人教A版高中数学必修3第三章 概率3.2 古典概型导学案
- 格式:doc
- 大小:217.50 KB
- 文档页数:10
必修三《3.2.1 古典概型》导学案1.能说出古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;2.会应用古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A教学重点:正确理解掌握古典概型及其概率公式一、 自学课本125页例1以上部分内容,解决下列问题:1、(1)掷一枚质地均匀的硬币的试验。
(2)掷一枚质地均匀的骰子的试验。
有哪几种可能结果?2、基本事件的特点是:例1:从字母a ,b ,c ,d 中任意取出两个不同字母的试验中,有哪些基本事件?3、什么叫古典概型?思考3:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?二、离开课本尝试解答125页例2—129页例5.例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?例5 某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?.1、在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有的正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?2、一枚骰子抛两次,第一次的点数记为m ,第二次的点数记为n ,计算m-n<2的概率3、在所有首位不为0的八位电话号码中,任取一个号码。
求:头两位数码都是8的概率。
教育教学案例——《古典概型》一、教学内容分析《古典概型》是高中数学人教A版必修3第三章概率3.2的内容,教学安排是2课时,本节是第一课时。
是在随机事情的概率以后,几何概型之前,还没有学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的反复实验,而且得到的是概率的精确值,同时古典概型也是后面学习条件概率的基础,它有益于理解概率的概念,有益于计算一些事情的概率,有益于解释生活中的一些成绩,起到承前启后的作用,所以在概率论中占有相当重要的地位。
二、教学设计分析学情分析:先生基础普通,但师生之间,先生之间情感融洽,上课互动氛围良好。
他们具备必然的观察,类比,分析,归纳能力等,但在对知识的理解和方法的掌握方面存在细节上的不齐备,反映在解题中思想不周密,书写过程不残缺,有时钻牛角尖。
教学内容组织和安排:根据上面的学情分析,先生思想不周密,意志力薄弱,从而在全部教学环节上必须创设恰当的成绩情境,引导先生积极考虑,培养他们的逻辑思想能力。
经过对成绩情境的分析,引出基本事情的概念,古典概型中基本事情的特点,和古典概型的计算公式。
对典型例题进行分析,以巩固概念,掌握解题方法。
三、教学目标分析知识与技能目标:(1)正确理解古典概型的两大特点:1)无量性;2)等可能性;(2)理解古典概型的概率计算公式 :P (A )=总的基本事件个数包含的基本事件个数A (3)会用列举法计算一些随机事情所含的基本事情数及事情发生的概率。
过程与方法目标:经过模拟实验让先生理解古典概型的特点,观察类比各个实验,归纳总结出古典概型的概率计算公式,表现了化归思想,掌握列举法,学会用分类讨论的思想解决概率的成绩。
情感态度与价值观目标:经过各种风趣的贴近生活的素材,激发先生学习的热情和兴味,培养先生勇于探求、擅长发现的创新思想;经过探求活动,领会理论与理论对立一致的辨证思想;结合成绩的理想意义,培养先生的合作精神.四、教学重点与难点重点:理解古典概型的概念及利用古典概型求解随机事情的概率。
3.2 《古典概型》导学案【学习目标】通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
【重点、难点】用列举法计算随机事件发生的概率。
预习案一、复习练习:1、一个口袋内装有大小相等的1个白球和3个红球,从中摸出2个球。
请用列表法或树状图法求摸到的球是一红一白的概率。
二、基本事件:1、定义:一个事件如果不能再被分解为的事件,称作基本事件。
2、基本事件的特征:(1)任何两个基本事件是;(2)任何事件(除不可能事件)都可以表示成。
3、古典概型的特征:(1)实验中所有可能出现的基本事件;(2)各基本事件的出现是,即它们发生的概率相同。
4、古典概型的概率计算公式:P(A)三、尝试练习:1、投掷两枚硬币的实验中,基本事件是。
2、掷一骰子正面向上点数大于3的概率是。
3、袋子中有大小相同的四个小球,分别涂上红、白、黑、黄颜色。
(1)从中任取1球,取出红球的概率为;(2)从中任取2个球,取出的球是红球和黑球的概率为。
4、复习练习中,回答下列问题:(1)题目中的基本事件总数是;(2)事件“摸出1个白球1个红球”包含多少个基本事件?(3)摸出1个白球1个红球的概率是多少?5、抛掷2颗质地均匀的骰子,求点数和为7的概率。
探究案探究点一:用列举法表示基本事件求概率:1、在甲、乙两个盒子中分别装有标号为1、2、3、4、5的五个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相同。
(1)求取出的两个球上标号为相邻整数跌得概率;(2)求取出的两个球上标号之和能被3整除的概率。
2、随意安排甲、乙、丙3人在3天节日中值班,每人值班1天,则这3人的值班顺序共有种不同的排列方法;甲在乙前面的概率为。
3、将一枚质地均匀的硬币先后抛三次,恰好出现一次正面向上的概率是4、在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少一个是红球的概率是。
