等效电压源定理及应用
- 格式:doc
- 大小:298.50 KB
- 文档页数:3
等效电源定理戴维南定理和诺顿定理分别能把含源二端网络等效成为一个实际电压源支路和实际电流源支路,故统称等效电源定理。
1、戴维南定理任一线性含源二端网络,对外电路讲,可以等效为一个电压源和电阻串联的组合,电压源的电压为该网络的开路电压u oc,串联电阻等于该网络中所有独立源为零时的入端等效电阻R o。
2、诺顿定理任一线性含源二端网络,对外电路讲,可以等效为一个电流源和电阻并联的组合,电流源的电流为该网络的短路电流isc,并联电阻等于该网络中所有独立源为零值时的入端等效电阻R o。
图(a)所示为一接有外电路的含源二端网络,根据替代定律,把R L 支路分别用流过它的电流i和两端电压u作为电压源等效替代,然后运用叠加定理分别得到u=u oc-R o i=i sc-u/R o等效电源电路如图(b)所示。
这两条定律所得到的电压源支路和电流源支路可以互相等效,所以人们多应用戴维南等效电压源定律,然后变化为诺顿等效电流源电路,如图(b)上、下图所示。
戴维南定律对求解电路中某一支路的电压、电流和功率,特别是负载吸收的最大功率最为方便。
求解时含源二端网络必须是线性的,待求支是线性的或非线性、有源或无源均可。
应用这两条定律,一般分三个步骤:(1)断开待求支路或将待求支路短路,分别求得开路电压u oc和短路电流i sc;(2)让全部独立源为零,求入端等效电阻R o。
(3)画出等效电源电路,接上待求支路,求解待求量。
3、用戴维南定律分析含受控源电路根据受控源的性质和等效电源定律的要求,当用戴维南定律和诺顿定律分析受控源电路时,必须掌握:(1)当控制量在端口上时,它要随端口开路或短路变化,必须用变化了的控制量来表示受控源的电压或电流。
(2)当控制量在网络内,则在短路或开路时,必须保证受控源及其控制量同在含源二端网络内。
(3)受控源不能充当激励,具有电阻性。
在求戴维南等效电阻时,独立源为零,受控源和电阻一样要保留,故必须采取:(1)开路短路法:将待求支路开路和短路,分别求得二断网络的开路电压u oc和短路电流i sc,由图所示可知R o=u o/i o。
戴维南等效电源定理引言在电路分析和设计中,戴维南等效电源定理是一种非常重要的工具。
该定理可以简化复杂的电路,使我们能够更简单地计算出电路中的电流和电压。
本文将详细讨论戴维南等效电源定理的原理、应用和限制。
原理戴维南等效电源定理是基于电路中的两个理论概念建立的:戴维南等效电压和戴维南等效电流。
戴维南等效电压是指将电路中的所有电源替换为一个等效电压源,使得电路中的电流和电压不发生变化。
戴维南等效电流则是指将电路中的所有电源替换为一个等效电流源,同样使得电路中的电流和电压不变。
根据戴维南等效电源定理,我们可以将电路中的各个元件和电源看作一个黑盒子,只需知道等效电压或等效电流,就能够计算出电路中各点的电压和电流。
应用实例为了更好地理解戴维南等效电源定理的应用,让我们通过以下实例进行解释。
实例1:简化电路考虑以下电路,其中有两个电源和多个电阻。
+----R1----+| |V1 +--R2--+--R3--GND| |+------+|GND我们想要计算电路中R3上的电流。
首先,我们可以使用戴维南等效电源定理将电源和电阻简化。
1.将电源V1和R1简化为等效电压源。
假设等效电压为V_eq1。
2.将电源V2和R2简化为等效电压源。
假设等效电压为V_eq2。
3.将上述两个等效电压源串联得到V_eq。
经过上述简化后,我们得到以下简化电路:+-- R_eq -- GNDV_eq|+-- R_eq -- GND现在,我们可以使用欧姆定律计算R_eq上的电流。
V_eq = V_eq1 + V_eq2通过戴维南等效电源定理,我们将原来复杂的电路简化为了一个更简单的电路。
这大大简化了计算过程。
实例2:最大功率传输另一个常见的应用是在电路中寻找最大功率传输的条件。
当一个负载电阻和一个电源之间的电阻值相等时,电路将达到最大功率传输的条件。
考虑以下电路,其中负载电阻为R_L,电源电压为V_S,内部电阻为R_i。
