u v , u v , (x, y) D. x y y x
定理1,2的另一个版本
利用复数的三角表示形式 z r(cos i sin )
NUDT
§2 解析函数的充要条件
定理1 设函数 f (z) u(r, ) 定iv义(r在,区) 域D内,
则 f (z在) D内一点 z r(cos可导i s的in充)要条件:
举例:多项式, 有理分式函数 解析函数的特性
➢ 解析函数可无限可导 ➢ 非常值解析函数的零点孤立 ➢ 在局部上解析函数是幂级数的和函数
NUDT
§2 解析函数的充要条件
定理1 设函数 f (z) u(x, y)定义iv(在x, y区) 域 内,则 D f (z在) 内D 一点 z 可x导 i的y 充要条件是: 与u(x,在y) 点v(x,可y) 微,并(x,且y)满足柯西—黎曼方程
NUDT
§2 解析函数的充要条件
定理1 设函数 f (z) u(x, y)定义iv(在x, y区) 域 内,则 D f (z在) 内D 一点 z 可x导 i的y 充要条件是: 与u(x,在y) 点v(x,可y) 微,并(x,且y)满足柯西—黎曼方程
u v , u v . x y y x
定理2 函数 f (z) u(x, y)在 i区v(域x, y)内解析的D充要条件是: 与 在 u内(x,可y)微,v(x并, y且) 满D足柯西—黎曼方程
即今天的" 和N" "说法,他" 与德国数学
家戴德金,康托一起创立了实数理论. 至此,人们才知道无穷小量只不过是在某 个变化过程中以零为极限的变量.
导数
NUDT
§1 解析函数的概念
可导与连续的关系
连续不一定意味着可导,而可导必然连续.