth of harmful microorganisms.4.Supply Chain Complexity:The global nature of the food supply chain makes it difficult to monitor and control every step,increasing the risk of contamination. Measures to Ensure Food Safety1.Regulations and Standards:Governments and international organizations establish food safety regulations and standards to guide the production,processing,and distribution of food.cation and Training:Educating food handlers and consumers about proper food safety practices is essential.This includes understanding the importance of handwashing, cooking food to the correct temperature,and proper storage.3.Inspection and Monitoring:Regular inspections of food production facilities and monitoring of food products can help identify and rectify potential safety issues before they become widespread.4.Traceability:Implementing traceability systems allows for the tracking of food products from farm to table,facilitating the identification of the source of contamination in the event of a foodborne illness outbreak.5.Technological Innovations:Advances in technology,such as rapid testing methods and improved packaging,can enhance food safety by detecting contaminants early and preserving the freshness of food products.ConclusionFood safety is a collective responsibility that involves producers,processors,retailers, and consumers.By understanding the importance of food safety and taking proactive measures to ensure it,we can safeguard public health and enjoy a safer food supply.It is through a combination of education,regulation,and technological advancements that we can effectively combat the challenges posed by food safety.。
微生物选择(Microbial selection)A obligate anaerobic bacteria,B obligate aerobic bacteria,C micro aerobic bacteria,D facultative anaerobe,E or more are not correct25. the conditions required for the growth of bacteria include: DA nitrogen compounds, water, temperature and gas, B, growth factor, pH, temperature, and gasC nutrients, water, temperature, gas, D, nutrients, pH, temperature, and gasesE inorganic salts, growth factors, temperature and gases26. belong to obligate anaerobe is: AA tetanus, B, Escherichia coli, C, Shigella, D, Bacillus anthracis, E, Neisseria meningitidis27., it is better to choose which growth bacteria is the best for studying bacterial characters: BA delay stage,B logarithmic phase,C stable phase,D period of death,E or more can be28.. The synthetic metabolic products of bacteria are: EA pigmentB bacteriocinC pyrogen of vitamin E is D29. which of the following bacterial products is related to the infusion reaction: EA toxinB bacteriocinC invasiveD cytochromeE enzyme pyrogen30. which of the following medium can be used for dynamic test: CA solid medium,B liquid medium,C semisolid medium,D SS medium,E meat residue medium31. what kind of experiments do not belong to the biochemical reaction of bacteria: BA sugar fermentation testB testC testD VP Pei indole testE H2S test32., bacterial variation is most likely to occur in: DA delay stage,B logarithmic phase,C stable phase,D period of death,E or more can be33. the extra chromosomal genetic material of bacteria is: CA, mRNA, B, ribosome, C plasmid, D, heterochromatin, E, intermediary34. some bacteria still survive without some of the following ingredients or structures: BA cell membrane,B cell wall,C nucleocapsid protein, D,cytoplasmic nuclear E and above are allThe plasmid of the 35. determinant fimbriae is: AA, F plasmid, B, R plasmid, C, Col plasmid, D, Vi plasmid and E were all aboveThe 36. plasmid is bacterial: BA, cytoplasm, DNA, B, cytoplasm, DNA, C, nuclear protein bodies, D, cytoplasm and E are all above37. what are the characteristics of spores associated with bacteria: CA phagocytosis,B production, toxin C, heat resistant D, invasive E movement38. the structure related to bacterial movement is: AA flagella,B fimbriae,C cilia,D axis filaments, andE are all above39. what are the following statements about flagella, which are wrong: AA staining with light microscopy showed thatB was only for certain bacteriaC staining with special staining showed thatD is the organ of motion in bacteria under light microscopyE inoculation of bacteria into semisolid media helps to identify whether or not bacteria have flagella40. which statement about the capsule is wrong: DA is involved in the pathogenesis of bacteria, B, which acts against phagocytosis by phagocytesC is a special structure of some bacteria.D is easy to stain with gram dyesE is often produced in animals41. the most resistant bacteria are AA spore,B outer membrane,C flagellum,D ribosome,E cell wall42., the propagation of bacteria is: AA two division B; spore reproduction; C replication; D mitosis;E gamete reproduction43. a single bacterium grows on a solid medium that forms: DA B C D mycelium coenobium lawn biofilm colony E44. "colony" means: CPlaque formed by A in a cell culture bottle; B bacteria detached from the culture mediumC a bacterial colony formed by the propagation of a bacterium on a culture mediumD a mixture of bacteria growing on a culture medium; E; a bacterial cell45. the fastest breeding rate in the following cells is: DA Escherichia coli, B, Streptococcus, C, Neisseria meningitidis, D, Mycobacterium tuberculosis, E proteus46. the optimum pH for most bacterial growth is CA, PH, 6.5-6.8, B, PH, C, PH, 7.0-7.2, 7.2-7.6, D, PH,, 7.6-8.0, E, PH, 8.0-9.0About 47. pyrogen narratives, which of the following is an error: BA can cause fever reaction in human or animal body.B can be destroyed by autoclave sterilization at 121 DEGC for 20 minutesC is the main component of lipopolysaccharideD adsorbent and special asbestos filter can remove most of pyrogenE is synthesized by most gram negative bacteria, and certain positive bacteria can be produced48. which group is the metabolite of bacteria associated with disease: DA acids, alcohols, hydrogen sulfide, B, hydrogen sulfide, alcohols, ketones, enzymesC toxins, antibiotics, bacteriocinD enzyme, pyrogen, toxinE toxin, enzyme, bacteriocin49. the following identified bacterial metabolites are: EA B C H2S D indole pigment acid gas are above E50. the following methods of killing bacteria spores are: EA boiling method,B batch sterilization,C autoclave sterilization,D dry heat sterilization,E pasteurization51. normally sterile sites should be: EBDCD, BCEECA bowel, B, urethra, C, vagina, D, external