高中数学必修三程序框图导学案及课后作业加答案
- 格式:doc
- 大小:2.72 MB
- 文档页数:42
第2课时流程图【学习目标】1.理解流程图的概念;2.能识别和理解简单框图的功能.【问题情境】情境:有三个硬币A、B、C,其中一个是伪造的,另两个是真的,伪造的与真的质量不一样,现在提供天平一座,要如何找出伪造的硬币呢?试给出解决问题的一种算法,并画出流程图。
【合作探究】1.2.知识建构1.流程图的概念:流程图是用一些图框和流程线来表示算法程序结构的一种图形程序.它直观、清晰,便于检查和修改.其中,图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.构成程流程图符号:①起止框②处理框③判断框④输入输出框⑤流程线⑥连接点A,B2.规范流程图的表示:①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画,流程线要规范;③除判断框外,大多数框图符号只有一个进入点和一个退出点.④在图形符号内描述的语言要非常简练、清楚.【展示点拨】例1给出求满足1+2+3+4+…+>2008最小正整数的一种算法,并画出流程图。
解:算法如下:S1n ← 1S2 T ← 0S3 T ← T+nS4 如果T>2008,输出n,结束。
否则使n的值增加1重新执行S2,S3,S4。
流程图如下:例2 高一某班一共有50名学生,设计一个算法,统计班上数学成绩良好(分数大于80且小于90)和优秀(分数大或等于90)的学生人数,并画出流程图.解:算法如下:1S1n←,0a←,0b←;2S输入成绩r;3S若89r>,则1a a←+,转5S;4S若80r>,则1b b←+;5S 1n n ←+;6S 若50n ≤,转2S ,否则,输出a 和b ;例3 设计一个尺规作图的算法来确定线段AB 的一个5等分点,并画出流程图。
(点拨:确定线段AB 的5等分点,是指在线段AB 上确定一点M ,使得AB AM 51=.)【学以致用】1、关于流图程的图形符号的理解,不正确的有( ) ①任何一个流图程都必须有起止框;②输入框只能在开始框之后,输出框只能放在结束框前; ③判断框是惟一具有超过一个退出点的图形符号; ④对于一个程序来说,判断框内的条件是惟一的.2.写出右边程序流程图的运算结果:如果输入R=8,那么输出a=3.已知三角形的三边a ,b ,c ,计算该三角形的面积。
人教新课标版(A)必修三 1.1算法的概念与程序框图导学案一、学习目标知道算法的思想内容和含义,能判断一些语句是否为算法;理解程序框图的三种基本逻辑结构,能读懂程序框图所表示的算法二、知识梳理1.算法的概念(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.(2)在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(3)常见的程序框、流程线及各自表示的功能(1)顺序结构:由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.结构形式(2)条件结构:在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.条件结构的两种形式(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤称为循环体.常见的两种循环结构1.下列关于程序框图的说法正确的是( )A.程序框图是描述算法的语言B.程序框图中可以没有输出框,但必须要有输入框给变量赋值C.程序框图虽可以描述算法,但不如用自然语言描述算法直观D.程序框图和流程图不是一个概念2.尽管算法千差万别,但程序框图按其逻辑结构分类共有( )A.2类 B.3类 C.4类 D.5类3.对终端框叙述正确的是( ) A .表示一个算法的起始和结束,程序框是B .表示一个算法输入和输出的信息,程序框是C .表示一个算法的起始和结束,程序框是D .表示一个算法输入和输出的信息,程序框是 4.给出下列程序框图:若输出的结果为2,则①处的执行框内应填的是( )A .x =2B .b =2C .x =1D .a =5 四、 探究,合作,展示 1、对算法的理解1.下列各式中T 的值不能用算法求解的是( ) A .T =12+22+32+42+…+1002B .T =12+13+14+15+…+150C .T =1+2+3+4+5+…D .T =1-2+3-4+5-6+…+99-100 2.关于一元二次方程x2-5x +6=0的求根问题,下列说法正确的是( ) A .只能设计一种算法 B .可以设计两种算法 C .不能设计算法 D .不能根据解题过程设计算法 2、顺序结构3、图中所示的是一个算法的流程图,已知31=a ,输出的7b =,则2a 的值是____________ 3、条件结构4.如下图所示的程序框图,其功能是( )A .输入a ,b 的值,按从小到大的顺序输出它们的值B .输入a ,b 的值,按从大到小的顺序输出它们的值C .求a ,b 的最大值D .求a ,b 的最小值 4、循环结构5.阅读右边的程序框图,运行相应的程序,则输出s 的值为( )A .-1B .0C .1D .3五、归纳总结,反思感悟 (1)知识与方法方面: (2)数学思想方法方面: 六、课后作业1.在如图的程序框图中,输出结果是________.3.如图是一个算法的程序框图,该算法所输出的结果是( )A .1+12+13+…+110B .1+13+15+…+119C.12+14+16+…+120D.12+122+123+…+1210 10.画出计算函数y =|x -1|的函数值的程序框图(x 由键盘输入). 11.设计一个算法,求表达式12+22+32+…+102的值,画出程序框图.。
