实验八 可编程定时计数器8253的Proteus仿真实验
- 格式:docx
- 大小:64.36 KB
- 文档页数:4
实验6 8253定时计数器电路接口实验2220083443 赵洪宇一、实验目的掌握8253定时器的编程原理,用示波器观察不同模式下的输出波形。
二、实验设备MUT—Ⅲ型实验箱、8086CPU模块、示波器(实验台无)。
三、实验内容8253计数器0,1,2工作于方波方式,观察其输出波形四、实验原理介绍本实验用到两部分电路:脉冲产生电路、8253定时器/计数器电路(1)电路原理该电路由1片8253组成,8253的片选输入端插孔CS8253,数据口,地址,读写线均已接好,T0、T1、T2时钟输入分别为8253CLK0、8253CLK1、8253CLK2。
定时器输出,GATE控制孔对应如下:OUT0、GATE0、OUT1、GATE1、OUT2、GATE2、CLK2。
本实验用到两部分电路:脉冲产生电路、8253定时器/计数器电路脉冲产生电路8253的方式控制字8253的状态字(2)电路测试检查复位信号,通过8253定时器/计数器接口实验,程序全速运行,观察片选、读、写、总线信号是否正常。
五、实验步骤1、实验连线:CS0CS8253 OUT08253CLK2 OUT2LED1示波器(实验中无)OUT1 CLK38253CLK0 CLK38253CLK1实验接线原理图如下:注:GATE信号无输入时为高电平2、编程调试程序assume cs:codecode segment publicorg 100hstart:mov dx,04a6h ;控制寄存器mov ax,36h ;计数器0,方式3out dx,axmov dx,04a0hmov ax,7Chout dx,axmov ax,92hout dx,ax ;计数值927Chmov dx,04a6hmov ax,76h ;计数器1,方式3out dx,axmov dx,04a2hmov ax,32hout dx,axmov ax,0 ;计数值32hout dx,axmov dx,04a6hmov ax,0b6h ;计数器2,方式3out dx,axmov dx,04a4hmov ax,04hout dx,axmov ax,0 ;计数值04hout dx,axnext:nopjmp nextcode endsend start3、全速运行,观察实验结果六、实验结果程序全速运行后,LED1闪烁(周期为0.25s),本实验由于实验台没有提供示波器,所以对于实验所要求的观察方式3的波形无法实现。
可编程定时器/计数器(8253)一、实验目的 1)学会8253芯片和微机接口原理和方法。
芯片和微机接口原理和方法。
2)掌握8253定时器定时器//计数器的基本工作原理、工作方式和编程原理。
二、实验内容按图6虚线连接电路,将计数器0设置为方式0,计数器初值为N (N ≤0FH 0FH)),用手动逐个输入单脉冲,编程使计数值在屏幕上显示,并同时用逻辑笔观察OUT0电平变化(当输入N+1个脉冲后OUT0变高电平)。
图 6按图7连接电路,连接电路,将计数器将计数器0、计数器1分别设置为方式3,计数初值设为10001000,用逻辑笔观察,用逻辑笔观察OUT1输出电平的变化(频率1HZ 1HZ))。
图 7三、编程提示1 1、、8253控制寄存器地址控制寄存器地址283H计数器0地址地址 280H 计数器1地址地址 281HCLK0连接时钟连接时钟 1MHZ2 2、参考流程图(见图、参考流程图(见图8、9): 开 始读计数器值显示计数值有键按下吗?开 始送计数器初值N Y结 束结 束设计数器0为工作方式0向计数器0送初值1000先送低字节后送高字节向计数器1送初值1000先送低字节后送高字节设计数器0为工作方式3设计数器1为工作方式3图 8 图图 9四、实验代码1、图6电路的实验代码电路的实验代码CODE SEGMENT ;CODE SEGMENT ;段定义开始(段定义开始(段定义开始(CODE CODE 段)段)ASSUME CS:CODE ; ASSUME CS:CODE ;规定规定CODE 为代码段为代码段START:MOV START:MOV AL,10H ;AL,10H ;AL,10H ;设置控制字设置控制字0001000000010000(计数器(计数器0,方式0,写两个字节,二进制计数)二进制计数)MOV DX,283H ; MOV DX,283H ;把控制寄存器地址放在把控制寄存器地址放在DX 寄存器中寄存器中OUT DX,AL ; OUT DX,AL ;将将AL 的值送入DX 端口端口MOV DX,280H ; MOV DX,280H ;把计数器把计数器0地址放在DX 寄存器中寄存器中MOV AL,0FH ; MOV AL,0FH ;将将0FH 存入AL 寄存器寄存器OUT DX,AL ; OUT DX,AL ;将此时将此时AL 的值送入DX 端口端口LP1: IN AL,DX ;LP1: IN AL,DX ;从从DX 端口读入8位,放在AL 寄存器中寄存器中CALL DISP ; CALL DISP ;调用调用DISP PUSH DX ; PUSH DX ;将将DX 内容保存到堆栈段内容保存到堆栈段MOV AH,06H ; MOV AH,06H ;将将06H 存入AH AH,为了下句调用,为了下句调用21中断中断MOV DL,0FFH ; MOV DL,0FFH ;将将0FFH 存入DLINT 21H ; INT 21H ;调用调用21中断中断POP DX ; POP DX ;将将DX 的内容推出栈段的内容推出栈段JZ LP1 ; JZ LP1 ;如果如果DX 的内容是0,就跳转到LP1MOV AH,4CH ; MOV AH,4CH ;将将4CH 存入AH AH,为了下句调用,为了下句调用21中断中断INT 21H ; INT 21H ;调用调用21中断中断DISP PROC NEAR ;DISP PROC NEAR ;定义一个名为定义一个名为DISP 的子程序的子程序PUSH DX ; PUSH DX ;把把DX 的内容保存到堆栈段中的内容保存到堆栈段中AND AL,0FH ;AL,0FH ;将将AL 寄存器的内容与0FH 进行“与”运算,再把结果存入AL 中MOV DL,AL ; MOV DL,AL ;将将AL 的值送入DL 寄存器寄存器CMP DL,9 ; CMP DL,9 ;比较比较DL 中的值与9的大小的大小JLE NUM ; JLE NUM ;如果如果DL 的值小于或等于9时,则跳转到NUM ADD DL,7 ; ADD DL,7 ;将将DL 的值与7进行相加后,再送入DL 中NUM: ADD DL,30H ;NUM: ADD DL,30H ;将将DL 的值与30H 进行相加后,再送入DL 中 MOV AH,02H ; MOV AH,02H ;将将02H 存入AHINT 21H ; INT 21H ;调用调用DOS21中断中断MOV DL,0DH ; MOV DL,0DH ;结合“结合“结合“MOV AH,02H MOV AH,02H MOV AH,02H”就是说输出”就是说输出0DHINT 21H ; INT 21H ;调用中断指令调用中断指令调用中断指令MOV DL,0AH ; MOV DL,0AH ;结合“结合“结合“MOV AH,02H MOV AH,02H MOV AH,02H”就是说输出”就是说输出0AHINT 21H ; INT 21H ;调用调用DOS21中断中断POP DX ; POP DX ;将将DX 的内容推出栈段的内容推出栈段RET ; RET ;子程序在功能完成后返回调用程序继续执行子程序在功能完成后返回调用程序继续执行 DISP ENDP ; DISP ENDP ;子程序结束子程序结束子程序结束CODE ENDS ; CODE ENDS ;代码段结束代码段结束代码段结束END START ; END START ;程序结束程序结束程序结束2、图7电路的实验代码电路的实验代码CODE SEGMENT ;CODE SEGMENT ;段定义开始(段定义开始(段定义开始(CODE CODE 段)段)ASSUME CS:CODE ; ASSUME CS:CODE ;规定规定CODE 为代码段为代码段START:MOV DX,283H ;START:MOV DX,283H ;把控制寄存器地址放在把控制寄存器地址放在DX 寄存器中寄存器中MOV AL,36H ; MOV AL,36H ;设置控制字设置控制字0011011000110110(计数器(计数器0,方式3,写两个字节,二进制计数)二进制计数)OUT DX,AL ; OUT DX,AL ;将将AL 的值送入DX 端口端口MOV AX,1000H ; MOV AX,1000H ;该语句是立即寻址方式,就是把该语句是立即寻址方式,就是把1000H 这个数赋给AX MOV DX,280H ; MOV DX,280H ;把计数器把计数器0地址放在DX 寄存器中寄存器中OUT DX,AL ; OUT DX,AL ;将将AL 的值送入DX 端口端口MOV AL,AH ; MOV AL,AH ;将将AX 的高8位存入AL 寄存器中寄存器中OUT DX,AL ; OUT DX,AL ;将此时将此时AL 的值送入DX 端口端口MOV DX,283H ; MOV DX,283H ;把端口地址放在把端口地址放在DX 寄存器中寄存器中MOV AL,76H ; MOV AL,76H ;设置控制字设置控制字0111011001110110(计数器(计数器1,方式3,写两个字节,二进制计数)二进制计数) OUT DX,AL ; OUT DX,AL ;将将AL 的值送入DX 端口端口MOV AX,1000H ; MOV AX,1000H ;把把1000H 赋给AXMOV DX,281H ; MOV DX,281H ;把端口地址放在把端口地址放在DX 寄存器中寄存器中OUT DX,AL ; OUT DX,AL ;将将AX 的低8位送入DX 端口端口MOV AL,AH ; MOV AL,AH ;将将AX 的高8位存入AL 寄存器中寄存器中OUT DX,AL ; OUT DX,AL ;将将AL 的值送入DX 端口端口MOV AH,4CH ; MOV AH,4CH ;将将4CH 存入AHINT 21H ; INT 21H ;调用调用DOS21中断中断CODE ENDS ;CODE ENDS ;代码段结束代码段结束代码段结束END START ; END START ;程序结束程序结束程序结束五、实验总结通过实验,学会通过实验,学会8253芯片和微机接口原理和方法,掌握8253定时器定时器//计数。
实验名称可编程定时器/计数器(8253) 学生姓名学生学号专业班级指导老师2015-1-7实验六可编程定时器/计数器(8253)一、实验目的掌握8253芯片和微机接口原理和方法,掌握8253定时器/计数器的工作方式和编程原理。
二、实验内容1.设计8253定时器/技术器仿真电路图;2.根据仿真电路图,编写代码,对8253定时器/计数器进行仿真。