auditory canal, E, abdominal cavity52. bacterial disturbances usually occur in: BA normal flora, change of location,B long-term oralbroad-spectrum antibioticsC long-term use of adrenocortical hormone D, long-term use of certain drugs, E immunity decreased53. bacterial diarrhea due to prolonged and extensive use of broad-spectrum antibiotics mostly belongs to: DA food poisoning,B bacillary dysentery,C allergic reaction,D flora disturbance,E or more are wrong54. normal flora in normal conditions, the body can not play: CA antagonism; pathogenic bacteria action;B nutrition;C pathogenicity;D antigen stimulationE promotes the development of the immune system55., the interpretation of "bacterial imbalance" is: DThe pathogenicity of A bacteria has changed, a manifestation of resistance in the B organismC normal flora changed the location of aliens, and the number and proportion ofD variedE the distribution of bacteria in nature is in disorder56. when water is contaminated by bacteria, it can often cause: BA respiratory infection, infection, B, infectious diseases of the digestive tract, infection of C, pyogenic infection of the woundD urinary tract infection, infection, E, anaerobic bacteria infection57. hospital staff with a high proportion of Staphylococcus aureus, easily lead to: CA flora imbalance,B chance, infection, C, cross infectionD double infectionE itself infection58. conditional pathogens are: EPathogens excreted by B during the recovery period of A pathogens that are not present in the organismWhen C is normal, there are pathogens in the body that do not cause diseaseD a pathogen that invades from outside but has not yet caused a disease;E normally exists in vivo without causing disease59. for the treatment of bacterial flora, the disorder should be used: EA, vitamin B, cellulose, C, antitoxin, D, antibiotics, E, ecological agents60. inhibition of bacterial growth and reproduction process: CA disinfection,B sterilization,C antisepsis,D asepsis,E aseptic operation61. the following sterilization methods are correct: EA inoculation ring -- dry roastedB surgical instrument -- bleaching powderC drinking water -- filtration and sterilizationD thermometer - boilingE dressing pack - high pressure steam62. the meaning of asepsis is: BA kills all microorganisms on the object, B, without the meaning of living microorganismsC kills the spore free bacteria D, prevents and inhibits microbial growth, and E kills pathogens on the object63. sterilization means: AA kills all microorganisms on the object, B, without the meaning of living microorganismsC kills the spore free bacteria D, prevents and inhibits microbial growth, and E kills pathogens on the object64. for high-pressure steam sterilization, the following are correct: AA temperature to 121.3 DEG C, maintain 15-30 minutes atmospheric pressure BC belongs to dry heat sterilization,D can not kill spores, Ecan be used for serum sterilization65. the most commonly used and effective methods for killing bacterial spores are: CA boil for 5 minutes,B UV irradiation,C autoclave sterilizationD dry baking sterilization,E chemical disinfectant, sterilization66., the greater the concentration of disinfectant, bactericidal effect of the stronger, but there is a disinfectant exception, it is: AA B C - D ethanol iodine bromo geramine E Potassium Permanganate67., the strongest bactericidal concentration of alcohol is: BA B C D 8098% 50-60% 70-75% 95% E 100%68. among the factors that affect the efficacy of chemical disinfectants, the least important is: EThe concentration of A disinfectant, the presence of B organic compounds, C, pH, D, temperature, and presence of E salt69., the main basis for judging whether disinfection is thorough is: BA propagule is completely eliminated,B spore is completely eliminated,C flagellin denaturationD cell DNA denaturationE above is not70. ultraviolet rays are mostly used for air disinfection because: AA UV penetration is weak,B air can not be sterilized by other methodsC UV is best for air,D UV can cause bacterial variationE UV does no harm to peopleThe most common route of transfer of 71.F factor is CA transduction,B transformation,C conjugation, D, lytic conversion, E protoplast fusion72. what is the result of the mutation of BCG: DA morphological variation,B structural variation,C resistance variation,D Virulence Variation, E, colony variation73., about Virulence Variation, the error is: EA Bacillus Calmette Guerin (BCG) is a attenuated Mycobacterium tuberculosis bacterium that is mutated by a toxic bovine tubercle bacillusB non-toxic or weakly toxic bacteria can enhance virulence through susceptible organismsC spore bacteria lose their ability to produce spores, and their virulence can be attenuatedD is a genetic variant of E, which is involved in a large number of antibiotics74. phage: AA strictly host specificB can be removed by bacterial filtersC containing DNA and RNAD is superior to bacteria in resistance to E75. plasmid related to bacterial resistance: BA, F plasmid, B, R plasmid, C, Col plasmid, D, Vi plasmid and E were all aboveThe most common route of transfer of 76.R factor is CA convertsB transduction intoC conjugation,D protoplast fusion, andE transformation77.. Which variant of Mycobacterium tuberculosis can be used for the preparation of BCG: E?A morphological variation,B structural variation, Cresistance variation, D colony variation, E Virulence Variation78. ways of gene transfer and recombination do not include: CA conjugation;B transduction;C mutation;D conversion;E transformation79. the process of transferring the genetic material of donor bacteria into recipient bacteria with phage as the carrier, called CA conjugation;B transformation;C transduction;D conversion;E plasmid transfer80. the process of transferring genetic material from donor to recipient bacteria by sex pili, called CA transduction,B transformation,C conjugation,D mutation, E, lytic conversion81. solubility conversion refers to: EA chromosome gene and recombinant chromosome geneRecombinant plasmid DNA of B and recombinant DNA of recipient chromosomeGenetic recombination of chromosomes after fusion of two C bacteriaD donor DNA is transmitted to the recipient by sex piliE bacterial chromosome DNA is recombined with bacteriophage DNA to express new characters82. capsular pneumococcus can be lost on the common medium. This variant is CA