数字图像处理第7章
- 格式:ppt
- 大小:2.96 MB
- 文档页数:66
绪论单元测试1.数字图像处理泛指通过计算机对数字图像进行处理,涉及图像增强、图像复原、图像分割等内容。
()A:错B:对答案:B2.数字图像处理的优点包括()。
A:处理效果可控B:数据量小C:容易存储D:可重现性好答案:ACD3.数字图像处理系统包含()。
A:图像处理和分析B:图像存储C:图像传输D:图像输入E:图像输出答案:ABCDE4.人眼感受到的明亮程度,称作亮度,是一种主观感受。
()A:对B:错答案:A5.数字图像处理的研究内容中,()的目的是根据二维平面图像数据构造出物体的三维图像。
A:图像重建B:图像分割C:图像增强D:图像复原答案:A第一章测试1.一幅256X256的图像,若灰度级数为16,则存储它所需的比特数是( )。
A:1MB:512KC:2MD:256K答案:D2.图像中虚假轮廓的出现就其本质而言是由于( )。
A:图像的空间分辨率过高造成B:图像的空间分辨率不够高造成C:图像的灰度级数不够多造成的D:图像的灰度级数过多造成的答案:C3.m邻接可以消除由8邻接引起的像素间通路的二义性。
()A:对B:错答案:A4.常用的插值算法有()。
A:均匀插值B:最近邻插值C:双线性插值D:双三次插值答案:BCD5.对单幅图像进行处理,仅改变像素空间位置的运算是()。
A:几何运算B:算术运算C:逻辑运算D:集合运算答案:A第二章测试1.下列算法中属于点运算的是()。
A:傅里叶变换B:梯度锐化C:二值化D:直方图均衡答案:CD2.直方图均衡的目的是将图像的直方图变换为均匀分布的直方图。
()A:错B:对答案:B3.一幅图像的直方图均值较小而方差较大,意味着()。
A:图像较暗,对比度较大B:图像较暗,对比度较小C:图像较亮,对比度较小D:图像较亮,对比度较大答案:A4.下列算法中属于平滑运算的是()。
A:Laplacian增强B:中值滤波C:直方图均衡D:梯度锐化答案:B5.()可以较好地去除椒盐噪声。
数字图像处理学第7章图像重建(第二讲)7.7 重建图像的显示•图像重建的目的是对目标进行测量和观察,因此,重建图像中大量信息的直观显示是图像重建的任务之一。
人只能观察某些物体的表面特性。
早期,常用的三维实体显示装置是用时间序列描述第三维信息,即用二维显示方法显示三维附加信息。
采用这种方法的主要问题是单个切片的总信息不能在一幅图像中显示,而是需要一个图像的序列。
这种显示方法的直观性是很差的。
7.7.1 重建图像的显示•如果一幅图像是的矩阵,每一个像素包含种可能的灰度,图像的总比特数为:=T2MN要求图像显示的数目为:T=L2•如果,,则,。
这样一来,每幅图像像素包含的最大信息为:160=N 10=M 327680=T 10010≅L MLog H M ==22所以,具有1024级灰度的图像每像素可包含10比特的信息量。
•由于像素之间的相关性,实际的信息量将比这一最大信息量小得多。
我们可以用计算每一像素的水平直方图的方法估计在一幅图像中的一阶熵,即:ii i P P H M221log ∑=-=•此外,我们还要考虑到分辨率N和每像素比特数之间并不是线性关系,然而,某些心理视觉资料表明对于相同的图像质量,M与N之间的关系必须加以修正。
同时,在重建图像的显示方法中必须考虑人的视觉系统对灰度范围和精确度的限制。
•尽管定量描述有些困难,但实验表明,在最好的观察条件下,人类仅能分辨几十种灰度、几千种不同的颜色和几秒的弧度,而大多数情况下视觉条件都难于达到最佳条件,因此,人眼能分辨的灰度级和颜色都是有限的。
7.7.2 单色显示•实际应用中阴极射线管(CRT )及液晶等平板显示器是典型的输出设备。
在图像显示中的线性、量化、开窗口和增强(如平滑、锐化、高通滤波)处理是提高显示质量的必要技术。
•线性处理是首先考虑的预处理技术。
给定一幅数字重建图像,数据和显示器灰度间具有非线性特性,为了获得数据与灰度之间的线性关系,必须考虑视觉条件和人的视觉系统。
第一章1.连续图像中,图像为一个二维平面,(x,y)图像中的任意一点,f(x,y)为图像于(x,y)于处的值。
连续图像中,(x,y)的取值是连续的,f(x,y)也是连续的数字图像中,图像为一个由有限行有限列组成的二维平面,(i,j)为平面中的任意一点,g(i,j)则为图像在(i,j)处的灰度值,数字图像中,(i,j) 的取值是不连续的,只能取整数,对应第i行j列,g(i,j) 也是不连续的,表示图像i行j列处图像灰度值。
