8253定时器
- 格式:ppt
- 大小:2.06 MB
- 文档页数:36
实验五8253定时器/计数器接口实验5.1实验目的掌握8253定时器/计数器的工作方式及应用编程。
5.2实验条件1. 北京达盛科技有限公司“缔造者”电子电气技术综合实验台、CPU挂箱、8086CPU模块。
2. PC机1台,已安装实验台8086开发调试软件。
3. 万用表、示波器。
5.3实验内容CPU挂箱自带一个脉冲发生器,按基频6.0MHz进行1分频(CLK0)、二分频(CLK1)、四分频(CLK2)、八分频 (CLK3)、十六分频(CLK4)输出方波。
编程设定8253计数器0、计数器1、计数器2工作于方波方式,观察其输出波形。
其中T0、T1的时钟由脉冲发生器的CLK3提供,其频率为750KHz,T0、T1的计数器初值设为927CH(37500十进制),则OUT0、OUT1输出的方波周期为(37500*4/3*10-6=0.05s)。
T2采用OUT0的输出为时钟,如果在T2中设置计数器初值为n,则OUT2输出方波周期为n*0.05s。
5.4实验步骤1. 实验接线将8253定时器/计数器的CS8253与地址译码电路的CS0相连,8253的CLK0、CLK1与脉冲发生器的CLK3相连8253的CLK2与OUT0相连,8253的OUT1与示波器相连,OUT2与开关量输入输出电路的LED1相连。
2. 建立PC机与8086CPU模块间的通讯连接将8086CPU模块正确地放在CPU挂箱上的CPU插槽中,系统上电后按下RESET键,几秒钟之后如果显示“P_”,说明CPU挂箱上的8086系统复位及8086CPU模块监控程序运行正常。
在PC机上打开8086开发调试软件,根据提示按下RESET键,几秒种后如果显示“C_”,说明与PC机通讯正常,同时8086开发调试软件用户界面提示通讯成功。
如果通讯不成功,试着选择串口COM2。
3. 编辑汇编语言源程序8086开发调试软件是将编辑、汇编、连接和调试集成在一起的综合开发环境,同时具有断点设定、程序下载到实验台等功能。
8253定时/计数器知识点总结1、8253简介8253是用来测量时间或者脉冲的个数,通过计量一个固定频率的脉冲个数,将时间信息转化为数字信息,供计算机系统使用。
8253有着较好的通用性和灵活性,几乎可以在所有由微处理器组成的系统中使用。
2、性能描述(1)每个8253芯片有3个独立的16位计数器通道;(2)每个计数器通道都可以按照二进制或二—十进制计数;(3)每个计数器的计数速率可以高达2MHz;(4)每个通道有6种工作方式,可以由程序设定和改变;(5)所有的输入、输出电平都与TTL兼容。
3、结构组成结构框图如下(1)数据总线缓冲器8253内部实现与CPU数据总线连接的8位双向三态缓冲器,用以传送CPU向8253的控制信息、数据信息以及CPU从8253读取的状态信息,包括某一时刻的实时计数值。
(2)读写逻辑控制控制8253的片选及对内部相关寄存器的读/写操作,它接收CPU发来的址地信号以实现片选、内部通道选择以及对读/写操作进行控制。
(3)控制寄存器在8253的初始化编程时,由CPU写入控制字,以决定通道的工作方式,此寄存器只能写入,不能读出。
(4)计数通道0号、1号、2号三个独立的、结构相同的计数器/定时器通道,每个通道包含一个16位计数寄存器存放计数初始值,一个16位的减法计数器,一个16位的锁存器。
锁存器在计数器工作的过程中,跟随计数值的变化。
接收到CPU的读计数值命令时,锁存计数值,供CPU读取。
读取完毕之后,输出锁存器又跟随减1计数器变化。
另外,计数器的值为0的状态,还反映在状态锁存器中,可供读取。
4、引脚说明与CPU 的接口信号:(1)D0—D7:双向三态数据线,与CPU 相连用以传送数据、控制字以及状态信息。
(2)CS :片选输入信号,低电平有效。
(3)W R RD ,:读/写控制信号,低电平有效。
(4)10,A A :8253的内部计数器和一个控制寄存器的编码选择信号,其功能如下:10,A A 与其他控制信号,如CS ,W R RD ,共同实现对8253的寻址,如下图:8253寻址读写操作逻辑表与外部设备的接口信号(1)CLK 0、1、2:时钟脉冲输入端,输入定时脉冲或计数脉冲信号,CLK最高频率可达2MHz。