5、《金版》P966、7、8探究点二:古典概型中的综合问题1、有两个箱子,里面各装有编号为1、2、3、4、5的5个小球,所有的小球除编号外完全相同,现从两个箱子中各摸出一个球,称为一次实验。
高一数学《必修3》导学案57 编制:叶柳青审核:范友宝高一___班第___组姓名_ ___3.2 古典概型(二)【学习目标】进一点理解古典概型及其概率计算公式;会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
学习重点:理解古典概型的概念及利用古典概型求解随机事件的概率.学习难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.【课前导学】阅读课本P129~132的内容后,完成下列内容1、寻找基本事件的方法有_______法、_______法、_______法。
2、求()P A的步骤:(1)判断事件A是否为古典概型:试验结果的_____性和所有结果发生的_______性;(2)求出总的基本事件数;(3)求出事件A所包含的基本事件数,再据公式______()P A包含的基本事件数______基本事件个数计算。
3、据古典概型的计算公式时应注意两点:(1)所有的基本事件必须是______的;(2)求事件A所包含的基本事件数m值时,要做到不重不漏。
4、练习:同时掷两枚骰子,观察向上的点数,则一共有________种不同的结果,其中点数之和是4的结果有____________________________共____个,所以点数之和4的概率是_________。
思考:有人认为抛两枚骰子,向上的点数之和的所有可能情况有2、3、…、12共11个基本事件,故向上点数之和为3的概率为111,你认为对吗?若错,错在哪里?【预习自测】1、在20瓶饮料中,有2瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为。
2、将一枚质地均匀的硬币连接三次,则出现“2个下面朝上、1个反面朝下”的概率是________;出现“1个下面朝上、2个反面朝下”的概率是________.3、《必修3》课本P133练习第2题。
答案填在下面:(1)______;(2)______;(3)______;(4)______;(5)______;(6)______;(7)______;(8)______.【课内探究】例1、某种饮料每箱装6听,若其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率。
3.2.1古典概型(教学设计)淇县一中 李飞雪一、 教材分析(一) 教材地位、作用《古典概型》是高中数学人教A 版必修3第三章概率3.2的内容,教学安排是2课时,本节是第一课时。
是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型也是后面学习条件概率的基础,它有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,所以在概率论中占有相当重要的地位。
(二)教材处理:学情分析:学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。
他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
教学内容组织和安排:根据上面的学情分析,学生思维不严密,意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
通过对问题情境的分析,引出基本事件的概念,古典概型中基本事件的特点,以及古典概型的计算公式。
对典型例题进行分析,以巩固概念,掌握解题方法。
二、三维目标知识与技能目标:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)理解古典概型的概率计算公式 :P (A )=总的基本事件个数包含的基本事件个数A(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
过程与方法目标:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。
情感态度与价值观目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;通过参与探究活动,领会理论与实践对立统一的辨证思想;结合问题的现实意义,培养学生的合作精神.三、教学重点与难点1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
黑龙江省大庆外国语学校高中数学 第三章《概率》《3.2 古典概型》教案 新人教A 版必修3一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等; (2)掌握古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A(3)了解随机数的概念;(4)利用计算机产生随机数,并能直接统计出频数与频率。
2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数.三、学法:与学生共同探讨,应用数学解决现实问题;通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯. 四、教学过程:3、例题分析: 课本例题略例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点) 所以基本事件数n=6,事件A=(掷得奇数点)=(出现1点,出现3点,出现5点), 其包含的基本事件数m=3 所以,P (A )=n m =63=21=0.5 小结:利用古典概型的计算公式时应注意两点: (1)所有的基本事件必须是互斥的;(2)m 为事件A 所包含的基本事件数,求m 值时,要做到不重不漏。