联系:数字图像g(i,j)是对连续图像f(x,y)经过采样和量化这两个步骤得到的。
其中g(i,j)=f(x,y)|x=i,y=j2. 图像工程的内容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有区别,如下图所示。
图像处理的重点是图像之间进行的变换。
尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间图像分析主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。
如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。
这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。
图像理解的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。
如果说图像分析主要以观察者为中心来研究客观世界,那么图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界(包括没有直接观察到的事物)的。
联系:图像处理、图像分析和图像理解处在三个抽象程度和数据量各有特点的不同层次上。
图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。
图像分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式的描述。
数字图像处理与摄影技术作业指导书第1章数字图像处理基础 (3)1.1 数字图像处理概述 (3)1.1.1 数字图像定义 (3)1.1.2 数字图像处理的目的与意义 (4)1.1.3 数字图像处理的基本流程 (4)1.2 图像处理基本操作 (4)1.2.1 图像采样与量化 (4)1.2.2 图像变换 (4)1.2.3 图像滤波 (4)1.2.4 图像增强 (4)1.2.5 图像恢复 (4)1.3 图像类型与存储格式 (4)1.3.1 二值图像 (4)1.3.2 灰度图像 (4)1.3.3 彩色图像 (4)1.3.4 图像存储格式 (5)第2章摄影技术基础 (5)2.1 摄影光学原理 (5)2.1.1 镜头 (5)2.1.2 光圈 (5)2.1.3 快门 (5)2.1.4 感光度 (5)2.2 摄影器材与拍摄技巧 (5)2.2.1 相机类型 (5)2.2.2 镜头选择 (5)2.2.3 摄影附件 (6)2.2.4 拍摄技巧 (6)2.3 摄影构图与审美 (6)2.3.1 构图原则 (6)2.3.2 画面元素 (6)2.3.3 视角与角度 (6)2.3.4 色彩运用 (6)第3章图像增强 (6)3.1 灰度变换增强 (6)3.1.1 灰度变换原理 (6)3.1.2 线性灰度变换 (6)3.1.3 对数灰度变换 (7)3.1.4 幂次灰度变换 (7)3.2 直方图增强 (7)3.2.1 直方图均衡化 (7)3.2.2 直方图规定化 (7)3.3.1 频域滤波原理 (7)3.3.2 低通滤波 (7)3.3.3 高通滤波 (7)3.3.4 带通滤波和带阻滤波 (7)第4章图像复原与重建 (8)4.1 图像退化模型 (8)4.1.1 线性退化模型 (8)4.1.2 非线性退化模型 (8)4.2 噪声分析与去除 (8)4.2.1 噪声类型 (8)4.2.2 去噪方法 (8)4.3 图像重建技术 (9)4.3.1 逆滤波 (9)4.3.2 维纳滤波 (9)4.3.3 稀疏表示与重建 (9)4.3.4 深度学习方法 (9)第5章图像分割与边缘检测 (9)5.1 阈值分割 (9)5.1.1 灰度阈值分割 (10)5.1.2 彩色图像阈值分割 (10)5.2 区域生长与合并 (10)5.2.1 区域生长 (10)5.2.2 区域合并 (10)5.3 边缘检测算法 (10)5.3.1 基于梯度的边缘检测算法 (10)5.3.2 基于二阶导数的边缘检测算法 (10)5.3.3 其他边缘检测算法 (11)第6章形态学处理 (11)6.1 形态学基本运算 (11)6.1.1 膨胀 (11)6.1.2 腐蚀 (11)6.1.3 开运算 (11)6.1.4 闭运算 (11)6.2 形态学应用实例 (11)6.2.1 骨架提取 (11)6.2.2 噪声消除 (11)6.2.3 区域填充 (12)6.3 数学形态学在图像处理中的应用 (12)6.3.1 边缘检测 (12)6.3.2 