九年级数学上册 第21章 二次根式 21.1 二次根式 1 二次根式课件 (新版)华东师大版
- 格式:ppt
- 大小:516.50 KB
- 文档页数:14
C BA21.1 二次根式第1课时学习目标1a≥0)的意义解答具体题目.2a≥02=a (a≥0),并利用它们进行计算和化简. 学习过程 一、预习形成:请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC 中, AC=3,BC=1, ∠C=90°,那么AB 边的长是__________. 二、课堂讲练: 探究一 议一议:1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0归纳:一般地,我们把形如___________的式子叫做二次根式, ________称为二次根号.例1下列式子,哪些是二次根式,哪些不是二次根式:1x x>0)1x y+x≥0,y •≥0).归纳:二次根式应满足两个条件: (1)_________________ (2)_________________例2.当x在实数范围内有意义?练习:1.二次根式a-1 中,字母a的取值范围是()A. a<lB.a≤1C.a≥1D.a>12、函数y=中,自变量x的取值范围是_________思考:如何确定二次根式中字母的取值范围?三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x11x+在实数范围内有意义?例4.(1)已知,求xy的值.(2)=0,求a2010+b2010的值.探究二根据算术平方根的意义填空:2=_______;2=_______;2=______;2=_______;2=______;2=_______;2=_______.例5.计算1.22.(23.24. 2基础练习计算下列各式的值:2 = 2 = 2 = 2=-=( 2 = 22应用拓展计算:(1)2(x≥0)(2)2(3)2(4)2五、归纳小结本节课要掌握:______________________________________________________________ __________________________________________________________________________ _______________________________________________________________________ 六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.第一课时作业设计(一)选择题1.下列式子中,是二次根式的是()A B C D.x2、已知一个正方形的面积是5,那么它的边长是()A.5 B C.15D.以上皆不对3、数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=0(二)填空题1.2=________.2x _______.3的个数是__________.(三)综合提高题(选做)1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.6,求x y的值.21.1 二次根式第2课时【学习目标】1、(a≥0)并利用它进行计算和化简.2(a≥0),并利用这个结论解决具体问题.【学习过程】一、复习引入1.形如_____________的式子叫做二次根式;2a≥0)是一个_____________;3.2=_____(a≥0).猜想:当a≥0,举例说明.二、探究新知填空:=_______;=________.结论例1计算1.22.(23.24. 2例2化简:(1(2(3(4==;张后同学的解答过程是在化简时,李明同学的解答过程是4=-. 谁的解答正确?为什么?4三、巩固练习1、计算下列各式的值:2222( 2 22-2、教材P7练习2.四、应用拓展例3 计算1.2(x≥0)2.23. 2例4在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3例5 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2-a,则a可以是什么数?(3,则a可以是什么数?例6 当x>2· · · · 0 1 2p 例7 实数p 在数轴上的位置如图所示:2三、课堂小结:四、课堂评价:(一)选择题1 ). A .0 B .23 C .423D .以上都不对2.a≥0比较它们的结果,下面四个选项中正确的是( ).A BC D (二)填空题1.2m 的最小值是________. (三)综合提高题(选做)1.若│1995-,求a -19952的值.(提示:先由a -2000≥0,判断1995-a •的值是正数还是负数,去掉绝对值)2. 若-3≤x≤2时,试化简│x -《二次根式》自我检测1、计算: (1) =2)32(-(2)=+-442x x (2≥x ) (3)2)73( = (4)2)52(-= 2、下列等式中的字母应符合什么条件? (1)22)(a a = (2)a a -=23、判断正误,如果是错的,请写出正确结果.(1)2)2(2-=- (2)7434322=+=+4、已知a 、b 、c 是△ABC 的三边长,化简:22)()(c a b c b a +----5、已知△ABC 的三边长分别为a 、b 、c, 且a 、b 、c 满足a 2 -|5|0c -=,则△ABC 的形状是 三角形.作业:回归教材,认真阅读.完成课本上21.1没有完成的练习及习题,做好小组展示准备.21.2 二次根式的乘除第1课时【学习目标】1、a≥0,b≥0)a≥0,b≥0),并利用它们进行计算和化简2、•a≥0,b≥0)并运用它进行解题和化简.【学习过程】一、预习形成1.填空(1;(2=_______.(3.参考上面的结果,用“>、<或=”填空.2.利用计算器计算填空(1(2(3(4二、课堂讲练一般地,对二次根式的乘法规定为反过来:例1.计算(1(2(3(4例2 化简(1(2(3(4(5三、巩固练习(1)计算:①②(2) 化简:(3)教材P11练习全部.四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2五、课堂小结:六、布置作业1.课本P151,4,5,6.(1)(2).2.选用课时作业设计.(一)选择题1,•那么此直角三角形斜边长是().A.B.C.9cm D.27cm2.化简).A B C D311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 4.下列各等式成立的是()A.B.C.D.(二)填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.(三)综合提高题(选做)1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==……通过上述探究你能猜测出: (a>0),并验证你的结论. 3*.化简(x -1x)2+4 -(x+1x)2-44.已知2310x x -+=.5.