例2 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2)和,(a 1,b 2),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 2,a 2)。
3.2.1《古典概型》【学习目标】1.能说出古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;2.会应用古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A 3.会叙述求古典概型的步骤;【重点难点】教学重点:正确理解掌握古典概型及其概率公式教学难点:会用列举法计算一些随机事件所含的基本事件数及事件发生的概率【知识链接】1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间的运算包括和事件、积事件,这些概念的含义分别如何? 21世纪教育网若事件A 发生时事件B 一定发生,则 .若事件A 发生时事件B 一定发生,反之亦然,则A=B.若事件A 与事件B 不同时发生,则A 与B 互斥.若事件A 与事件B 有且只有一个发生,则A 与B 相互对立.2。
概率的加法公式是什么?对立事件的概率有什么关系?若事件A 与事件B 互斥,则 P (A+B )=P (A )+P (B ).若事件A 与事件B 相互对立,则 P (A )+P (B )=1.3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.【学习过程】我们再来分析事件的构成,考察两个试验:(1)掷一枚质地均匀的硬币的试验。
(2)掷一枚质地均匀的骰子的试验。
有哪几种可能结果?在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中所有可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事件。
我们把这类随机事件称为基本事件综上分析,基本事件有哪两个特征?(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.例1:从字母a ,b ,c ,d 中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来。
解:所求的基本事件有6个:A={a ,b},B={a ,c},C={a ,d},D={b ,c},E={b ,d},F={c ,d};A+B+C.上述试验和例1的共同特点是:(1)试验中有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等,这有我们将具有这两个特点的概率模型称为古典概率模型思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗?思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?无数个思考4:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点”的概率如何计算?思考5:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数.思考6:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?P(A)=事件A所包含的基本事件的个数÷基本事件的总数典型例题例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是指选择A,B,C,D的可能性是相等的。
由古典概型的概率计算公式得P(“答对”)=1/4=0.25点评:在4个答案中随机地选一个符合了古典概型的特点。
变式训练:在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有的正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?解:(1)掷一个骰子的结果有6种。
把两个骰子标上记号1,2以便区分,由于1号投骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种。
(2)在上面的所有结果中,向上点数和为5的结果有如下4种(1,4),(2,3),(3,2),(4,1)(3)由古典概型概率计算公式得P(“向上点数之和为5”)=4/36=1/9点评:通过本题理解掷两颗骰子共有36种结果变式训练:一枚骰子抛两次,第一次的点数记为m ,第二次的点数记为n ,计算m-n<2的概率。
例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?解:一个密码相当于一个基本事件,总共有10000个基本事件,它们分别是0000,0001,0002,…9998,9999。
随机地试密码,相当于试到任何一个密码的可能性都时相等的,所以这是一个古典概型。
事件“试一次密码就能取到钱”有一个基本事件构成,即由正确的密码构成。
所以P(“试一次密码就能取到钱”)=1/10000点评:这是一个小概率事件在实际生活中的应用。
变式训练:在所有首位不为0的八位电话号码中,任取一个号码。
求:头两位数码都是8的概率。
例5 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.解:合格的4听分别记作:1,2,3,4,不合格的2听分别记作:a.,b,只要检测的2听有1听不合格的,就表示查处了不合格产品。