三、实验要求1.要求计数器2工作于模式1(暂稳态触发器),计数初值为1250;2.计数器0工作于方式3(方波模式),输出一个1KHz的方波, 8253的输入时钟为1MHz,计数初始值格式为BCD。
3.8253与系统的连接如错误!未找到引用源。
所示。
图 1计数器8253与8086连接原理图注:实验过程中,发现错误!未找到引用源。
有误。
应将8253定时器/计数器右边部分的电阻R2与按钮交换位置。
四、实验原理8253具有3个独立的计数通道,采用减1计数方式。
在门控信号有效时,每输入1个计数脉冲,通道作1次计数操作。
当计数脉冲是已知周期的时钟信号时,计数就成为定时。
8253的工作方式3被称作方波发生器。
任一通道工作在方式3,只在计数值n为偶数,则可输出重复周期为n、占空比为1:1的方波。
进入工作方式3,OUTi输出低电平,装入计数值后,OUTi立即跳变为高电平。
如果当GATE为高电平,则立即开始减“1”计数,OUTi保持为高电平,若n为偶数,则当计数值减到n/2时,OUTi跳变为低电平,一直保持到计数值为“0”,系统才自动重新置入计数值n,实现循环计数。
这时OUTi端输出的周期为n×CLKi 周期,占空比为1:1的方波序列;若n为奇数,则OUTi端输出周期为n×CLKi 周期,占空比为((n+1)/2)/((n-1)/2)的近似方波序列。
8253定时器/计数器控制字决定这定时器0,1,2的工作模式。
一旦CPU对控制字进行写操作,且对相应的定时器有效,则相应定时器改变工作模式,可能准备接收计时初值。
8253可编程定时计数器应用实验一、实验要求:按照电路图连接好电路,利用8253定时计数器0产生500Hz,250Hz,125Hz 的方波信号,显示在示波器上;然后用8253定时计数器1制作一个频率计以检测4060和定时计数器0输出方波的频率。
二、实验目的:1、了解如何利用计数器(以4060为例)制作分频器2、熟悉8253在系统中的典型接法。
3、掌握8253的工作方式及应用编程。
三、实验电路及连线:输入时钟产生模块YQNQLQJQIQHQGQFQEQD图1,分频器4060就是一个纯粹的计数器,当作分频用,QD-DN就是对输入频率的4分频-8192分频,直接接到8253相应的定时器计数器时钟输入端口即可8253接口模块X图2,定时器计数器8位数据线和单片机的P0口相连;片选信号CS和P1.0相连;WR/RD分别和单片机相应的WR/RD相连;A0,A1分别和单片机的P3.4、P3.5相连;CLK0直接和4060的QD时钟输出相连;OUT0接示波器和CLK1。
四、实验说明:8253是一款拥有3个完全相同的16位定时器计数器的定时器计数器芯片,三个通道完全独立,其引脚功能为D0-D7:8位数据双向I/O口WR/RD:写/读信号,低电平有效CS:片选信号,低电平有效GATE0-2:三个定时器计数器的门信号CLK0-2:三个定时器计数器的时钟输入信号OUT0-2:三个定时器计数器的输出信号A0,A1:定时器计数器读写地址选择,00 定时器计数器0;01定时器计数器1;10 定时器计数器2;11 控制寄存器定时器计数器采用倒计数,即每输入一个时钟脉冲自减1,当计数寄存器减为0时OUT输出一个脉冲信号,但输出受工作方式和GATE引脚控制。
定时时间=时钟脉冲周期×预置的计数初值8253的定时器计数器有6种工作模式,具体工作模式由状态寄存器决定,如下SC1,SC0:计数器选择 00:选择计数器001:选择计数器110:选择计数器2RW1,RW0:读/写指示 00:计数器锁存命令01:只读/写低 8位10:只读/写高 8位11:先读/写低8位,再读/写高 8位M2,M1,M0:定时器计数器工作方式选择:000-101,方式0-5BCD:计数寄存器数制选择,1:BCD码;0:二进制码8253每个定时器计数器都有6种工作方式,具体如下所述方式0:计数结果中断方式8253工作于方式0时,在写入初始值n后,GATE为高电平时开始计数,OUT 为输出低电平,直到计数器为0,OUT变为高电平直到下次计数开始再变为低电平。
8253定时器/计数器实验一、实验目的:1、进一步了解可编程定时/计数器8253的特点与功能;2、掌握8253定时/计数器的应用、编程方法。
二、实验设备:MUT—Ⅲ型实验箱、8086CPU模块、示波器。
三、实验内容:用定时/计数器8253的计数器0、计数器1级联实现1秒的定时。
使OUT1端所接发光二极管每隔1S闪烁一次,模拟电子秒表或信号报警器。
两个计数器皆工作于方式3(输出方波),CLK0端接频率为750KHz的时钟。
四、实验电路:本实验用到两部分电路:时钟脉冲发生器(脉冲产生电路)(见附录)、8253定时器/计数器(1片)。
电路原理图如图1所示。
图1:8253定时/计数器实验电路五、实验步骤:(1)实验连线:CS0连CS8253,8253CLK0连时钟脉冲发生电路的CLK3,OUT0连8253CLK1,OUT1连LED1。
如图2所示。
注意:GATE信号线、数据线、地址线、读写控制信号线均已接好。
图2:线路连接示意图(2)输入以下程序,编译、链接后,全速运行,观察实验结果。
;8253初始化参考程序CODE SEGMENTASSUME CS:CODEORG 0100HSTART:MOV DX,04A6H ;控制寄存器地址MOV AL,00110110B ;计数器0控制字:方式3,二进制计数OUT DX,ALMOV DX,04A0H ;计数器0的口地址MOV AL,0EEH ;写计数初值低8位OUT DX,ALMOV AL,02H ;写计数初值高8位OUT DX,ALMOV DX,04A6H ;控制寄存器地址MOV AL,01110110B ;计数器1控制字:方式3,二进制计数OUT DX,ALMOV DX,04A2H ;计数器1的口地址MOV AL,0E8H ;计数初值低8位OUT DX,ALMOV AL,03H ;计数值高8位OUT DX,ALNEXT: NOPJMP NEXT ;CPU在此循环执行空操作,说明8253独立工作。