morphological variation,B genetic variation,C non genetic variation,D colony variation, E, drug resistance variation83. substances that mediate bacterial junction are: CA flagella, B, common fimbriae, C pili, D mediators, E ribosomes84.HO variation is: BA Virulence Variation, B, colony variation, C flagella variation, D morphological variation, E resistance variation85. bacteriophage that is integrated into bacteria is called BA virulent bacteriophage B; temperate bacteriophage C; soluble bacteria; D; soluble state; E; anterior phage86., the incorrect version of bacterial variation is: DA bacterial virulence variation, its antigenicity also changes,B treatment of infectious diseases should pay attention to bacterial resistance variationC virulence variation can be used in the prevention of disease,D disease diagnosis, with particular attention to Virulence VariationE bacterial morphological variation makes diagnosis difficult87. the nature of toxoid is: BA has immunogenicity and toxicity.B is immunogenic, non-toxic,C free, immunogenic, and toxicD is neither immunogenic nor toxic, andE is not aboveAbout 88. exotoxin: BA is stable, resistant to heat,B toxicity,C without immunogenicity,D causing fever reactionE is mainly produced by Gram negative bacteria, and a small number of gram positive bacteria can also be produced89. gram positive bacteria, similar to fimbriae, are composed of: DA, M protein, B, lipoprotein, C, peptidoglycan, D membrane, P acid, E wall acid90. the toxic effects of endotoxin were not as follows: DA fever,B shock, C, leukocyte reactionD has selective toxic effects on tissues and organs, causing specific symptoms, E, DIC91., the pathogenicity of bacteria depends mainly on the bacteria: DThe strength of A invasion, B basic structure and characteristics of special structuresIn C, the way of exotoxin D invasion and no toxin or E invade the body is appropriate92. the causative bacteria causing neurotoxins are DA Vibrio cholerae, B, Neisseria meningitidis, C, Salmonella typhiClostridium botulinum D, E, beta hemolytic streptococcus93. about endotoxin, the error is: AA is selective toxic to tissues andB is mainly produced by Gram negative bacteriaC is the bacterial cell wall component,D chemical constituent is mainly lipopolysaccharide E, can cause the fever reaction94. is the strongest known toxicant poisoning: AA botulinum toxinB tetanus toxoidC diphtheria toxinD choleraenterotoxinE Staphylococcus aureus enterotoxin95. antitoxin: BA exotoxinB can be obtained after treatment with formaldehyde toxicity and free exotoxinThe toxic effects of C neutralization and susceptible cells with exotoxinD by bacterial endotoxin stimulates the production ofE BC96. can stimulate the body to produce antibodies and not pathogenic substances: CA B C D anti endotoxin exotoxin toxoid toxin E antibiotics97. the following substances that do not belong to bacterial virulence are: AA bacteriocinB exotoxinC capsularD fimbriaeE hyaluronidase98. carriers are: CA is a healthy person who carries bacteria but does not produce clinical symptomsA patient who carries bacteria and produces clinical symptoms in BC is a healthy person who carries pathogenic bacteria but does not produce clinical symptomsD patients who carry pathogenic bacteria and produce clinical symptomsNo more than E99., the most dangerous source of infection is: BA acute stage patients withB healthy carriers,C recovery stage patients,D infected animals,E vector animals100. purulent cocci invade the blood, in which a large number of reproduction, and then to other organs causing purulent lesions, said: BA toxemia,B sepsis,C viremia,D bacteremia,E septicemia101., the bacteria in the local proliferation, producing toxins into the blood and cause systemic poisoning symptoms, said: AA toxemia,B sepsis,C viremia,D bacteremia,E septicemia102. in the prevalence of disease, an important source of infection that is easily overlooked is BA acute stage patients withB healthy carriers,C recovery stage patients,D infected animals,E vector animals103., bacteria multiply in the blood, producing toxins, causing systemic poisoning symptoms, said: "B."A bacteremia,B sepsis,C toxemia,D sepsis,E viremia104. nonspecific immunity does not include: EA, mucocutaneous barrier structure, B phagocytosis, C, blood-brain barrierRole of E antibody in placental barrier of D105. incomplete phagocytosis means: DA bacteria can not be swallowed by phagocytes.B bacteria can be swallowed up but not killedC bacteria are eaten up in half andD bacteria are swallowed and partly digestedE phagocytes need to be able to exert phagocytosis under the action of lysozyme。
宠物犬肠道可培养细菌耐药性种类及其分布作者:Hafeez ul Haq 张沁怡黎烨陈明波薛海曌罗成松方行刘平平蒋宁成张婷熊娟田宝玉来源:《福建农业科技》2020年第04期摘要:為探明宠物犬肠道微生物携带抗生素耐药性的流行病学及阐释饲养动物中微生物抗性与人病原微生物抗性基因的关系。
采用细菌分离培养鉴定以及影印平板技术对宠物犬肠道可培养肠杆菌携带的耐药性及其种类、多样性和生态分布进行了调查。
结果表明:宠物犬肠道可培养细菌具有较高的耐药性比例和多重耐药性。
其中大肠杆菌对氨苄西林、磺胺类药物、氯霉素、链霉素和四环素等较早使用的药物耐药率较高,反而对进入临床时间较短的头孢菌素类药物相对较敏感。
在调查的细菌中几乎所有的细菌至少有1种抗生素抗性,可分离的肠道细菌中一半以上具有5种以上的抗生素抗性。
综上所述,肠道微生物抗性的产生与抗生素的使用时间紧密相关,并且宠物犬肠道可培养细菌的抗性广泛分布,表明宠物很可能成为耐药性基因在环境和人类病原细菌间传播的潜在途径。
关键词:宠物犬;抗生素;肠道可培养细菌;耐药性中图分类号:S858.292文献标志码:A文章编号:0253-2301(2020)04-0009-08DOI: 10.13651/ki.fjnykj.2020.04.002Types and Distribution of the Drug Resistance of the Culturable Bacteriain the Intestinal Tract of Pet DogsHafeez ul Haq, ZHANG Qinyi, LI Ye, CHEN Mingbo, XUE Haizhao, LUO Chengsong, FANG Xing,LIU Pingping, JIANG Ningcheng, ZHANG Ting, XIONG Juan,TIAN Baoyu*(Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian NormalUniversity/College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108,China)Abstract: In order to explore the epidemio logy of antibiotics resistance carried by pet dogs′ intestinal microorganisms and explain the relationship between the microbial resistance in raising animals and the resistance genes of human pathogenic microorganism, the antibiotic resistance carried by the culturable enterobacter in the intestinal tract of pet dogs was investigated, as well as the species, diversity and ecological distribution, by using the bacterial culture, isolation and identification and the replica plating technology. The results showed that the culturable bacteria in the intestinal tract of pet dogs had a high proportion of drug resistance and multidrug resistance. Among which, Escherichia coli had a higher drug resistance rate to the drugs that were used earlier such as ampicillin, sulfonamides, chloramphenicol, streptomycin and tetracycline, while was more sensitive to cephalosporins with a short clinical time. Almost all of the bacteria surveyed had at least one antibiotic resistance, and more than half of the isolatable intestinal bacteria had at least fiveantibiotic resistance. In summary, the occurrence of intestinal microbial resistance was closely related to the usage time of antibiotics, and the wide distribution of the resistance of the culturable bacteria in the intestinal tract of pet dogs indicated that pets were likely to be the potential route for the transmission of resistance genes between the environment and human pathogenic bacteria.Key words: Pet dogs; Antibiotics; Culturable intestinal bacteria; Drug resistance自20世纪50年代Moore和Jukes等报道在畜禽和猪饲料中添加抗生素可以促进动物生长,提高生产效率以来,抗生素饲料生长促进剂的推广和使用极大地促进了畜牧业的发展,使规模化工厂化养殖成为可能。