+---------+| |+----+--+--R_L--GND| | |V_S R_i || |+--+|GND我们可以使用戴维南等效电源定理将电源和内部电阻简化为一个等效电压源和一个等效电阻。
等效电源定理
“等效电源定理”是基本的电子学理论,许多电子电路的模拟计算都需要用到这个定理。
在电子学中,等效电源定理是一个重要的定理,它利用电子学模型的特殊性,将元件的微扰变现为电路的消声效应,从而解决电路的复杂性。
简而言之,等效电源定理就是使用电路模型来描述电子斯压模型,以求得等效电源,其中,等效电源可以用来模拟计算各种电子电路。
等效电源定理的基本原理是,将电子元件的连续电流分解为两个部分,一部分流过元件,另一部分流过电路外部。
根据这个原理,就能够计算出元件的输出电压和输出电流。
可以说,等效电源定理是电子设计中的一个重要基础,它能够有效地利用元件的微扰特性,将其变为电路的消声现象,从而解决电路复杂性和模拟计算难度。
等效电源定理有四个基本步骤,分别是:利用欧拉定律计算电路的电压;对电路中的每个元件利用电子斯压模型,把它们的阻抗分解为两个部分;把这两部分阻抗分别代入电压方程,计算出这两部分的电压;最后再将这两个电压相加,就得到了等效电源的电流。
等效电源定理的应用非常广泛,其应用于电子电路的比较、元件的测量和精确控制等方面,都可以发挥出它的实际作用。
例如,可以利用它来分析电子系统中的瞬态现象,以及元件的线性谐振器特性。
此外,等效电源定理还可以用来计算变压器的工作状态,以便清楚地辨别出其特定的模式。
等效电源定理在许多电子学方面都发挥了重要作用,它能够揭示
电子元件的行为,并为系统设计提供准确的参考。
它的广泛应用反映出,它是目前最有效的电子电路模拟计算方法之一。
必须强调的是,熟悉等效电源定理,可以让我们更好地了解电子电路,使用它们来实现更多的应用。
戴维宁等效定理
戴维宁等效定理(Thevenin's theorem)是电路分析中的一个重要定理,它可以用来简化复杂电路的分析和计算。
根据戴维宁等效定理,一个由电阻、电源和其他被连接在一起的元件组成的线性电路,在两个端口之间可以用一个等效的电源和等效的串联电阻来替代。
这个等效电源称为戴维宁电压源,其电压为戴维宁电压,等效串联电阻称为戴维宁电阻。
戴维宁等效定理的基本思想是将复杂的电路简化为等效的简单电路,使得分析和计算更为方便。
具体而言,戴维宁等效定理可以通过以下几个步骤来应用:
1.确定感兴趣的两个端口。
通常,我们会选择容易进行分析
的端口。
2.将电路切断,形成感兴趣的两个端口之间的电路。
3.计算戴维宁电压源的电压和戴维宁电阻。
为了计算戴维宁
电压源的电压,可以将感兴趣的两个端口开路,然后测量
电压。
为了计算戴维宁电阻,可以将所有电源置为零,然
后通过感兴趣的两个端口注入一个测试电流,测量其中的
电压降。
4.构建等效电路。
用计算得到的戴维宁电压源以及戴维宁电
阻来替代原始电路中的感兴趣的两个端口。
通过应用戴维宁等效定理,我们可以将复杂的电路简化为等效的简单电路。
这个简化后的等效电路在分析和计算时更加方便,
可以帮助我们更好地理解电路的行为和性质。
等效电源定理等效电源定理又称为费拉里-德米赛特定理,是一种常用的电源控制和电路设计原理,由意大利物理学家费拉里和德米赛特在19世纪末初提出。
它规定了在某一特定信号或场强的作用下,多个电源的特性相似。
等效电源定理认为,在恒定的电路状态下,任何电路内,只要电源数量一定,由它们提供的动力都是相等的,不管它们是有相互抵消和加强作用,还是它们之间发生无相互作用,总之,只要它们有相同的输入和输出,那么它们之间就可以被当成等效的。
现在,市场上的电路板设计一般采用等效电源定理。
它可以极大地提高电路板设计的效率,消除容易引起电路板设计故障的错误,以及大大减少电路板的故障率,因而使电路板设计工作变得更加高效。
首先,等效电源定理使得电路板设计工作变得容易。
一般而言,电路板设计工作往往需要处理大量复杂的电源问题,而等效电源定理表明,一个电路板只需要一种电源,而不需要考虑其他电源有什么影响,这样做可以显著减少电路板设计所需的时间。
其次,等效电源定理消除了导致电路板设计失败的常见错误。