精选文档实验报告实验名称可编程准时器/计数器(8253 )姓名学号班级教师日期一、实验内容与要求1.1 实验内容计数器方式 2 实验:将 8253 芯片的计数器0 的工作方式设置为方式2,读 /写格式设置为01,写入时只写入计数器初值低8 位,高 8 地点 0,采纳二进制格式计数。
计数器初值为N (N>=0FH ),用手动开关逐一输入单脉冲,编程使计数值在屏幕上显示,并同时用TPC-USB平台上的 LED 灯察看 OUT0 电平变化(当输入第N 倍数个脉冲后OUT0 变低电平, LED 灯由亮变灭,其余脉冲OUT0 都是高电平, LED 灯都处于亮状态)。
计数器方式 3 实验:将计数器 0、计数器 1 的工作方式分别设置为方式3,计数初值设为1000,并同时用 TPC-USB 平台上的 LED 灯察看 OUT1 电平变化(频次1Hz)。
1.2 实验要求(1)拥有必定的汇编编程的基础,能编写一些基本语句来实现实验。
实验前依据实验流程图,写出对应代码;(2)要认识8253准时/计数器芯片内部构造和外面引脚,认识芯片的硬件连结方法、时序关系、各样模式的编程及应用,能娴熟地对其进行编程;(3)熟习实验平台 TPC-USB 认识各个接口的名称与功能,进行实验时能迅速并正确地连结好实验电路;(4)计数器方式 2 实验:连结 PC 与 TPC-USB 平台,用微机实验软件运转程序,用手动开关逐一输入单脉冲,在屏幕上能一次显示计数值,当输入第N 倍数个脉冲后OUT0 变低电平, TPC-USB 平台上的 LED 灯由亮变灭,其余脉冲OUT0 都是高电平, LED 灯都处于亮状态;(5)计数器方式3实验:连结PC与TPC-USB平台,用微机实验软件运转程序,TPC-USB平台上的 LED 灯能周期性地亮灭,频次为 1Hz。
二、实验原理与硬件连线2.1 实验原理TPC-USB 平台上有一块8253 准时 /计数器芯片, PC 能够经过 8253 芯片进行计数和准时。
8253计数器实验报告8253计数器实验报告引言:实验报告是对实验过程和结果的详细记录和分析,通过实验报告,可以总结出实验的目的、方法、数据和结论,为进一步研究和实践提供参考。
本文将对8253计数器实验进行报告,介绍实验目的、实验步骤、实验结果和结论。
实验目的:本次实验的目的是熟悉8253计数器的工作原理和使用方法,掌握8253计数器的基本功能和应用场景。
实验步骤:1. 准备实验材料:8253计数器、示波器、电源等。
2. 搭建实验电路:根据实验要求,将8253计数器与示波器和电源相连,确保电路连接正确。
3. 设置实验参数:根据实验要求,设置8253计数器的工作模式、计数范围等参数。
4. 运行实验程序:编写实验程序,通过编程控制8253计数器的工作状态,观察实验结果。
5. 记录实验数据:使用示波器等仪器,记录实验过程中的数据和波形图。
6. 分析实验结果:根据实验数据和波形图,分析8253计数器的工作状态和性能。
实验结果:通过实验,我们观察到了8253计数器的不同工作模式下的输出结果。
在定时器模式下,我们设置了不同的计数范围和计数频率,观察到了计数器的计数过程和计数结果。
在计数器模式下,我们设置了不同的计数方向和计数初始值,观察到了计数器的增减过程和最终的计数结果。
结论:通过本次实验,我们对8253计数器的工作原理和使用方法有了更深入的了解。
我们掌握了8253计数器的基本功能和应用场景,能够根据实际需求设置计数器的工作模式和参数。
实验结果表明,8253计数器具有较高的计数精度和稳定性,在计时、计数等领域有广泛的应用前景。
总结:实验报告是对实验过程和结果的详细记录和分析,通过实验报告,可以总结出实验的目的、方法、数据和结论,为进一步研究和实践提供参考。
本次实验报告对8253计数器的实验进行了详细介绍,包括实验目的、实验步骤、实验结果和结论。
通过本次实验,我们对8253计数器有了更深入的了解,掌握了其基本功能和应用场景。
集美大学计算机工程学院实验报告课程名称微机系统与接口技术实验名称实验三8253可编程计数器/定时器实验实验类型设计型姓名学号日期地点室成绩教师1. 实验目的及内容1.1实验目的1)了解8253的内部结构、工作原理;了解8253与8088的接口逻辑; 2)熟悉8253的控制寄存器和初始化编程方法,熟悉8253的6种工作模式。
1.2实验内容1)设计8253与8086CPU 的硬件连接图,分配8253的基地址为0F000H 。
2)设计8253与外界输入时钟频率2MHZ 和电源的硬件连接,使8253产生周期为1秒的方波。
用此方波控制LED 灯,使其发出闪烁信号。