英汉海洋科学名词abiological removal ⾮⽣物转移abiotic zone ⽆⽣命带abrasion platform 海蚀台地absolute salinity 绝对盐度abundance 丰度abyssal circulation 深渊环流abyssal clay 深海粘⼟abyssal fauna 深渊动物abyssal hill 深海丘陵abyssal plain 深海平原abyssal zone 深渊带abyssopelagic organism ⼤洋深渊⽔层⽣物abyssopelagic plankton 深渊浮游⽣物abyssopelagic zone 深渊层accessory mark 副轮accretionary prism 增⽣楔accumulation 堆积作⽤acoustic remote sensing 声遥感acoustical oceanography 声学海洋学active continental margin 主动⼤陆边缘aerial remote sensing observation 航空遥感观测African Plate ⾮洲板块afternoon effect 午后效应Agassiz trawl 阿⽒拖⽹age composition 年龄组成aggregated distribution 集聚分布ahermatypic coral ⾮造礁珊瑚air gun ⽓枪air lifting ⽓举air-born substances ⽓源物质airborne infrared radiometer 机载红外辐射计air-sea boundary process 海-⽓边界过程air-sea interaction 海-⽓相互作⽤air-sea interface 海-⽓界⾯air-tight ⽓密albedo of sea 海洋反照率"algal chemistry, phycochemistry " 藻类化学algal reef 藻礁alkalinity 碱度allochthonous population 外来种群allopatry 异域分布"alternating current, rectilinear current " 往复流ambient sea noise 海洋环境噪声amphi-boreal distribution 北⽅两洋分布amphidromic point ⽆潮点"amphidromic system, amphidrome " 旋转潮波系统amphi-Pacific distribution 太平洋两岸分布anadromic fish 溯河鱼anaerobic zone 厌氧带anaerobiosis 厌氧⽣活analytical chemistry of sea water 海⽔分析化学"anchor ice, ground ice " 锚冰anchorage area 锚泊地anchored structure 锚泊结构anomalous sea level 异常⽔位anoxic basin 缺氧海盆anoxic event 缺氧事件anoxic water 缺氧⽔"Antarctic Bottom Water, AABW " 南极底层⽔Antarctic Circumpolar Current 南极绕极流Antarctic Circumpolar Water Mass 南极绕极⽔团Antarctic Plate 南极洲板块anthropogenic hydrocarbon ⼈源烃anthropogenic input ⼈源输⼊antifouling 防污着aphotic zone ⽆光带"apparent oxygen utilization, AOU " 表观耗氧量aquaculture ⽔产养殖aquaculture ⽔产栽培aquafarm ⽔产养殖场aquanaut work 潜⽔作业aquaranch ⽔中牧场aquatic community ⽔⽣群落aquatic ecosystem ⽔⽣⽣态系archipelago 群岛Arctic Ocean 北冰洋"Arctic Water, North Polar Water " 北极⽔arc-trench-basin system 沟弧盆系armor block 护⾯块体armored diving 铠装潜⽔artificial island ⼈⼯岛artificial sea water ⼈⼯海⽔aseismic ridge ⽆震海岭assemblage 组合assimilation efficiency 同化效率assimilation number 同化数association 群聚astronomical tide 天⽂潮"Atlantic Equatorial Undercurrent, Lomonosov Current " ⼤西洋⾚道潜流Atlantic Ocean ⼤西洋Atlantic-type coastline ⼤西洋型岸线Atlantic-type continental margin ⼤西洋型⼤陆边缘atmospheric input ⼤⽓输⼊atmospheric sea salt ⼤⽓海盐atmospheric transport ⼤⽓输送atoll 环礁auricularia larva ⽿状幼体Australia-Antarctic Rise 澳⼤利亚-南极海隆autecology 个体⽣态学authigenic sediment ⾃⽣沉积autoinhibitory substance ⾃体抑制物质autotroph ⾃养⽣物auxotroph 营养缺陷⽣物average heavy swell 中狂涌average height of the heighest one-tenth wave 1/10 [⼤波平均]波⾼average height of the heighest one-third wave 1/3 [⼤波平均]波⾼average moderate swell 中中涌axially symmetric marine gravimeter 轴对称式海洋重⼒仪azimuth correction ⽅位改正back-arc 弧后back-arc basin 弧后盆地back-arc spreading 弧后扩张backshore 后滨bacterial film 细菌膜bacterial slime 细菌粘膜bacterioneuston 漂游细菌barbor boat 港作船baroclinic ocean 斜压海洋barophilic bacteria 喜压细菌barotropic ocean 正压海洋barrier 沙坝barrier island 沙坝岛barrier reef 堡礁baseline study 基线研究batch culture ⼀次性培养bathyal fauna 深海动物bathyal zone 深海带bathymetry ⽔深测量bathypelagic organism ⼤洋深层⽣物bathypelagic plankton 深层浮游⽣物bathypelagic zone 深层beach 海滩beach berm 滩肩beach cusp 滩⾓beach cycle 海滩旋回beach face 滩⾯beach nourishment ⼈⼯育滩beach profile 海滩剖⾯beach ridge 滩脊beach rock 海滩岩beam trawl 桁拖⽹bench 岩滩Benioff zone 贝尼奥夫带benthic community 底栖⽣物群落benthic division 海底区benthic-pelagic coupling 海底-⽔层耦合benthology 底栖⽣物学benthos 底栖⽣物berth 泊位bioadhesion ⽣物粘着bioassay ⽣物测试"biochemical oxygen demand, BOD " ⽣化需氧量biodegradation ⽣物降解biodeterioration ⽣物污染bioerosion ⽣物侵蚀biofacy ⽣物相biofouling ⽣物污着biogenic sediment ⽣物沉积biogenous hydrocarbon ⽣源烃biogenous silica ⽣源硅⽯biological detritus ⽣物碎屑biological input ⽣物输⼊biological noise ⽣物噪声biological oceanography ⽣物海洋学biological purification ⽣物净化biological removal ⽣物转移biological scavenging ⽣物清除bioluminescence ⽣物发光biomass ⽣物量bionics 仿⽣学biosphere ⽣物圈biota ⽣物区系biotope ⽣活⼩区bioturbation ⽣物扰动biozone ⽣物带bipinnaria larva ⽻腕幼体bipolarity 两极同源bird-foot delta 鸟⾜[形]三⾓洲Bohai Coastal Current 渤海沿岸流Bohai Sea 渤海boomerang sediment corer ⾃返式沉积物取芯器borate alkalinity 硼酸[盐]碱度"borer, boring organism " 钻孔⽣物bottom current 底层流bottom friction layer 底摩擦层bottom grab 表层取样器bottom reflection 海底声反射bottom reverberation 海底混响bottom scattering 海底散射bottom water 底层⽔bottom wave 底波bottom-supported platform 坐底式平台boundary flux 界⾯通量box corer 箱式取样器box model 箱式模型brackish water species 半咸⽔种brash ice 碎冰"breaker, surf " 碎波breakwater 防波堤brine 卤⽔"brown clay, red clay " 褐粘⼟bubble effect ⽓泡效应buoyant mat 浮⼒沉垫burrowing organism ⽳居⽣物caballing [混合]增密caisson 沉箱calcareous ooze 钙质软泥"calcite compensation depth, CCD " ⽅解⽯补偿深度calcite dissolution index ⽅解⽯溶解指数calm sea ⽆浪capillary wave ⽑细波carbon assimilation 碳同化作⽤carbon cycle 碳循环carbon dioxide system in sea water 海⽔⼆氧化碳系统carbonate alkalinity 碳酸[盐]碱度"carbonate critical depth, CCRD " 碳酸盐极限深度carbonate cycle 碳酸盐旋回carbonate system in sea water 海⽔碳酸盐系统carcinology 甲壳动物学carnivore ⾷⾁动物catastrophe 灾变catch 渔获量catchability coefficient 可捕系数cathodic protection 阴极防护cellar connection 井⼝装置Central Indian Ridge 印度洋中脊central rift 中央裂⾕central water 中央⽔chain of volcanoes ⽕⼭链"Changjiang Diluted Water, Changjiang River Plume " 长江冲淡⽔characteristic species 特征种chemical diagenesis 化学成岩作⽤chemical form 化学形态chemical oceanography 化学海洋学"chemical oxygen demand, COD " 化学需氧量chemical scavenging 化学清除chemical speciation 化学形态分析chemical speciation models 化学形态模型chemical species 化学形式chemical weathering 化学风化作⽤chemo-autotroph 化能⾃养⽣物chemostatic culture 恒化培养"chemotaxis, chemotaxy " 趋化性chemotrophy 化能营养"China Classification Society, ZC " 中国船级社chlorinity 氯度chlorinity ratio 氯度⽐值chlorosity 氯量chronostratigraphy 年代地层学ciguatoxic fish 