第一章算法初步1.1 算法与程序框图1.1.2 程序框图与算法的基本逻辑结构第1课时程序框图、顺序结构A级基础巩固一、选择题1.一个完整的程序框图至少包含( )A.终端框和输入、输出框B.终端框和处理框C.终端框和判断框D.终端框、处理框和输入、输出框解析:一个完整的程序框图至少需包括终端框和输入、输出框.对于处理框,由于输出框含有计算功能,所以可不必有.答案:A2.下列是流程图中的一部分,表示恰当的是( )解析:B选项应该用处理框而非输入、输出框,C选项应该用输入、输出框而不是处理框,D选项应该在出口处标明“是”和“否”.答案:A3.下面的程序框图的运行结果是( )A.5 2B.3 2C .-32D .-1解析:因为a =2,b =4,所以S =a b -b a =24-42=-32,故选C.答案:C4.在如图所示程序框图中,若R =8,运行结果也是8,则程序框图中应填入的内容是( )A .a =2bB .a =4b C.a 4=b D .b =a4解析:因为R =8,所以b =4=2. 又a =8,因此a =4b ,故选B. 答案:B5.程序框图符号“”可用于( )A .输出a =10B .赋值a =10C .判断a =10D .输入a =1解析:图形符号“”是处理框,它的功能是赋值、计算,不是用来输出、判断和输入的,故选B.答案:B 二、填空题6.下面程序框图输出的S 表示____________________.答案:半径为5的圆的面积7.如图所示的一个算法的程序框图,已知a 1=3,输出的结果为7,则a 2的值为________.解析:由框图可知,b =a 1+a 2,再将b2赋值给b ,所以7×2=a 2+3,所以a 2=11.答案:118.写出下列算法的功能.(1)图①中算法的功能是(a >0,b >0)__________________; (2)图②中算法的功能是____________________.答案:(1)求以a ,b 为直角边的直角三角形斜边c 的长 (2)求两个实数a ,b 的和 三、解答题9.已知一个三角形的三边边长分别为2,3,4,设计一个算法,求出它的面积,并画出程序框图.解:第一步,取a =2,b =3,c =4.第二步,计算p =a +b +c2.第三步,计算S =p (p -a )(p -b )(p -c ). 第四步,输出S 的值.10.如图所示的程序框图,要使输出的y 的值最小,则输入的x 的值应为多少?此时输出的y 的值为多少?解:此程序框图执行的功能是对于给定的任意x 的值,求函数y =x 2+2x +3的值. 将y =x 2+2x +3配方,得y =(x +1)2+2,要使y 的值最小,需x =-1, 此时y min =2.故输入的x 的值为-1时,输出的y 的值最小为2.B 级 能力提升1.给出如图程序框图:若输出的结果为2,则①处的执行框内应填的是( ) A .x =2B .b =2C .x =1D .a =5解析:因结果是b =2,所以2=a -3,即a =5.当2x +3=5时,得x =1.故选C. 答案:C2.图1是计算图2中阴影部分面积的一个程序框图,则图1中①处应填________.解析:题干图2中,正方形的面积为S 1=a 2,扇形的面积为S 2=14πa 2,则阴影部分的面积为S =S 1-S 2=a 2-π4a 2=4-π4a 2. 因此题干图1中①处应填入S =4-π4a 2. 答案:S =4-π4a 23.如图所示的程序框图,当输入的x 的值为0和4时,输出的值相等,根据该图和下列各小题的条件解答下面的几个问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x 的值为3时,求输出的f (x )的值; (3)要想使输出的值最大,求输入的x 的值. 解:(1)该程序框图解决的是求二次函数f (x )=-x 2+mx 的函数值的问题.(2)当输入的x 的值为0和4时,输出的值相等, 即f (0)=f (4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,所以f(x)=-x2+4x.因为f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)的值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时, f(x)max=4,所以要想使输出的值最大,输入的x的值应为2.。
1.1.2程序框图
学习目标
1.熟悉各种程序框及流程线的功能和作用;
2.通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程.在具体问题的解决过程中,理解流程图的顺序结构;
3.通过比较,体会流程图的直观性、准确性.