2. 实验环境星研电子软件,STAR 系列实验仪一套、PC 机一台、导线若干3. 实验方法8259A 的中断引脚IRi 与单脉冲连接,实现拨动单脉冲开关触发8259A 中断,8086计数中断次数并显示于G5区的断码管LED 上,此实验使用8259A 的IR2中断,正脉冲触发中断,脉冲频率为2MHz.4. 实验步骤4.1电路设计D0D1D2D4D5D6D7WR RD D3D08OUT010D17GATE011D26CLK09D35D44D53D62OUT113D71GATE114CLK115CS 21RD 22WR 23OUT217A019GATE216A120CLK2188253U35A0A1GATE0CLK0OUT1GATE1OUT2GATE2CLK2CSVCC 2M(B2)Ctrl(D1)VCCCS5(0B000H)A0A1A8253_1 EQU 0F002HA8253_2 EQU 0F001HA8253_3 EQU 0F003H.DATA.STACK.CODESTART: MOV AX,@DATAMOV DS,AXMOV ES,AXmov dx,A8253_3mov al,00110101bout dx,almov dx,A8253_0mov al,00Hout dx,almov al,20Hout dx,almov dx,A8253_3mov al,01110111bout dx,almov dx,A8253_1mov al,00Hout dx,almov al,10Hout dx,alEND START4.4运行调试程序1)按要求设计的电路正确连接线路,检查完毕后打开电源。
华北电力大学实验报告||实验名称8253应用实验课程名称微机原理及应用老师| 专业班级姓名学号一实验要求在8259的IR2端输入中断请求信号,该信号由8253的方波信号产生(频率1Hz)。
每来一个上升沿,申请中断一次,CPU响应后通过输出接口74LS273使发光二极管亮,第1次中断,LED0亮,第2次中断,LED1亮,…… 第8次中断,LED7亮,中断8次后结束。
【要求273的片选地址为8000h,8259的片选地址为9000h,8253的片选地址为A000H】二思路1.硬件(1)74HC138译码电路如图所示,A15为1,E2、E3接地保证74HC138正常工作,此时Y0、Y1、Y2对应地址分别为8000H、9000H、0A000H.(2) 8259的片选地址为9000H,所以CS接Y18086有16位数据总线,其低8位作为偶存储体来传输数据,8086的A0要一直为0,所以8259的A0要接8086的A1IR2端输入中断请求信号,该信号由8253的方波信号产生(频率1Hz),所以8259的IR2端与8253的OUT1端相连。
(3)74LS273的片选地址为8000H,且需要向其写入LED灯的状态,则Y0和WR经或非门后接入CLK。
(4)8253的片选地址为A000H,所以CS接Y2。
CLK0接入1MHz信号,GATE0与GATE1同时接电源,OUT0输入到CLK1,OUT1经分频输出1HZ的信号。
2.软件(1)流程图(2)与8259A有关的设置①8259A初始化(ICW)据要求(上升沿触发、单片、全嵌套、非缓冲、普通中断结束方式、需设置ICW4,中断类型号为80H—87H),初始化:ICW1=13H(00010011B);写入偶地址端口9000HICW2=08H(00001000B);写入奇地址端口9002HICW4=01H(00000001B);写入奇地址端口9002H②中断屏蔽字(OCW1)(写入奇地址端口9002H)允许IR2中断 OCW1与0FBH(11111011B)相与禁止IR2中断 OCW1与04H(00000100B)相或③中断结束字(OCW2)(写入偶地址端口9000H)OCW2=20H(00000010B)(3)与8253有关的设置1MHZ要分频为1HZ至少需要两个计数器。
微机原理实验报告实验题目:可编程定时器/计数器8253一、实验目的1、学习8253可编程定时器/计数器定时方法2、学习8253多级串联实现大时间常数定时方法二、实验内容编一个1秒定时子程序,并提示有键盘读入要计时的时间,并把数值显示在屏幕上三、实验器材微机原理实验箱1个电脑(带TPC-USB软件)1台插线若干四、实现过程1、流程图2、程序源代码;*****************************************IOY0 EQU 280H;*****************************************MY8253_COUNT0 EQU IOY0+00HMY8253_COUNT1 EQU IOY0+01HMY8253_COUNT2 EQU IOY0+02HMY8253_MODE EQU IOY0+03H;*****************************************MY8255IOY0 EQU 2A0H;*****************************************MY8255_A EQU MY8255IOY0+00HMY8255_B EQU MY8255IOY0+01HMY8255_C EQU MY8255IOY0+02HMY8255_MODE EQU MY8255IOY0+03HSTACK1 SEGMENT STACKDW 256 DUP(?)STACK1 ENDSDATA SEGMENTCOUNTER2 DB 0MESG1 DB 'Please input your number:',0DH,0AH,'$' ;提示语一,请输入数字MESG2 DB 'It is counting:',0DH,0AH,'$';提示语二,正在计数MESG3 DB 'Wrong input,please input again:',0DH,0AH,'$';提示语三,输入错误,请重新输入DATA ENDSCODE SEGMENTASSUME CS:CODE,DS:DATASTART:MOV AX,DATAMOV DS,AXMOV DX,OFFSET MESG1 ;输出提示语MOV AH,9INT 21HDEAL: MOV AH,1 ;读入一个数字INT 21HCMP AL,'0'JL EXITCMP AL,'9'JG EXITMOV BL,ALSUB BL,30H ;把输入的ASCII码转化成数字ADD COUNTER2,BL ;COUNTER2+=INPUTMOV CH,00HMOV CL,COUNTER2MOV DL,0DH ;回车换行MOV AH,02INT 21HMOV DL,0AHMOV AH,02INT 21HONE_SECOND:MOV AL,CL ;输出当前计数值CXADD AL,30HMOV DL,ALMOV AH,02INT 21HMOV DL,0DH ;回车换行MOV AH,02INT 21HMOV DL,0AHMOV AH,02INT 21HMOV DX,MY8253_MODE ;计数器0,方式3,十进制计数MOV AL,37HOUT DX,ALMOV DX,MY8253_COUNT0 ;装入初值MOV AL,00H ;1000分频OUT DX,ALMOV AL,10HOUT DX,ALMOV DX,MY8253_MODE ;计数器1,方式0,十进制计数MOV AL,71HOUT DX,ALMOV DX,MY8253_COUNT1 ;装入初值MOV AL,00H ;1000分频MOV AL,10HOUT DX,ALMOV DX,MY8255_MODEMOV AL,89HOUT DX,ALMOV DX,MY8255_CL1: IN AL,DX ;判断PC7口是否为高,即计数一秒是否已到TEST AL,80HJZ L1DEC CXJNZ ONE_SECONDQUIT:MOV AX,4C00HINT 21HEXIT: MOV DX,OFFSET MESG3 ;输入范围错误,提示重新输入MOV AH,9INT 21HJMP DEALCODE ENDSEND START3、实验结果图五、实验改进1、说明本实验中课本上只给出了0~9秒的计数,而实际运用的时候我们经常会需要用到任意值的定时,因此我们做了改进,计时可以输入任意数,若要输出到屏幕则能计数0~992、流程图注:改进的地方是分十位和个位进行存储和输出显示六、小结1、通过本次试验,我进一步了解了8253的定时和计数功能,以及如何通过串联定时器的方式实现大时间常数的定时。
微机原理实验报告实验名称 8253可编程定时/计数器实验一、实验目的1、掌握8253芯片结构及工作方式;2、熟悉8253可编程定时/计数器的编程。
二、实验设备1、Lab6000p实验教学系统;2、IBM-PC机三、系统中的8253模块Lab6000p实验箱中的8253模块连线如图所示:图1 8253模块的连线AD0~AD7、A0、A1、/WR、/RD已分别连至系统总线DB0~DB7、AB0、AB1、/IOW、/IOR;三个通道的OUT、GATE、CLK以及CS引出留给用户连接。
三、实验内容和实验步骤1、8253计数实验1)实验要求5个脉冲后LED0亮。
2)电路连接图2 电路连线3)程序代码见附录程序3.14)实验步骤1、在Lab6000p实验箱上完成连接电路;2、开启计算机电源,开启Lab6000p实验箱电源;3、启动W A VE6000软件;4、确认W A VE6000与Lab6000p连接;5、输入源代码;6、编译源代码(F9);7、连续运行程序(Ctrl+F9),按动单脉冲按键观察LED显示情况。
2、定时实验1)实验要求在LED上实现1秒钟亮/1秒钟灭。
2)电路连接将OUT0的输出接至OUT1的输入,其余连线和实验1中相同。
3)实验代码见程序附录3.24)实验步骤1、在Lab6000p实验箱上完成连接电路;2、开启计算机电源,开启Lab6000p实验箱电源;3、启动W A VE6000软件;4、确认W A VE6000与Lab6000p连接;5、输入源代码;6、编译源代码(F9);7、连续运行程序(Ctrl+F9),按动单脉冲按键观察LED显示情况。
四、实验结果1、8253计数实验在5个脉冲后,LED0灯亮。
2、定时实验在LED上实现1秒钟亮/1秒钟灭。
五、问题思考1、若CS连至地址译码/CS3,程序该如何修改。
答:只需将相应的端口地址修改即可,CS3对应的基地址应为0b00h。
2、为什么定时/计数器初值赋4,5个脉冲后LED才亮。
实验8 8253定时/计数器实验一、实验目的1.了解8253与8086的硬件连接方法。
2.掌握8253的各种方式的编程及其原理。
3.学会Emu8086和Proteus的联合用调。
二、实验要求安装有Emu8086仿真软件和PROTEUS仿真软件的电脑一台。
三、预习内容1、8253定时计数器的内部结构和主要性能。
2、8253芯片的各个引脚及其含义如下图3.1所示。
图3.1 8253A定时计数器D7~D0:双向,8位三态数据线,用以传送数据(计数器的计数值)和控制字CLK0~CLK2:计数器0、1、2的时钟输入,CE对此脉冲计数OUT0~OUT2:计数器0、1、2的输出。
GA TE0~GATE2:计数器0、1、2的门控输入/CS:输入,片选信号。
/RD:输入,读信号。
/WR:输出、写信号。
A0,A1:输入,两位地址选择。
8253的内部寄存器地址如下表表3.1所示:/CS A1 A0 选中0 0 0 计数器00 0 1 计数器10 1 0 计数器20 1 1 控制寄存器表3.1 8253定时计数器的寄存器3、定时、计数器8253的命令字的初始化。
4、8253的六种工作方式具体参考课本(278页至282页)。
5、汇编软件Emu8086和Proteus软件的联合使用方法步骤。