西加毒鱼类circumpacific volcanic belt 环太平洋⽕⼭带clay 粘⼟"closed season, prohibited season " 禁渔期cnoidal wave 椭圆余弦波coast of emergence 上升海岸coast of submergence 下沉海岸"coastal current, littoral current " 沿岸流coastal dune 海岸沙丘coastal engineering 海岸⼯程coastal terrace 海岸阶地coastal water 沿岸⽔coastal zone 海岸带coastline 海岸线coastline effect 海岸效应coccolith ooze 颗⽯软泥cofferdam 围堰cold current 寒流cold eddy 冷涡cold water species 冷⽔种cold water sphere 冷⽔圈cold water tongue 冷⽔⾆collision zone 碰撞带commensalism 共栖commensalism 偏利共⽣common species 习见种community 群落community ecology 群落⽣态学compensation current 补偿流compensation depth 补偿深度compliant structure 顺应式结构composite breakwater 混合式防波堤compound shoreline 复合滨线compound tide 复合潮conchology 贝类学"conductivity-temperature-depth system, CTD " 温盐深仪confused sea 暴涛confused swell 暴涌conservative constituents of sea water 海⽔保守成分constancy of composition of sea water 海⽔成分恒定性constituent day 分潮⽇constituent hour 分潮时constructive boundary 建设性板块边界consumer 消费者continental accretion ⼤陆增⽣continental drift ⼤陆漂移continental margin ⼤陆边缘continental rise ⼤陆隆continental shelf ⼤陆架continental shelf break ⼤陆架坡折continental slope ⼤陆坡continental terrace ⼤陆阶地"continuous cultivation, continuous culture " 连续培养continuous model 连续模型contour current 等深流contourite 等深流沉积[岩]contrast in water ⽔中对⽐度contrast transmission in water ⽔中对⽐度传输controlled ecosystem experiment 控制⽣态系实验convective mixing 对流混合conventional diving 常规潜⽔convergent boundary 会聚边界conversion efficiency 转换效率"copepodite, copepodid larva " 桡⾜幼体coprophagy ⾷粪动物coral reef 珊瑚礁coral reef coast 珊湖礁海岸corrosion in sea water 海⽔腐蚀cosmogenous sediment 宇宙沉积cosmopolitan 世界[⼴布]种cotidal chart 同潮图countercurrent 逆流crane barge 起重船critical depth 临界深度crop 收获cross-coupling effect 交叉耦合效应current meter 海流计current pattern 流型cuspate bar 尖⾓坝cuspate delta 尖[形]三⾓洲cyphonautes larva 苔藓⾍幼体cypris larva 腺介幼体Dalmatian coastline 达尔马提亚岸线datum of chart 海图基准⾯day-night observation 连续观测deck unit 甲板装置deep current 深层流"deep scattering layer, DSL " 深海散射层deep sea fan 深海扇deep sea propagation 深海传播deep sea sand 深海砂deep sea sediment 深海沉积deep sea sound channel 深海声道deep water 深层⽔deep water wave 深⽔波delta 三⾓洲demersal fish 底层鱼类density current 密度流density current 异重流density-dependent mortality 密度制约死亡率deposit feeder ⾷底泥动物descriptive oceanography 描述海洋学destructive boundary 破坏性板块边界detached breakwater 岛式防波堤detached wharf 岛式码头detritus feeder ⾷碎屑动物diagonal wave 斜向浪diatom ooze 硅藻软泥"dicycle, dicycly " 双周期"diel vertical migration, diurnal vertical migration " 昼夜垂直移动dilution cycle 稀释旋回directional wave spectrum ⽅向波谱dissolution cycle 溶解旋回"dissolved inorganic carbon, DIC " 溶解⽆机碳"dissolved organic carbon, DOC " 溶解有机碳"dissolved organic matter, DOM " 溶解有机物"dissolved organic nitrogen, DON " 溶解有机氮"dissolved organic phosphorus, DOP " 溶解有机磷dissolved oxygen 溶解氧disturbing acceleration ⼲扰加速度diurnal inequality ⽇不等[现象]diurnal tide 全⽇潮diver 潜⽔员divergent boundary 离散边界diversity 多样性diving suit 潜⽔服dock 船坞dominant species 优势种"Donghai Coastal Current, East China Sea Coastal Current " 东海沿岸流"Donghai Sea, East China Sea " 东海Doppler current meter 多普勒海流计double diffusion 双扩散double ebb 双低潮double flood 双⾼潮downwelling 下降流dredge 底栖⽣物刮底⽹dredger 挖泥船dredging engineering 疏浚⼯程drift current 漂流drift ice 流冰drifting buoy 漂流浮标drill conductor 隔⽔套管drilling vessel 钻探船dry diving ⼲式潜⽔duration-limited spectrum 有限风时谱dynamic method 动⼒⽅法dynamic positioning 动⼒定位dynamical oceanography 动⼒海洋学East African Rift Zone 东⾮裂⾕带East Pacific Rise 东太平洋海隆"ebb, ebb tide " 落潮echinopluteus larva 海胆幼体echo ranging 回声测距echosounder 测深仪ecological barrier ⽣态障碍ecosystem ⽣态系edge wave 边缘波efflux 输出通量Ekman depth 埃克曼深度Ekman layer 埃克曼层Ekman pumping 埃克曼抽吸Ekman spiral 埃克曼螺旋Ekman transport 埃克曼输送El Nino ( 西) 厄尔尼诺electrodialysis 电渗析electromagnetic vibration exciter 电磁振荡震源elliptical trochoidal wave 椭圆余摆线波embayed coast 港湾海岸endemic population 地⽅种群endemic species 地⽅种endolithion ⽯内⽣物endopelos 泥内⽣物endopsammon 沙内⽣物energy flow 能流"engineering oceanology, engineering oceanography " 海洋⼯程⽔⽂enhancement 增殖entrainment 卷吸environmental load 环境荷载Eotvos effect 厄特沃什效应ephyra larva 碟状幼体epibenthic sledge 底表撬⽹epifauna 底表动物epilithion ⽯⾯⽣物epipelagic organism ⼤洋上层⽣物epipelagic zone 上层epipelos 泥⾯⽣物epiphyte 附⽣植物epiplankton 上层浮游⽣物epipsammon 沙⾯⽣物Equatorial Countercurrent ⾚道逆流Equatorial Current ⾚道流"Equatorial Undercurrent, EUC " ⾚道潜流equilibrium profile 平衡剖⾯equilibrium tide 平衡潮equinoctial tide 分点潮equivalent duration 等效风时equivalent fetch 等效风区estuarine chemistry 河⼝化学estuary 河⼝湾estuary improvement 河⼝治理euphotic layer 真光层Eurasian Plate 欧亚板块eurybaric organism ⼴压性⽣物eurybathic organism ⼴深性⽣物euryhaline species ⼴盐种euryphagous animal ⼴⾷性动物"eurythermal species, eurythermic species " ⼴温种eustasy 全球性海⾯升降eutrophic water 富营养⽔eutrophication 富营养化[作⽤]euxinic environment 静海环境event deposit 事件沉积exclusive economic zone 专属经济区exogenous organic matter 外源有机物"expendable bathythermograph, XBT " 投弃式温深计exploitative engineering of offshore petroleum/gas reservoir 海上油⽓开发⼯程exploratory engineering of offshore petroleum/gas reservoir 海上油⽓勘探explosive energy source 炸药震源exposed waters 开阔海域failure probability 破坏概率fan delta 扇[形]三⾓洲fast ice 固定冰fatigue break 疲劳断裂fault coast 断层海岸feather angle ⽻⾓feathering ⽻状移动fecal pellet 粪粒fecundity ⽣殖⼒feeding migration 索饵洄游fertility 肥⼒fetch 风区fetch-limited spectrum 有限风区谱fictitious body 假想天体"filter feeder, suspension feeder " 滤⾷性动物finestructure 细结构fiord 峡湾fish finder 鱼探仪fish resources 鱼类资源fisheries oceanography 渔业海洋学fishery management 渔业管理fishery resources 渔业资源fishing effort 捕捞能⼒fishing intensity 捕捞强度fishing mortality coefficient 渔捞死亡系数fishing season 渔期fixed oceanographic station 定点观测站fixed structure 固定式结构flare boom ⽕炬臂"flat coast, low coast " 低平海岸floating breakwater 浮式防波堤floating hose 浮式软管floating structure 浮式结构floating-type wharf 浮式码头floe ice 浮冰"flood, flood tide " 涨潮food chain ⾷物链food organism 饵料⽣物food pyramid ⾷物⾦字塔food web ⾷物⽹foraminiferal ooze 有孔⾍软泥fore-arc 弧前fore-arc basin 弧前盆地forerunner 先⾏涌foreshore 前滨fouling organism 污着⽣物foundation bed 基床foundation capability 地基承载能⼒fracture zone 破裂带freshwater plume 淡⽔⾆frictional depth 摩擦深度"fringing reef, shore reef " 岸礁fully developed sea 充分成长风浪gas exploder ⽓爆震源gateway 峡⼝general circulation 总环流geographical barrier 地理障碍geological oceanography 地质海洋学"geomagnetic electrokinetograph, GEK " 电磁海流计geostrophic current 地转流geotechnical test ⼟⼯试验glacial effect 冰川效应globigerina ooze 抱球⾍软泥Gondwana 冈⽡纳古陆gravitational tide 引⼒潮gravity corer 重⼒取芯器gravity platform 重⼒式平台gravity wave 重⼒波gravity-type structure 重⼒式结构grazing angle 掠射⾓groin 丁坝gross primary