8253定时/计数器实验一、实验目的了解8253定时器的硬件连接方法及时序关系,掌握8253工作方式以及编程方法。
二、实验内容编程将8253定时器0设定为方式3,定时器1设定在方式2,定时器2设定在方式2,定时器0输出作为定时器1的输入,定时器1的输出作为定时器2的输入,定时器2的输出接在一个LED上,运行后可观察到该LED在不停闪烁。
1.8253是一种可编程计数器/定时器,它是用软、硬技术结合的方法实现定时和计数控制。
其主要有以下特点:①有3个独立的16位计数器,每个计数器均以减法计数。
②每个计数器都可按二进制计数或十进制(BCD码)计数。
③每个计数器都可由程序设置6种工作方式。
④每个计数器计数速度可以达2MHz。
⑤所有I/O都可与TTL兼容2.8253部分管脚的功能简介:D0-D7——数据总线缓冲器A0-A7——地址输入线,用来选择3个计数器和控制寄存器中的一个。
CLK——时钟脉冲输入端。
计数脉冲加到CLK输入端,可进行二进制或十进制减1的计数。
GATE——门控脉冲输入,用以控制计数或复位。
通常当其为低电平时,禁止计数器的工作,即此输入信号即可完成外部触发启动定时作用,又可用于中止计数或定时作用。
OUT——计数到零或定时时间到脉冲输出。
当预置的数值减到零时,从OUT输出端输出一信号,在不同的方式下,可输出不同形式的信号。
可以用作中断请求,也可用作周期性的负脉冲或方波输出。
三、实验内容及步骤本实验需要用到单片机最小应用系统CPU模块(F1区)、8253模块(H3区)、时钟发生电路模块(C4区)和计数器/频率计(A4区)。
1.用导线单片机最小应用系统P2.0、P2.1、P2.7、RD、WR分别接8253的A0、A1、CS-8253、RD、WR;单片机最小应用系统的P0口JD4F接8253模块的D0-7口JD0H,时钟发生电路模块的250kHz接8253模块的CLK0; GATE0接+5V,OUT0接计数器/频率计(A4区)的F IN 。
8253定时器/计数器实验一、实验目的:1、进一步了解可编程定时/计数器8253的特点与功能;2、掌握8253定时/计数器的应用、编程方法。
二、实验设备:MUT—Ⅲ型实验箱、8086CPU模块、示波器。
三、实验内容:用定时/计数器8253的计数器0、计数器1级联实现1秒的定时。
使OUT1端所接发光二极管每隔1S闪烁一次,模拟电子秒表或信号报警器。
两个计数器皆工作于方式3(输出方波),CLK0端接频率为750KHz的时钟。
四、实验电路:本实验用到两部分电路:时钟脉冲发生器(脉冲产生电路)(见附录)、8253定时器/计数器(1片)。
电路原理图如图1所示。
图1:8253定时/计数器实验电路五、实验步骤:(1)实验连线:CS0连CS8253,8253CLK0连时钟脉冲发生电路的CLK3,OUT0连8253CLK1,OUT1连LED1。
如图2所示。
注意:GATE信号线、数据线、地址线、读写控制信号线均已接好。
图2:线路连接示意图(2)输入以下程序,编译、链接后,全速运行,观察实验结果。
;8253初始化参考程序CODE SEGMENTASSUME CS:CODEORG 0100HSTART:MOV DX,04A6H ;控制寄存器地址MOV AL,00110110B ;计数器0控制字:方式3,二进制计数OUT DX,ALMOV DX,04A0H ;计数器0的口地址MOV AL,0EEH ;写计数初值低8位OUT DX,ALMOV AL,02H ;写计数初值高8位OUT DX,ALMOV DX,04A6H ;控制寄存器地址MOV AL,01110110B ;计数器1控制字:方式3,二进制计数OUT DX,ALMOV DX,04A2H ;计数器1的口地址MOV AL,0E8H ;计数初值低8位OUT DX,ALMOV AL,03H ;计数值高8位OUT DX,ALNEXT: NOPJMP NEXT ;CPU在此循环执行空操作,说明8253独立工作。