依次不放回的取2听饮料共有如下30个基本事件:(1,2),(1,3),(1,4),(1,a),(1,b),(2,1),(2,3),(2,4),(2,a),(2,b),(3,1),(3,2),(3,4),(3,a),(3,b),(4,1),(4,2),(4,3),(4,a),(4,b),(a,1),(a,2),(a,3),(a,4),(a,b),(b,1),(b,2),(b,3),(b,4),(b,a)P(“含有不合格产品”)=18/30=0.6点评:本题的关键是对依次不放回抽取总共列多少基本事件的考查。
变式训练:一个盒子里装有标号为1,2,3,4,5的5张标签,根据下列条件求两张标签上的数字为相邻整数的概率:(1)标签的选取是无放回的:(2)标签的选取是有放回的:【学习反思】1.基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A 可以是基本事件,也可以是有几个基本事件组合而成的.2.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数÷基本事件的总数,只对古典概型适用【基础达标】1.在20瓶饮料中,有2瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?2.在夏令营的7名成员中,有3名同学已去过北京。
从这7名同学中任取两名同学,选出的这两名同学恰是已去过北京的概率是多少?3.5本不同的语文书,4本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率为多少?3.2.1《古典概型》导学案【学习目标】1. 通过实例,叙述古典概型定义及其概率计算公式;2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率【学法指导】一、预习目标:通过实例,初步理解古典概型及其概率计算公式二、预习内容:1、知识回顾:(1)随机事件的概念①必然事件:每一次试验的事件,叫必然事件;②不可能事件:任何一次试验的事件,叫不可能事件;③随机事件:随机试验的每一种或随机现象的每一种叫的随机事件,简称为事件. (2)事件的关系①如果A⋂B为不可能事件(A⋂B=∅),那么称事件A与事件B互斥.其含意是: 事件A与事件B在任何一次实验中同时发生.②如果A ⋂B为不可能事件,且A⋃B为必然事件,那么称事件A与事件B互为对立事件.其含意是: 事件A与事件B在任何一次实验中发生.2. 基本事件的概念: 一个事件如果事件,就称作基本事件.基本事件的两个特点: 10.任何两个基本事件是的;20.任何一个事件(除不可能事件)都可以.例如(1)试验②中,随机事件“出现偶数点”可表示为基本事件的和.a b c d中,任意取出两个不同字母的这一试验中,(2)从字母,,,所有的基本事件是:,共有个基本事件.3. 古典概型的定义古典概型有两个特征:10.试验中所有可能出现的基本事件;20.各基本事件的出现是,即它们发生的概率相同.将具有这两个特征的概率模型称为古典概型(classical models of probability).4.古典概型的概率公式,设一试验有n个等可能的基本事件,而事件A恰包含其中的m 个基本事件,则事件A的概率P(A)定义为:例如P A==随机事件A =“出现偶数点”包含有基本事件.所以()三、提出疑惑疑惑点疑惑内容1.古典概型的定义思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗?思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?无数个结论:如果一次试验中所有可能出现的基本事件只有有限个(有限性),且每个基本事件出现的可能性相等(等可能性),则具有这两个特点的概率模型称为古典概型.2. 古典概型的概率计算公式思考4:随机抛掷一枚质地均匀的骰子是古典概型吗?每个基本事件出现的概率是多少?你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?P(“1点”)= P(“2点”)= P(“3点”)= P(“4点”)=P(“5点”)= P(“6点”)P(“1点”)+P(“2点”)+ P(“3点”)+ P(“4点”)+P(“5点”)+ P(“6点”)=1.思考5:一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验中发生的概率为多少?思考6:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点”的概率如何计算?思考7:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数.思考8:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?3.典型例题例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?例5 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.【学习反思】1.基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A 可以是基本事件,也可以是有几个基本事件组合而成的.2.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数÷基本事件的总数,只对古典概型适用【基础达标】1.在20瓶饮料中,有2瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?2.在夏令营的7名成员中,有3名同学已去过北京。