production ⽑初级⽣产量growth efficiency ⽣长效率growth overfishing ⽣长型捕捞过度Gulf Stream 湾流"gulf, bay " 海湾guyed-tower platform 拉索塔平台guyot 平顶海⼭gyre 流涡habitat ⽣境"hadal fauna, ultra-abyssal fauna " 超深渊动物"hadal zone, ultra-abyssal zone " 超深渊带half-tide level 半潮⾯halmyrolysis 海解作⽤halobiont 盐⽣⽣物halocline 盐跃层halophile organism 适盐⽣物harbor accommodation 港⼝设施harbor entrance ⼝门harbor hinterland 港⼝腹地harbor land area 港⼝陆域harbor siltation 港⼝淤积harbour basin 港池harbour site 港址Hardy continuous plankton recorder 哈迪浮游⽣物记录器harmonic analysis of tide 潮汐调和分析harmonic constant of tide 潮汐调和常数hatchability 孵化率"headland, cape " 岬⾓heave 垂荡"hekistoplankton, ultraplankton " 超微型浮游⽣物helium-nitrogen-oxygen saturation diving 氦-氮-氧饱和潜⽔helium-oxygen diving 氦-氧潜⽔hemipelagic deposit 半远洋沉积"herbivore, grazer " ⾷植动物hermatypic coral 造礁珊瑚heterogeneity 异质性heterotroph 异养⽣物high energy marine environment 海洋⾼能环境high sea 狂浪"high water, HW " ⾼潮"highest astronomical tide, HAT " 最⾼天⽂潮位holophytic nutrition 全植型营养holoplankton 终⽣浮游⽣物homogeneity 同质性homogeneous layer 均匀层horizontal distribution 平⾯分布hot spot 热点hot spring 海底热泉"Huanghai Coastal Current, Yellow Sea Coastal Current " 黄海沿岸流"Huanghai Cold Water Mass, Yellow Sea Cold Water Mass " 黄海冷⽔团"Huanghai Sea, Yellow Sea " 黄海"Huanghai Warm Current, Yellow Sea Warm Current " 黄海暖流humification 腐殖化[作⽤]hummocked ice 堆积冰hydraulic model test ⽔⼒模型试验hydraulic piston corer 液压活塞取芯器hydrobiology ⽔⽣⽣物学hydrobiont ⽔⽣⽣物hydrodynamic noise 流体动⼒噪声hydrothermal circulation 热液循环hydrothermal process 热液过程ice cover 冰盖ice edge 冰缘线ice field 冰原ice period 冰期ice rind 冰壳ice shelf 冰架ice thickness 冰厚iceberg 冰⼭ichthyology 鱼类学implosive source 聚爆式震源in situ density 现场密度in situ measurement 现场测定in situ salinometer 现场盐度计in situ specific volume 现场⽐容in situ temperature 现场温度incident wave ⼊射波"incubation, hatching " 孵化Indian Ocean 印度洋Indian Plate 印度洋板块indicator species 指⽰种infauna 底内动物influx 输⼊通量inshore 内滨instanteneous mortality rate 瞬间死亡率interface exchange process 界⾯交换过程intermediate water 中层⽔internal tide 内潮internal wave 内波interstitial fauna 间隙动物"interstitial water, pore water " 间隙⽔intertidal zone 潮间带"Intertropical Convergence Zone, Equatorial " ⾚道辐合带intraplate volcanism 板内⽕⼭活动inversion layer 逆置层in-vivo fluorescence technique 活体荧光技术ion-exchange membrane 离⼦交换膜irregular wave 不规则波island 岛island arc 岛弧island shelf 岛架island slope 岛坡isohaline 等盐线isotherm 等温线jacket pile-driven platform 导管架桩基平台jack-up platform ⾃升式平台jetty 突堤jetty 导堤juvenile 幼年个体Kelvin wave 开尔⽂波key species 关键种knuckle joint 万向接头Knudsen's burette 克努森滴定管Knudsen's pipette 克努森移液管Knudsen's tables 克努森表Kuroshio ⿊潮lag effect 滞后效应lagoon 湖lamellibranchia larva 瓣鳃类幼体land and sea breezes 海陆风land fabrication 陆上预制land-origin ice 陆源冰larva 幼体lateral reflection 侧反射launching 下⽔Laurasia 劳亚古陆law of the sea 海洋法lead lane 冰间⽔道level bottom community 平底⽣物群落level ice 平整冰life support system ⽣命⽀持系统light acclimation 光驯化light adaptation 光适性light and dark bottle technique ⿊⽩瓶法light boat 灯船light house 灯塔light saturation 光饱和Lloyd's Register of Shipping 劳埃德船级社long heavy swell 长狂涌long low swell 长轻涌long moderate swell 长中涌long-crested wave 长峰波Longhurst-Hardy plankton recorder 朗-哈浮游⽣物记录器longshore current 顺岸流"longshore drift, littoral drift " 沿岸泥沙流"low water, LW " 低潮"lowest astronomical tide, LAT " 最低天⽂潮位luminous organism 发光⽣物lunar tide 太阴潮lunar tide interval 太阴潮间隙lysis 溶菌lysocline 溶跃层macrobenthos ⼤型底栖⽣物macrofauna ⼤型动物macroplankton ⼤型浮游⽣物magnetic lineation 磁条带magnetic quiet zone 磁场平静带main thermocline 主[温]跃层major constituents of sea water 海⽔主要成分malacology 软体动物学"manganese nodule, ferromanganese nodule " 锰结核mangrove coast 红树林海岸mangrove swamp 红树林沼泽manifold system 管汇系统mantle bulge 地幔隆起mantle convection 地幔对流mantle plume 地幔柱marginal basin 边缘盆地marginal sea 边缘海marginal-type wharf 顺岸码头mariculture 海产养殖mariculture 海产栽培marine accident 海损事故marine acoustics 海洋声学marine aerosol 海洋⽓溶胶marine bio-acoustics 海洋⽣物声学marine biochemical resource 海洋⽣化资源marine biochemistry 海洋⽣物化学marine biogeochemistry 海洋⽣物地球化学marine biological noise 海洋⽣物噪声marine biology 海洋⽣物学marine chemical resource 海洋化学资源marine chemistry 海洋化学"marine climate, ocean climate " 海洋⽓候marine climatology 海洋⽓候学marine contamination 海洋玷污marine corrosion 海洋腐蚀marine detritus 海洋碎屑marine ecology 海洋⽣态学marine ecosystem 海洋⽣态系marine element geochemistry 海洋元素地球化学marine engineering geology 海洋⼯程地质marine environment 海洋环境marine environmental assessment 海洋环境评价marine environmental capacity 海洋环境容量marine environmental chemistry 海洋环境化学"marine environmental forecasting, marine " 海洋环境预报marine environmental monitoring 海洋环境监测marine environmental protection 海洋环境保护marine environmental quality 海洋环境质量marine environmental sciences 海洋环境科学marine erosion 海蚀作⽤marine geochemistry 海洋地球化学marine geology 海洋地质学marine geomagnetic anomaly 海洋地磁异常marine geomagnetic survey 海洋地磁调查marine geomorphology 海洋地貌学marine geophysical survey 海洋地球物理调查marine geophysics 海洋地球物理学marine gravimeter 海洋重⼒仪marine gravity anomaly 海洋重⼒异常marine gravity survey 海洋重⼒调查marine heat flow survey 海洋地热流调查marine humus 海洋腐殖质"marine hydrography, marine hydrology " 海洋⽔⽂学marine installation 海上安装沉放marine isotope chemistry 海洋同位素化学marine meteorology 海洋⽓象学marine microorganism 海洋微⽣物marine natural hydrocarbon 海洋天然烃marine natural product 海洋天然产物marine natural product chemistry 海洋天然产物化学marine organic chemistry 海洋有机化学marine organic geochemistry 海洋有机地球化学marine pharmacognosy 海洋⽣药学marine photochemistry 海洋光化学marine physical chemistry 海洋物理化学marine physics 海洋物理学marine policy 海洋政策marine pollutants 海洋污染物marine pollution 海洋污染marine pressure hydrophone 海洋压⼒⽔听器marine reflection seismic survey 海洋反射地震调查marine refraction seismic survey 海洋折射地震调查marine resource chemistry 海洋资源化学marine resources 海洋资源marine salvage 海难救助"marine sciences, ocean sciences " 海洋科学marine sedimentology 海洋沉积学marine seismic profiler 海洋地震剖⾯仪marine seismic streamer 海洋地震漂浮电缆marine seismic survey 海洋地震调查marine seismograph 海洋地震仪marine stratigraphy 海洋地层学marine technology 海洋技术marine towage 海上拖运marine wide-angle reflection seismic survey 海洋⼴⾓反射地震调查maritime air mass 海洋⽓团marking 标记marsh organism 沼泽⽣物mass balance 质量平衡mass budget 质量收⽀mass transfer 质量转移"mean sea level, MSL " 平均海平⾯"mechanical bathythermograph, MBT " 机械式温深计medical security for diving 潜⽔医务保障megafauna 巨型动物megalopa larva ⼤眼幼体megaplankton 巨型浮游⽣物meiobenthos⼩型底栖⽣物meiofauna ⼩型动物"meroplankton, transitory plankton " 阶段性浮游⽣物mesocosm 中型实验⽣态系mesopelagic fish 中层鱼类mesopelagic organism ⼤洋中层⽣物mesopelagic zone 中层mesoplankton 中型浮游⽣物mesopsammon 沙间⽣物mesoscale eddy 中尺度涡meteorological tide ⽓象潮microbenthos 