经常发生的一个错误是,在电路板设计中,用于控制不同类型的电源的电子元件可能会出现“浮动”现象,也就是这些电子元件在不同的电源状态下发出的信号不一致,而等效电源定理提出,只要每个电源的输入和输出相同,它们就可以被当成等效的,这使得电路板设计设计人员可以容易地控制和统一不同电源的信号,从而避免了这种错误。
此外,等效电源定理有助于降低电路板的故障率。
如果不采用等效电源定理,由于存在多种电源,可能会造成电路板设计中的“漏洞”,也就是某一种特定的电源所产生的信号有可能溢出到其它不同类型的电源上,从而产生电路板故障。
而等效电源定理则表明,不管电源有多少种,只要它们具有相同的输入和输出,它们就可以被当成等效的,这样就可以大大降低电路板故障率。
综上所述,等效电源定理具有重要的应用价值,对电路板设计中的电源控制具有重要的意义,使得电路板设计工作变得更加高效,提高了电路板的可靠性和性能。
等效电压源定理及其在高中物理中应用一、等效电压源定理(戴维宁定理)1、内容:一个包含电源的二端电路网络(端点为A 、B ),可看成一个等效的电压源,等效电压源的电动势等于“二端电路网络”两端的开路电压(E U '=开),内阻等于“二端电路网络”中去掉电动势后两端间的等效电阻(AB r R '=)。
2、证明:(1)基本情形1:如图甲所示电路,将虚线框内部分视为等效电源,则等效电路图如图乙所示。
对甲图,设电路中电流为I ,由闭合电路欧姆定律,有:0E I r R R =++;对乙图,有:E I r R'='+;两式比较,易得:E E '=,0r r R '=+;图丙是该等效电源的内部结构,易知:=U E 开,0AB R r R =+,得证。
(2)基本情形2:如图丁所示电路,将虚线框内部分视为等效电源,则等效电路图如图戊所示。
对丁图,设通过R 的电流为I ,R 两端电压为U ,则通过电源的电流为0=UI I R +总,由闭合电路欧姆定律,有:0000()(1)()R r U rE U I r U I r U Ir U Ir R R R +=+=++=++=+总 变形得:0000R R E U I r R r R r=+++ 对戊图,有: E U Ir ''=+两式比较,得:0000R R E E r r R r R r''==++, 如己图所示,为该等效电源的内部结构,易知:0000AB R R U E R r R r R r==++开,,得证。
(3)一般情形:如右图所示为一般电路,则按顺序依次将处于内部的虚线框部分视为更外围部分的等效电源,则易知,等效电压源定理适用于一般电路。
二、等效电压源定理的应用乙甲丙丁戊己1、电源电动势和内阻测量的系统误差分析该实验的理论依据是Ir U E +=,其中U 为电源的端电压,I 为通过电源的电流;如图所示为该实验的两种测量电路。
等效电压源定理及应用
一、等效电压源定理(戴维宁定理)
1、内容:一个包含电源的二端电路网络(端点为A 、B ),可看成一个等效的电压源,等效电压源的电动势等于“二端电路网络”两端的开路电压(E U '=开),内阻等于“二端电路网络”中去掉电动势后两端间的等效电阻(AB r R '=)。
2、证明:
(1)基本情形1:如图甲所示电路,将虚线框内部分视为等效电源,则等效电路图如图乙所示。
对甲图,设电路中电流为I ,由闭合电路欧姆定律,有:0E I r R R =
++;对乙图,有:E I r R
'
='+;
两式比较,易得:E E '=,0r r R '=+;图丙是该等效电源的内部结构,易知:=U E 开,0AB R r R =+,
得证。
(2)基本情形2:如图丁所示电路,将虚线框内部分视为等效电源,则等效电路图如图戊所示。
对丁图,设通过R 的电流为I ,R 两端电压为U ,则通过电源的电流为0
=U
I I R +总,由闭合电路欧姆定律,有:
0000
()(1)()R r U r
E U I r U I r U Ir U Ir R R R +=+=++
=++=+总 变形得:
00
00R R E U I r R r R r
=+++ 对戊图,有: E U Ir ''=+
两式比较,得:00
00R R E E r r R r R r
''=
=++, 如己图所示,为该等效电源的内部结构,易知:
00
00AB R R U E R r R r R r
=