在Proteus软件绘制系统原理图,然后需要对Proteus进行程序导入设置才能进行方真调试。
具体步骤如下:(1)点击Proteus软件菜单中的source的下拉选项中的Dfine Code Generation Tools...如下图3.2所示。
图3.2(2)a在弹出的对话框中单击new按钮如下图3.3所示。
图3.3(3)弹出如下对话框,找到本机中emu8086安装后生成的emu8086文件夹,打开,选择可执行程序emu8086.exe,点击“打开”按钮,如下图3.4所示。
图3.4(4)回到设置对话框后,将源文件和目标文件分别设为ASM和EXE,单击“OK”,如下图3.5所示图3.5(5)单击菜单选项source的下拉选项Add/Remove Source Files...如下图3.6所示。
8253定时器实验报告8253定时器实验报告引言:8253定时器是一种广泛应用于计时和计数领域的集成电路。
本实验旨在通过实际操作,深入了解8253定时器的工作原理和应用。
一、实验目的本实验的主要目的是:1. 理解8253定时器的基本原理和工作方式;2. 掌握8253定时器的使用方法;3. 学会通过8253定时器实现各种定时和计数功能。
二、实验器材和原理本实验所需的主要器材有:1. 一台计算机;2. 一块开发板;3. 一根连接线。
8253定时器是一种具有三个独立计数通道的定时/计数芯片。
它可以通过编程控制来实现各种定时和计数功能。
8253定时器的输入时钟信号可以来自计算机的外部时钟源或者计算机内部时钟源。
三、实验步骤1. 将开发板连接到计算机上,并确保连接正确稳定。
2. 打开计算机,并进入开发板的编程环境。
3. 编写程序,初始化8253定时器,并设置计时/计数模式。
4. 定义所需的计时/计数时间间隔。
5. 启动8253定时器,并开始计时/计数。
6. 根据需要,定时器到达预定时间后,触发相应的中断或输出信号。
7. 结束实验,关闭计算机和开发板。
四、实验结果通过本次实验,我们成功地实现了以下功能:1. 利用8253定时器实现了精确的定时功能,可以精确到毫秒级别;2. 利用8253定时器实现了计数功能,可以用于计算某个事件的发生次数;3. 利用8253定时器的中断功能,可以及时响应某个事件的发生。
五、实验总结本次实验通过实际操作,使我们更深入地了解了8253定时器的工作原理和应用。
通过编程控制8253定时器,我们可以实现各种定时和计数功能,为实际应用提供了很大的便利。
然而,在实验过程中也遇到了一些困难和问题。
比如,在设置计时/计数模式时,需要仔细阅读8253定时器的手册,理解各个寄存器的作用和设置方法。
此外,还需要注意编程时的精度和误差,以确保实验结果的准确性和可靠性。
通过本次实验,我们不仅加深了对8253定时器的理论认识,还提高了自己的实际操作能力。
实验三 8253计数器/定时器的实验一、实验目的掌握8253定时器的编程原理及应用练习使用Proteus仿真软件二、实验内容利用Proteus仿真实现8253控制LED的闪烁,要求LED点亮0.5秒,熄灭0.5秒。
三、实验步骤1、画硬件连接图(1)启动Proteus,点击开始、程序、Proteus 7 professional、ISIS 7 professional(2)放置元件,点击,再点击,出现依次输入8086 74LS373 4LS138 NAND 8253A LED-RED PULLUP(3)按下图连接电路(4)放置标号,点击,依次放置总线标号,网络标号(如上图)(5)放置电源和终端,点击(6)修改元件属性,双击LED,出现如下对话框,将Model Type 改为Digital2M2、加载软件(1)启动emu8086 4.07,生成.com文件或. Exe文件(2)在emu8086 4.07,输入程序参考程序如下;PORT_0 equ 0e8hPORT_1 equ 0eahPORT_2 equ 0echPORT_CTR equ 0eehmov al, 00110101Bmov dx, PORT_CTRout dx, almov dx, PORT_0mov ax,00hout dx,almov dx, a8253mov ax,10hout dx,almov al, 01110110Bmov dx, PORT_CTRout dx, almov dx, PORT_1mov ax,0e8hout dx,almov ax,03hout dx,al(3)编译程序,点击,生成.com文件或. Exe文件(4)加载程序,双击仿真图中的8086CPU,出现如下对话框,点击加载软件,同时将各参数修改如下图3.仿真,点击,系统开始仿真。
四实验报告要求整理好运行正确的源程序,画出程序流程图,并列出源程序清单,写出实验的心得体会。
实验名称8253定时器/计数器仿真实验学生姓名学生学号专业班级指导老师2014-12-31实验五8253定时器/计数器仿真实验一、实验目的1.针对特定的芯片,学会用Proteus ISIS设计仿真电路图;2.掌握8253工作原理,对8253进行仿真;3.了解电路一般仿真方法。
二、实验内容1.配置Proteus仿真环境;2.根据电路图,用合适的代码对其进行仿真。
三、实验步骤1.安装Proteus和masm32编译器;2.在Proteus里配置masm32编译器。
配置过程如下:图 1 添加/移除代码生成工具(1)a)把masm32.bat 复制到c:\masm32\bin 里面(c:\masm32 为你自己安装masm32的路径);b)启动Proteus ISIS 后,选择菜单源代码——>设定代码生成工具。