微型底栖⽣物microbivore ⾷微⽣物者microcolony ⼩菌落microcontinent 微⼤陆microcosm ⼩型实验⽣态系microdistribution 微分布microecosystem 微⽣态系microfauna 微型动物microfouling 微⽣物污着microhabitat 微⽣境micronutrients 微量营养物microplankton ⼩型浮游⽣物microstructure 微结构Mid-Atlantic Ridge ⼤西洋中脊mid-ocean ridge 洋中脊mid-ocean ridge basalt 洋中脊⽞武岩midwater trawl 中层拖⽹migratory fish 洄游鱼类minimum duration 最⼩风时minimum fetch 最⼩风区minor elements of sea water 海⽔微量元素mirage 蜃景mixed layer sound channel 混合层声道"mixed layer, mixing layer " 混合层mixed tide 混合潮mixotroph 混合营养⽣物mobile platform 移动式平台moderate sea 中浪module 模块"monocycle, monocycly " 单周期monophagy 单⾷性monsoon current 季风海流moored data buoy 锚定资料浮标mooring facilities 系泊设施mooring force 系泊⼒mortality 死亡率mound-type breakwater 斜坡式防波堤mud 泥muddy coast 泥质海岸multibeam echosounder 多波束测深仪multi-point mooring 多点系泊multistage flash distillation 多级闪急蒸馏multistage separator 多级分离器mysis larva 糠虾期幼体N/P ratio 氮磷⽐[值]"Nanhai Coastal Current, South China Sea Coastal Current " 南海沿岸流"Nanhai Sea, South China Sea " 南海"Nanhai Warm Current, South China Sea Warm Current " 南海暖流nannoplankton 微型浮游⽣物nauplius larva ⽆节幼体navigation channel 航道navigation equipment 导航设备neap tide ⼩潮nearshore zone 近滨带nectochaeta larva 疣⾜幼体nektobenthos 游泳底栖⽣物nekton 游泳⽣物nepheloid 雾状层neritic organism 近海⽣物neritic sediment 浅海沉积neritic zone 浅海带neritic zone 近海区net plankton ⽹采浮游⽣物net primary production 净初级⽣产量net primary productivity 净初级⽣产⼒neurotoxin 神经毒素niche ⽣态位Ninety East Ridge 东经90度洋中脊Niskin water sampler 尼斯⾦采⽔器nitrogen cycle 氮循环nitrogen-oxygen diving 氮-氧潜⽔no swell ⽆涌non-conservative constituents of sea water 海⽔⾮保守成分nonharmonic constant of tide 潮汐⾮调和常数non-saturation diving ⾮饱和潜⽔Norpac net 北太浮游⽣物⽹North American Plate 北美洲板块"North Atlantic Deep Water, NADW " 北⼤西洋深层⽔not fully developed sea未充分成长风浪nursing ground 育幼场nutrient depletion 营养[盐]耗竭nutrients in sea water 海⽔营养盐obduction plate 仰冲板块obduction zone 仰冲带oblique haul 斜拖observation platform 观测平台ocean 洋ocean basin 洋盆ocean bottom seismograph 海底地震仪ocean circulation ⼤洋环流ocean color scanner 海⾊扫描仪ocean current 海流ocean current energy 海流能ocean energy conversion 海洋能转换ocean energy resources 海洋能源ocean engineering 海洋⼯程ocean exploitation 海洋开发ocean management 海洋管理ocean observation technology 海洋观测技术"ocean optics, marine optics " 海洋光学ocean power generation 海洋能发电ocean salinity energy 海洋盐差能ocean thermal energy 海洋温差能ocean wave 海浪ocean wave spectrum 海浪谱ocean-atmosphere heat exchange 海⽓热交换oceanic crust 洋壳oceanic front 海洋锋oceanic optical remote sensing 海洋光学遥感oceanic plate ⼤洋板块oceanic sound scatterer 海洋声散射体oceanic tholeiite ⼤洋拉斑⽞武岩oceanic troposphere ⼤洋对流层oceanic turbulence 海洋湍流oceanic zone ⼤洋区oceanization ⼤洋化作⽤"oceanographic survey, oceanographic investigation " 海洋调查"oceanography, oceanology " 海洋学offshore 外滨offshore bar 滨外坝offshore engineering 近海⼯程offshore loading and unloading system 海上装卸油系统offshore oil-gas flowline 海上输油⽓管线offshore platform 近海平台offshore storage unit 海上贮油装置oil fence [围]油栅oil-gas-water treating system 油⽓⽔处理系统oligohaline species 寡盐种oligostenohaline species 低狭盐种oligotaxic ocean 少种型⼤洋oligotrophic water 贫营养⽔omnivore 杂⾷动物ooze 软泥ophiopluteus larva 长腕幼体opportunistic species 机会种optimum catch 最适渔获量organic coating layer 有机覆盖层overfishing 捕捞过度overlying water 上覆⽔overpopulation 种群过密overtide 倍潮overwintering 越冬oxide film 氧化膜oxygen maximum layer 氧最⼤层oxygen minimum layer 氧最⼩层oxygen partial pressure 氧分压Oyashio 亲潮oyster reef 牡蛎礁"Pacific Equatorial Undercurrent, Cromwell Current " 太平洋⾚道潜流Pacific Ocean 太平洋Pacific Plate 太平洋板块Pacific-type coastline 太平洋型岸线Pacific-type continental margin 太平洋型⼤陆边缘pack ice 浮冰群paleoceanography 古海洋学paleocurrent 古海流paleodepth 古深度paleomagnetic stratigraphy 古地磁地层学paleoproductivity 古⽣产⼒paleosalinity 古盐度Pangaea 泛⼤陆Panthalassa 泛⼤洋parallel dike 顺坝parasitism 寄⽣"particulate inorganic carbon, PIC " 颗粒⽆机碳particulate matter in sea water 海⽔颗粒物"particulate organic carbon, POC " 颗粒有机碳"particulate organic matter, POM " 颗粒有机物"particulate organic nitrogen, PON " 颗粒有机氮"particulate organic phosphorus, POP " 颗粒有机磷passive continental margin 被动⼤陆边缘patch reef 点礁patchiness 斑块分布pediveliger larva 具⾜⾯盘幼体pelagic deposit 远洋沉积pelagic division ⽔层区pelagic egg 浮性卵pelagic fish 上层鱼类pelagic organism ⽔层⽣物pelagic organism ⼤洋⽣物pelagic phase 浮性⽣活期peleotemperature 古温度peninsula 半岛periphyton 周丛⽣物permanent thermocline 永久性温跃层phaeophytin 脱镁叶绿素phosphorus cycle 磷循环photo-autotroph 光能⾃养⽣物photobacteria 发光细菌photochemical transformation 光化学转化photophilous organism 适光⽣物photosynthetic activity 光合活性"phototaxis, phototaxy " 趋光性phycology 藻类学phyllosoma larva 叶状幼体physical oceanography 物理海洋学phytoplankton 浮游植物pile group 群桩pile-driving barge 打桩船pilidium larva 帽状幼体pipe-laying ship 敷管船piston corer 活塞取芯器pitch 纵摇planktobacteria 浮游细菌plankton 浮游⽣物plankton equivalent 浮游⽣物当量plankton indicator 浮游⽣物指⽰器plankton net 浮游⽣物⽹plankton pump 浮游⽣物泵plankton recorder 浮游⽣物记录器"planktonology, planktology " 浮游⽣物学planula larva 浮浪幼体plate 板块plate boundary 板块边界plate collision 板块碰撞plate convergence 板块会聚plate tectonics 板块构造学pleuston 漂浮⽣物plunging breaker 卷碎波poikilotherm 变温动物Poincare wave 庞加莱波polar ice 极地冰。
As a high school student with a keen interest in both science and gastronomy, I find the intersection of these two fields incredibly fascinating. The way food has been transformed by scientific inventions is nothing short of miraculous, and it has had a profound impact on our daily lives. Let me share with you some of the most remarkable scientific inventions related to food that have caught my attention.One of the most significant scientific inventions in the realm of food is the process of refrigeration. Before the advent of refrigerators, food preservation was a challenge, often relying on methods like smoking, salting, or drying. The invention of the refrigerator in the early 20th century revolutionized the way we store and preserve food. It not only extended the shelf life of perishable items but also allowed us to enjoy a wider variety of foods yearround. Imagine a world without ice cream in the summer or fresh vegetables in the winterquite unimaginable now, isnt it?Another scientific marvel that has transformed our culinary landscape is the microwave oven. Invented in the 1940s, the microwave oven uses electromagnetic radiation to heat food rapidly. This invention has made meal preparation faster and more convenient, especially for busy families and individuals. I remember the first time I used a microwave to heat up leftovers it was a revelation. The ease and speed with which I could have a hot meal ready were astounding.Moving