=++开,,得证。
(3)一般情形:如右图所示为一般电路,则按顺序依次将处于内部的虚线框部分视为更外围部分的等效电源,则易知,等效电压源定理适用于一般电路。
乙
A
甲
丙
丁
戊 A
己
二、等效电压源定理的应用
1、电源电动势和内阻测量的系统误差分析
该实验的理论依据是Ir U E +=,其中U 为电源的端电压,I 为通过电源的电流;如图所示为该实验的两种测量电路。
左图中电流表测量的是通过电源的电流,但由于电流表的分压作用,电压表却测量的不是电源的端电压,右图中电压表测量的是电源的端电压,但由于电压表的分流作用,电流表测量的也不是通过电源的电流。
但是,两图中,电压表测量的都是虚线框两端的电压,电流表测量的都是通过虚线框的电流,因此,依据Ir U E +=算出来的实际上是虚线框内等效电源的电动势和内阻,即左图:E E =测,A r r R =+测, 右图:
00
00R R E
E r r R r R r
=
=++测测,。
安箱法、伏箱法的误差分析,由于是把R 当做外电阻,与此同理,也是测量的虚线框内等效电源的电
动势和内阻。
2、动态电路相关问题的分析
【例】如图所示电路中,电源内阻不能忽略不计,电流表、电压表均视为
理想表,滑动变阻器总阻值足够大;当滑动变阻器滑片从左端向右滑动时,下列说法中正确的是:
A 、电流表A 示数减小
B 、电压表V 1、V 2示数减小
C 、电压表V 3示数变化的绝对值与电流表示数变化的绝对值之比为R
D 、滑动变阻器R 消耗的电功率先减小后增大
【解析】A 、考虑电流表A 读数时,可将R 1、R 3、E 视为一个等效电源(E 1、
r 1),如图虚线框所示,R 增大时,由闭合电路欧姆定律有1
12E I r R R
=++,
电流表A 示数减小。
B 、电压表V 1的示数为电源E 的路端电压,R 增大时,电源E 的外阻增大,由闭合电路欧姆定律有1R U E R r
=
+外
外,可知电压V 1表示数增大;考虑
电压表V 2示数时,可将R 2视为等效电源(E 1、r 1)的外电阻的一部分,则由闭合电路欧姆定律有2121
R U E R R r =
++2
,可知R 增大时,U 2减小。
CD 、将除R 外的其余部分视为等效电源(E 2、r 2),则有322U E Ir =-,
R 1 E S 1 R
A
R 2 R 3 V 2 V 3
V 1 R 1
E
S 1
R
A
R 2
R 3
V 2
V 3
V 1
可知
3
2U r I
∆=-∆,而不是R ——R 实际上是变化的;R 消耗的功率即为等效电源(E 2、r 2)的输出功率,由P R -出外函数规律可知,R 从0逐渐增大到r 2时,P 逐渐增大;R =r 2时,P 最大,为22
2
4m E P r =
;R 再增大,P 又减小。
【拓展】按此思路,结合串联分压、并联分流知识,易得出动态电路分析一个重要的结论——“串反并同”。
3、电路匹配的工作点问题
【例】某电阻器R x 的伏安特性曲线如下图中曲线所示,将其与定值电阻R 0=5Ω串联起来后,接在电动势E =、内阻r =1Ω的电源两端,如右图所示,则该电阻器的实际功率为多少
【解析】电阻器R x 可看做是虚线框内等效电源(E '、r ')的外电阻,则R x
两端电压U 就是该等效电源的路端电压,通过的电流I 就是通过该等效电源的电流;因此,R x 的工作点(U ,I )必然同时在该等效电源的伏安特性曲线U E Ir ''=-和该电阻器的伏安特性曲线上,即两曲线的交点处。
已知 3.0V E E '==,06r r R '=+=Ω,代入U E Ir ''=-,得
36U I =-,其函数图线如图所示,则可知U =,I =0.35A ,则该电阻器的实
际功率为P =IU =。
【拓展】其实,本题只是要得出通过R x 的电流就可以了,因此,直接将R x 与R 0合在一起作为一个元件,描出其伏安特性曲线后再与实际电源(E 、r )的伏安特性曲线求交点;或者,把R x 与电源(E 、r )合在一起作 为等效电源(E E '=,x r r R '=+),作其伏安特性曲线U E Ir ''=-,然后与R 0的伏安特性曲线求交点。
不过,前述解析是最简单的一种。
R 0 R x
E ,r
S。