目标分割 (12)6.3.3 特征提取 (12)6.3.4 图像增强 (12)第7章图像特征提取与描述 (12)7.1.1 颜色直方图 (12)7.1.2 颜色矩 (12)7.1.3 颜色聚合向量 (12)7.2 纹理特征提取 (13)7.2.1 灰度共生矩阵 (13)7.2.2 局部二值模式 (13)7.2.3 Gabor滤波器 (13)7.3 形状特征提取 (13)7.3.1 傅里叶描述符 (13)7.3.2 Hu不变矩 (13)7.3.3 Zernike矩 (13)第8章摄影后期处理技术 (13)8.1 色彩调整与校正 (13)8.2 图像合成与特效 (13)8.3 景深与动态范围优化 (14)第9章数字摄影与计算机视觉 (14)9.1 计算机视觉概述 (14)9.2 三维重建与虚拟现实 (14)9.3 摄影测量与遥感 (14)第10章数字图像处理与摄影技术在实际应用中的案例分析 (14)10.1 数字图像处理在医学领域的应用 (14)10.1.1 X射线成像 (15)10.1.2 CT和MRI成像 (15)10.1.3 超声成像 (15)10.2 摄影技术在广告摄影中的应用 (15)10.2.1 光线控制 (15)10.2.2 摄影构图 (15)10.2.3 后期处理 (15)10.3 数字图像处理与摄影技术在人工智能领域的融合与发展趋势 (15)10.3.1 计算机视觉 (15)10.3.2 智能驾驶 (16)10.3.3 无人机航拍 (16)10.3.4 发展趋势 (16)第1章数字图像处理基础1.1 数字图像处理概述1.1.1 数字图像定义数字图像是由像素点组成的二维离散信号,每个像素点的值代表该点的亮度或颜色信息。
数字图像处理的课程设计一、课程目标知识目标:1. 理解数字图像处理的基本概念,掌握图像的数字化表示方法;2. 掌握图像处理的基本操作,如图像变换、滤波、增强和复原;3. 了解常见的图像分割和特征提取方法,并应用于实际问题;4. 掌握图像压缩的基本原理及常用算法。
技能目标:1. 能够运用图像处理软件进行基本的图像编辑和操作;2. 能够编写简单的数字图像处理程序,实现对图像的基本处理功能;3. 能够运用所学的图像处理方法解决实际问题,如图像去噪、图像增强等;4. 能够对图像进行有效的压缩,以适应不同的应用场景。
情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣和热情,激发其探索精神;2. 培养学生的团队合作意识,学会与他人共同解决问题;3. 增强学生的实际操作能力,使其认识到理论与实践相结合的重要性;4. 引导学生关注图像处理技术在日常生活和各领域的应用,提高其科技素养。
课程性质:本课程为高年级选修课程,旨在使学生掌握数字图像处理的基本原理和方法,培养其实际应用能力。
学生特点:学生具备一定的数学基础和编程能力,对图像处理有一定了解,但尚未深入学习。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,以实际应用为导向,提高学生的动手能力和创新能力。
通过本课程的学习,使学生能够达到上述课程目标,为未来进一步学习和研究打下坚实基础。
二、教学内容1. 数字图像基础:包括图像的数字化表示、图像质量评价、颜色模型等基本概念;- 教材章节:第1章 数字图像处理基础2. 图像增强:介绍直方图均衡化、图像平滑、锐化等增强方法;- 教材章节:第3章 图像增强3. 图像复原:涉及图像退化模型、逆滤波、维纳滤波等复原方法;- 教材章节:第4章 图像复原4. 图像分割与特征提取:包括阈值分割、边缘检测、区域生长等分割方法,以及特征点的提取和描述;- 教材章节:第5章 图像分割与特征提取5. 图像压缩:介绍图像压缩的基本原理,如JPEG、JPEG2000等压缩算法;- 教材章节:第6章 图像压缩6. 数字图像处理应用:分析图像处理在医学、遥感、计算机视觉等领域的应用案例;- 教材章节:第7章 数字图像处理应用教学进度安排:1. 数字图像基础(2学时)2. 图像增强(4学时)3. 图像复原(4学时)4. 图像分割与特征提取(6学时)5. 图像压缩(4学时)6. 数字图像处理应用(2学时)三、教学方法为提高教学效果,本课程将采用以下多样化的教学方法:1. 讲授法:教师通过系统的讲解,使学生掌握数字图像处理的基本概念、原理和方法。