打开如图1所示;c)点击“新建”,然后选择c:\masm32\bin\masm32.bat文件,就出现图2;图 2 添加/移除代码生成工具(2)d)图中红圈位置分别填上ASM 和EXE。
然后点确定。
使用masm32 编译器就配置好了。
3.在画好电路图后,选择菜单源代码——>添加/删除源文件。
出现图3;图 3 添加/移除源代码(3)4.代码生成工具选择masm32,然后点新建,创建自己的源代码。
比如8253.asm,点确定;5.接下来点击源代码——>1.8253.asm,编辑自己的代码。
完成后保存;6.点击源代码——>全部编译。
出现图4表示编译成功,表示程序可以执行。
图 4 代码成功编译7.点击Proteus中的调试菜单的相应功能,完成仿真。
四、实验结果1.仿真电路图如图5所示;图 5 8253仿真电路图2.8253定时器/计数器仿真波形图如图6所示;图 6 定时器输出3.实验代码如下所示:CODE SEGMENT ;H8253.ASMASSUME CS:CODESTART: JMP TCONTTCONTRO EQU 0A006HTCON0 EQU 0A000HTCON1 EQU 0A002HTCON2 EQU 0A004HTCONT: MOV DX,TCONTROMOV AL,16H ;计数器0,只写计算值低8位,方式3,二进制计数OUT DX,ALMOV DX,TCON0MOV AX,1000 ;时钟为1MHZ ,计数时间=1us*20 =20 us 输出频率50KHZOUT DX,AXJMP $CODE ENDSEND START五、实验总结本次实验,没有用到实验箱,避免了找一台好机器的烦恼。
四、实验步骤1、验证性实验(使用8253产生1S的时钟)具体要求:采用计数器0和计数器1完成对2MHz输入方波信号的两级分频(将计数器0的输出作为计数器1的输入),定时常数均为1000,得到一个周期为2秒钟的方波,用此方波控制蜂鸣器发出报警信号。
实验步骤:参见《微机原理及接口技术实验指导书》P.39“演示实验”的相关内容。
.MODEL TINYCOM_ADDR EQU 0B003HT0_ADDR EQU 0B000HT1_ADDR EQU 0B001H.STACK 100.CODESTART: MOV DX,COM_ADDRMOV AL,35HOUT DX,ALMOV DX,T0_ADDRMOV AL,00HOUT DX,ALMOV AL,10HOUT DX,ALMOV DX,COM_ADDRMOV AL,77HOUT DX,ALMOV DX,T1_ADDRMOV AL,00HOUT DX,ALMOV AL,10HOUT DX,ALJMP $END START图1 8253实验原理图2、拓展性实验(LED指示灯的计次闪烁)具体要求:将8253的CLK0接到脉冲发生开关S4端,OUT0接到一发光二极管。
将8253的计数器0初始化为方式0,并设置计数初值6。
拨动脉冲发生开关并计数,观察LED的变化与拨动开关次数的关系。
实验步骤:参见《微机原理及接口技术实验指导书》P.39“编程实验”的相关内容。
.MODEL TINYCOM_ADDR EQU 0B003HT0_ADDR EQU 0B000H.STACK 100.CODESTART: MOV DX,COM_ADDRMOV AL,11HOUT DX,ALMOV DX,T0_ADDRMOV AL,06HOUT DX,ALEND START。
实验八可编程定时/计数器8253的Proteus仿真实验一、实验要求
利用8086 外接8253 可编程定时/计数器,可以实现方波的产生。
二、实验目的
1、学习8086 与8253 的连接方法。
2、学习8253 的控制方法。
3、掌握8253 定时器/计数器的工作方式和编程原理
三、实验电路及连线
1、Proteus 实验电路
2、硬件验证实验
硬件连接表
四、实验说明
1、8253 芯片介绍
8253 是一种可编程定时/计数器,有三个十六位计数器,其计数频率范围为0-2MHz,用+5V 单电源供电。
2、8253的功能用途:
(1)延时中断
(2)可编程频率发生器
(3)事件计数器
(4)二进制倍频器
(5)实时时钟
(6)数字单稳
(7)复杂的电机控制器
3、8253 的六种工作方式:
(1)方式0:计数结束中断
(2)方式l:可编程频率发生
(3)方式2:频率发生器
(4)方式3:方波频率发生器
(5)方式4:软件触发的选通信号
(6)方式5:硬件触发的选通信号
五、实验程序流程图
六、实验步骤
1、Proteus 仿真
a.在 Proteus 中打开设计文档“8253_STM.DSN”;
b.建立实验程序并编译,仿真;
c.如不能正常工作,打开调试窗口进行调试。
参考程序:
CODE SEGMENT;H8253.ASM
ASSUME CS:CODE
START:
JMP TCONT
TCONTROEQU0A06H
TCON0 EQU0A00H
TCON1 EQU0A02H
TCON2 EQU0A04H
TCONT:
MOV DX,TCONTRO
MOV AL,16H ;计数器0,只写计算值低8 位,方式3,二进制计数
OUT DX,AL
MOV DX,TCON0
MOV AX,20 ;时钟为1MHZ,计数时间=1us*20=20us,输出频率50KHZ
OUT DX,AL
JMP $
CODE ENDS
END START
2、实验板验证
a.通过USB 线连接实验箱
b.按连接表连接电路
c.运行PROTEUS 仿真,检查验证结果。