已知,a b (10b -=,求20112012a b -的值.21.2 二次根式的乘除第2课时【学习目标】a≥0,b>0a≥0,b>0)及利用它们进行运算.12、利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.【学习过程】一、预习形成1.写出二次根式的乘法规定及逆向等式.2.填空(1;;(2;(3(4.3.利用计算器计算填空:(填>,<,=)二、课堂讲练知识归纳:一般地,对二次根式的除法规定:(2(3(4例1.计算:(1例2.化简:(1(2(3(4三、巩固练习教材P14 练习1.四、应用拓展例3.=,且x为偶数,求(1+x的值.五、归纳小结六、布置作业1.教材P 15 习题21.2 2、7、8、9. 2.选用课时作业设计. 第二课时作业设计 (一)选择题1的结果是( ).A .27 B .27 C D .72.阅读下列运算过程:3==5== 数学上将这种把分母的根号去掉的过程称作“分母有理化”( ).A .2B .6C .13D *( 二)填空题1.分母有理化:(1)=______.2.已知x=3,y=4,z=5_______.(三)综合提高题(选做)11,•现用直径为3的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算(1·m>0,n>0)(2)-(a>0)21.2 二次根式的乘除第3课时【学习目标】1、理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.2、通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.【学习过程】一、预习形成计算(1(2(3二、课堂讲练议一仪:观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.____________________________________________;2.___________________________________________.我们把满足上述两个条件的二次根式,叫做最简二次根式.例1、现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那.试着化简一下。
21.1 二次根式(共四课时)第一课时:二次根式的概念及其运用教学目标理解二次根式的概念,并利用a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.a≥0)的式子叫做二次根式的概念;a≥0)”解决具体问题.教学过程一、复习引入(学生活动)1、用带根号的式子填空,看看写出的结果有什么特点:(题目见教科书4页“思考”栏目)(1)所填的结果有什么特点?二、探索新知,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,(a≥0)•的式子叫做二次根式,议一议:(学生活动)1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0x>0)、例1.下列式子,哪些是二次根式,、1x(x≥0,y•≥0).、1+x y例2.当x三、巩固练习当x在实数范围内有意义?四、应用拓展在实数范围内有意义?例3、当x1x+1的值.例4(1)已知,求xy(2),求a2004+b2004的值.五、归纳小结(学生活动,老师点评)1a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、课后练习一、选择题1.下列式子中,是二次根式的是()A. C..x2.下列式子中,不是二次根式的是()A.1x3.已知一个正方形的面积是5,那么它的边长是()D.以上皆不对A.5 B.15二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?+x2在实数范围内有意义?2.当xx_____.3134.x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且=b+4,求a、b的值.第二课时:二次根式的意义和性质(1)教学内容1a≥0)是一个非负数;2.2=a(a≥0).教学目标1、(a≥0)2=a(a≥0),并利用它们进行计算和化简.2、通过复习二次根式的概念,用逻辑推理的方法推出a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(2=a(a≥0);最后运用结论严谨解题.a≥0)是一个非负数;2=a(a≥0)及其运用.难点:用分类思想的方法导出a≥0)是一个非负数;•用探究的方法导2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0a<0二、探究新知议一议:(学生分组讨论,提问解答)a≥0)是一个什么数呢?2、根据算术平方根的意义填空:2=;2=;2=;2=.一般地,你能得到什么结论?例1 计算(1)2;(2)2.)2( 3).2( 4).(2三、巩固练习计算下列各式的值:2)2)24)2( 2 22-四、应用拓展例2 计算1.2(x≥0) 2.23.()2 4.2五、能力提高在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3五、归纳小结1a≥0)是一个非负数;2.)2=a(a≥0);反之:a=2(a≥0).六、课后练习一、选择题1次根式的个数是().A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.(2=________.2_______数.三、综合提高题1.计算(1)2(2)-2(3)(1)2(4)( 22(5)2.把下列非负数写成一个数的平方的形式:(4)x(x≥0)(1)5 (2)3.4 (3)163=0,求x y的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-5第三课时:二次根式的意义和性质(2)教学内容a(a≥0)教学目标1(a≥0)并利用它进行计算和化简.2、通过具体数据的解答,探究(a≥0),并利用这个结论解决具体问题.a(a≥0).难点:探究结论.讲清a≥0a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1a≥0)的式子叫做二次根式;2a≥0)是一个非负数;3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:=_______=______;例1 化简(1(2(3(4三、巩固练习教材P5练习2.四、应用拓展1、当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?2、当x>2.五、归纳小结1(a≥0)及其运用,同时理解当a<0a的应用拓展.2、让学生认识到当0a≥时,2=六、课后练习一、选择题1).A.0 B.23 C.423D.以上都不对2.a≥0正确的是().AC.二、填空题1..2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│第4课时:复习二次根式的意义和性质一、教学目标1、二次根式的意义2、二次根式的性质二、教学重点:根据二次根式的性质计算难点根据二次根式的性质计算三、复习回顾:二次根式二次根式的意义11。