8253的工作原理简介8253可编程计数器/定时器的工作频率为0~2MHz,它有3个独立编程的计数器,每个计数器有三个引脚,分别为时钟CLK、门控GATE、计数器和计时结束输出OUT;每个计数器分别有6种工作方式。
下面针对使用到的两种工作方式——方式1和方式2的工作原理[1]进行简述。
方式1:可编程单稳,即由外部硬件产生的门控信号GATE触发8253而输出单稳脉冲。
计数器装入计数初值后,在门控信号GATE由低电平变高电平并保持时,计数器开始计数,此时输出端变成低电平并开始单稳过程。
当计数结束时,输出端OUT转变成高电平,单稳过程结束,在OUT端输出一个单稳脉冲。
硬件再次触发,OUT 端可再次输出一个同样的单稳脉冲。
单稳脉冲的宽度由装入计数器的计数初值决定。
在WR 信号的上升沿(CPU写控制字之后),输出端OUT保持高电平(若OUT原为低电平则变为高电平)。
CPU写入计数值后,计数器并不马上开始计数,而要等到门控信号GATE启动之后的下一个CLK的下降沿才开始。
在整个计数过程中,输出端OUT保持低电平,直至计数值至0,OUT变为高电平为止。
方式2:速率发生器,其功能如同一个N分频计数器。
其输出是将输入时钟按照N计数值分频后得到的一个连续脉冲。
在该方式下,当计数器装入初始值开始工作后,输出端OUT将不断地输出负脉冲,其宽度为一个时钟周期的时间,而两个负脉冲间的时间脉冲个数等于计数器装入的计数初值。
若计数初值为N,则每N个输入脉冲输出一个脉冲。
当CPU写完控制字后,输出端OUT转变成高电平,计数器将立即自动开始对输入CLK时钟计数。
在计数过程中,OUT端始终保持高电平,直至计数器的计数值减到1时,OUT 端才变为低电平,其保持的宽度为一个输入CLK时钟周期的时间,然后输出端OUT恢复高电平,计数器重新开始计数。
8253控制字格式为:其中:SC1 SC0为计数器选择位;RL1 RL0为计数器读写操作选择位,以确定计数器进行装入或读出是单字节还是双字节;M2 M1 M0为计数器工作方式选择位;BCD表示计数器计数方式选择位。
精选文档实验报告实验名称可编程准时器/计数器(8253 )姓名学号班级教师日期一、实验内容与要求1.1 实验内容计数器方式 2 实验:将 8253 芯片的计数器0 的工作方式设置为方式2,读 /写格式设置为01,写入时只写入计数器初值低8 位,高 8 地点 0,采纳二进制格式计数。
计数器初值为N (N>=0FH ),用手动开关逐一输入单脉冲,编程使计数值在屏幕上显示,并同时用TPC-USB平台上的 LED 灯察看 OUT0 电平变化(当输入第N 倍数个脉冲后OUT0 变低电平, LED 灯由亮变灭,其余脉冲OUT0 都是高电平, LED 灯都处于亮状态)。
计数器方式 3 实验:将计数器 0、计数器 1 的工作方式分别设置为方式3,计数初值设为1000,并同时用 TPC-USB 平台上的 LED 灯察看 OUT1 电平变化(频次1Hz)。
1.2 实验要求(1)拥有必定的汇编编程的基础,能编写一些基本语句来实现实验。
实验前依据实验流程图,写出对应代码;(2)要认识8253准时/计数器芯片内部构造和外面引脚,认识芯片的硬件连结方法、时序关系、各样模式的编程及应用,能娴熟地对其进行编程;(3)熟习实验平台 TPC-USB 认识各个接口的名称与功能,进行实验时能迅速并正确地连结好实验电路;(4)计数器方式 2 实验:连结 PC 与 TPC-USB 平台,用微机实验软件运转程序,用手动开关逐一输入单脉冲,在屏幕上能一次显示计数值,当输入第N 倍数个脉冲后OUT0 变低电平, TPC-USB 平台上的 LED 灯由亮变灭,其余脉冲OUT0 都是高电平, LED 灯都处于亮状态;(5)计数器方式3实验:连结PC与TPC-USB平台,用微机实验软件运转程序,TPC-USB平台上的 LED 灯能周期性地亮灭,频次为 1Hz。
二、实验原理与硬件连线2.1 实验原理TPC-USB 平台上有一块8253 准时 /计数器芯片, PC 能够经过 8253 芯片进行计数和准时。