on to something a bit more recent, genetically modified GM foods have been a topic of heated debate. However, the scientific invention of GM technology has allowed us to create crops that are more resistant topests and diseases, and can grow in harsher conditions. This has the potential to address global food security issues, especially in regions where traditional crops struggle to thrive. While there are valid concerns about the longterm effects of GM foods, the scientific community continues to research and develop safer and more efficient methods.Lets not forget about the role of food packaging in preserving the freshness and safety of our food. The invention of aseptic packaging, which allows food to be stored without refrigeration for extended periods, has been a gamechanger. This technology has made it possible for us to enjoy long shelflife products like milk and juice, which are essential for many households.Moreover, the invention of highpressure processing HPP is another fascinating development in food science. HPP uses extreme pressure to inactivate bacteria and other microorganisms in food, extending its shelf life without the need for heat or chemicals. This method preserves the taste, texture, and nutritional value of food, offering a healthier alternative to traditional preservation methods.In the realm of beverages, the invention of pasteurization has been a critical development. Named after the French scientist Louis Pasteur, this process involves heating beverages like milk and wine to a specific temperature to kill harmful microorganisms. Pasteurization has played a vital role in reducing the risk of foodborne illnesses and has been instrumental in the mass production and distribution of safe dairy products.Lastly, the rise of 3D food printing is an exciting frontier in food science. This technology allows for the creation of complex food structures and even personalized meals tailored to individual dietary needs. While still in its infancy, the potential of 3D food printing to revolutionize the way we prepare and consume food is immense.In conclusion, the impact of scientific inventions on food is farreaching and multifaceted. From the convenience of refrigeration and microwave ovens to the potential of GM foods and 3D food printing, these innovations have not only made our lives easier but also opened up new possibilities in the culinary world. As a high school student, I am excited to see where future scientific advancements will take us and how they will continue to shape the way we eat and enjoy food.。
Bacterial Communities in Bioreactors Bacterial communities in bioreactors play a crucial role in various industrial processes, including wastewater treatment, biofuel production, and pharmaceutical manufacturing. These communities consist of diverse species of bacteria that work together to carry out specific functions, such as breaking down organic matter or producing valuable compounds. Understanding the dynamics of these bacterial communities is essential for optimizing bioreactor performance and ensuring the success of biotechnological applications. One of the key challenges in studying bacterial communities in bioreactors is the complexity of their composition. These communities often comprise hundreds of different bacterial species, each with its own unique metabolic capabilities and interactions with other organisms. This complexity makes it difficult to predict how changes in environmental conditions or operational parameters will affect the overall performance of the bioreactor. Furthermore, the presence of non-bacterial microorganisms, such as fungi and protozoa, can also influence the dynamics of bacterial communities in bioreactors, adding another layer of complexity to the system. Another important consideration when studying bacterial communities in bioreactors is the impact of environmental factors on community composition and function. Factors such as temperature, pH, nutrient availability, and the presence of inhibitory substances can all influence the growth and activity of different bacterial species. For example, certain bacteria may thrive in high-temperature environments, while others may be more sensitive to pH fluctuations. Understanding how these environmental factors shape bacterial communities is essential for designing and operating bioreactors under optimal conditions. In addition to environmental factors, the design and operation of the bioreactor itself can also have a significant impact on the structure and function of bacterial communities. For instance, the type of bioreactor (e.g., stirred-tank, packed-bed, membrane) and the mode of operation (e.g., batch, continuous, fed-batch) can influence the distribution of nutrients, oxygen, and other essential resources within the system. These factors can in turn affect the growth rates and metabolic activities of different bacterial species, ultimately shaping the overall performance of the bioreactor. Despite the challenges associated with studying bacterial communities in bioreactors, recentadvances in molecular biology and bioinformatics have provided powerful tools for characterizing and analyzing these complex microbial ecosystems. Techniques such as high-throughput DNA sequencing, metagenomics, and metatranscriptomics allow researchers to identify and quantify the abundance of different bacterial species in a bioreactor, as well as to infer their metabolic potential and interactions with other community members. These approaches have greatly expanded our understanding of microbial diversity and function in bioreactors, providing valuable insights for improving bioprocesses and developing novel biotechnological applications. In conclusion, bacterial communities in bioreactors are complex and dynamic ecosystems that play a critical role in various industrial processes. Understanding the factors that influence the composition and function of these communities is essential for optimizing bioreactor performance and harnessingtheir potential for biotechnological applications. While studying bacterial communities in bioreactors presents numerous challenges, recent technological advancements have greatly expanded our ability to characterize and analyze these microbial ecosystems, providing exciting opportunities for future research and innovation in the field of bioprocess engineering.。