本册教课设计目录课次课题(章节)页码1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17第 1 章 1.1 数字图像办理及发展简史 1.2 图像办理的目的、任务与特色 1.3 基本的图像办理系统 1.4 应用和发展趋向第 2 章 2.1 连续图像的数字描绘 2.2 图像场取样 2.3.1 标量量化2.3.2 矢量量化 2.4 图像的输入 /输出设施第 3 章(增补正交变换的理论基础)第3 章(傅立叶变换、失散余弦变换、失散沃尔什—哈达玛变换)第 3 章(傅立叶变换、失散余弦变换、失散沃尔什—哈达玛变换)第 4 章图像加强(单点加强、图像光滑、空间域图像锐化、频域加强、彩色技术)第 4 章图像加强(单点加强、图像光滑、空间域图像锐化、频域加强、彩色技术)第 5 章图像编码与压缩(展望编码、正交变换编码、统计编码、轮廓编码、二值编码)第 5 章图像编码与压缩(展望编码、正交变换编码、统计编码、轮廓编码、二值编码)第 5 章图像编码与压缩(展望编码、正交变换编码、统计编码、轮廓编码、二值编码)第 6 章图像的恢复和重修(基本观点、退化模型、恢复方法、图像重修的观点和方法)第 6 章图像的恢复和重修(基本观点、退化模型、恢复方法、图像重修的观点和方法)第 6 章图像的恢复和重修(基本观点、退化模型、恢复方法、图像重修的观点和方法)第7章图像切割第7章图像切割第7章图像切割12345678910111213141516171818期末复习1919期末考察第1次课 2 学时讲课时间教课设计达成时间课题(章节)第一章 1.1 数字图像办理及发展简史 1.2 图像办理的目的、任务与特色 1.3基本的图像办理系统 1.4 应用和发展趋向教课目标与要求:1、认识数字图像办理的发展简史、图像办理的任务;2、掌握常用数字图像办理术语(像素、采样、量化、图像加强等);3、认识基本的图像办理系统、图像各样形式的表示;教课重点、难点:重点: 1、掌握图像办理、数字图像办理、数字图像办理系统的观点和它们之间的互相关系;2、明确图像办理的目的和任务;难点:图像的采样和量化的观点,认识不一样的图像格式优弊端解决:对照掌握,讲堂操作演示教课方法及师生互动设计:教课方法:多媒体互动:发问学生对平时生活中接触到的图像办理系统和计算机图形图像软件已有知识;发问学生对于图像、像素、灰度、图像加强等的已有知识;讲堂练习、作业:讲堂练习:举例说明图像加强、图像还原、图像重修、图像变换、图像编码与压缩、图像切割的意义;作业: 1、熟习图像办理工具箱的使用方法;2、书后作业 1.2、1.5、1.6课后小结:第一堂课很重要,要努力使学生掌握图像办理术语,认识数字图像办理的目的。
电⼦信息⼯程《数字图像处理》总复习题(第1-7章)(1)第⼀章引⾔⼀.填空题1. 图像可以分为物理图像和虚拟图像两种。
其中,采⽤数学的⽅法,将由概念形成的物体进⾏表⽰的图像是虚拟图像。
2. 数字图像是⽤⼀个数字阵列来表⽰的图像。
数字阵列中的每个数字,表⽰数字图像的⼀个最⼩单位,称为像素。
3. 数字图像处理可以理解为两个⽅⾯的操作:⼀是从图像到图像的处理,如图像增强等;⼆是从图像到⾮图像的⼀种表⽰,如图像测量等。
4. 数字图像处理包含很多⽅⾯的研究内容。
其中,图像重建的⽬的是根据⼆维平⾯图像数据构造出三维物体的图像。
⼆.简答题1. 数字图像处理的主要研究内容包含很多⽅⾯,请列出并简述其中的4种。
①图像数字化:将⼀幅图像以数字的形式表⽰。
主要包括采样和量化两个过程。
②图像增强:将⼀幅图像中的有⽤信息进⾏增强,同时对其⽆⽤信息进⾏抑制,提⾼图像的可观察性。
③图像的⼏何变换:改变图像的⼤⼩或形状。
④图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。
2. 简述图像⼏何变换与图像变换的区别。
①图像的⼏何变换:改变图像的⼤⼩或形状。
⽐如图像的平移、旋转、放⼤、缩⼩等,这些⽅法在图像配准中使⽤较多。
②图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⽐如傅⾥叶变换、⼩波变换等。
3. 简述数字图像处理的⾄少4种应⽤。
①在遥感中,⽐如⼟地测绘、⽓象监测、资源调查、环境污染监测等⽅⾯。
②在医学中,⽐如B超、CT机等⽅⾯。
③在通信中,⽐如可视电话、会议电视、传真等⽅⾯。
④在⼯业⽣产的质量检测中,⽐如对⾷品包装出⼚前的质量检查、对机械制品质量的监控和筛选等⽅⾯。
⑤在安全保障、公安⽅⾯,⽐如出⼊⼝控制、指纹档案、交通管理等。
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。