重点难点
流程图的画法.
自主学习:
一、复习回顾
了解了算法的概念及处理某些问题的算法后,你觉得用自然语言表述的算法有什么不方便之处?谈谈自己的感想.
二、新知学习
认真自学课本,完成下列问题。
1.什么是流程图?
2.说出终端框(起止框)的图形符号与功能:
3.说出输入、输出框的图形符号与功能:
4.说出处理框(执行框)的图形符号与功能:
5.说出判断框的图形符号与功能:
6.说出流程线的图形符号与功能:
7.出连接点的图形符号与功能:
结如下表:
三、经典习题
例1判断整数n(n>2)是否为质数的算法对应的程序框图表示为:
例2已知一个三角形三条边的边长分别为a,b,c,利用海伦-秦九韶公式设计一个计算三角形面积的方法并画出流程图.(已知一个三角形三条边的边长分
别为a,b,c,则三角形面积为)
)(
)(
(c
p
b
p
a
p
p
S-
-
-
=,其中
2c
b
a
p +
+
=.)。
第1章算法初步1.2013 年全运会在沈阳举行,运动员 A 报名参赛100米短跑并经过初赛、半决赛、决赛最后获取了银牌.问题 1:请简要写出该运动员参赛并获银牌的过程.提示:报名参赛→初赛→半决赛→决赛.问题 2:上述参胜过程有何特色?提示:参胜过程是明确的.问题 3:倘若你家住南京,想去沈阳观看 A 的决赛,你怎样设计你的旅途?提示:第一预定定票,而后选择适合的交通工具到沈阳,准时出席,检票入场,进入竞赛场所,观看竞赛.x +=2,①2.给出方程组yx- y=1,②问题 1:利用代入法求解此方程组.提示:由①得y=2-x,③把③代入②得x-(2-x)=1,3即 x=2.④把④代入③得1y=.23x=2,获取方程组的解1y=2.问题 2:利用消元法求解此方程组.3提示:①+②得x=2.③3 1x = 2,将③代入①得y = ,得方程组的解2y = 1.问题 3:从问题 1、 2 能够看出,解决一类问题的方法独一吗?提示:不独一.1.算法的观点对一类问题的机械的、一致的求解方法称为算法.2.算法的特色(1) 算法是指用一系列运算规则能在有限步骤内求解某类问题,此中的每条规则一定是明确立义的、可行的.(2) 算法从初始步骤开始,每一个步骤只好有一个确立的后继步骤,进而构成一个步骤序列,序列的停止表示问题获取解答或指出问题没有解答.1.算法的基本思想就是探究解决问题的一般性方法,并将解决问题的步骤用详细化、程序化的语言加以表述.2.算法是机械的,有时要进行大批重复计算,只需循规蹈矩地去做,总能算出结果,往常把算法过程称为“数学机械化”,其最大长处是能够让计算机来达成.3.求解某一个问题的算法不必定只有独一的一个,可能有不一样的算法.[ 例 1] 以下对于算法的说法:①求解某一类问题的算法是独一的②算法一定在有限步操作后停止③算法的每一步操作一定是明确的,不可以存在歧义④算法履行后必定能产生确立的结果此中,不正确的有 ________.[ 思路点拨 ] 利用算法特色对各个表述逐个判断,而后解答.高中数学苏教版必修三教学案:第1章1.2流程图含答案[ 精解析 ]由算法的不独一性,知①不正确;由算法的有性,知②正确;由算法确实定性,知③和④正确.[答案]①[一点通]1.个型的,正确理解算法的观点及其特色是解决此的关.2.注意算法的特色:有限性、确立性、可行性.1.以下句表达中是算法的有________.①从南到巴黎能够先乘火到北京,再坐机到达1②利用公式S=2ah 算底1,高2的三角形的面1③2x>2x+4④求 M(1,2)与 N(-3,-5)两点的方程,可先求MN的斜率,再利用点斜式方程求得分析:算法是解决的步与程,个其实不限于数学.①②④都表达了一种算法.答案:①②④2.算以下各式中的S ,能算法求解的是________.①S=1+2+3+⋯+100②S=1+2+3+⋯+100+⋯③S=1+2+3+⋯+ n( n≥1且 n∈N)分析:算法的要求步是可行的,而且在有限步以内能达成任.故①、③可算法求解.答案:①③[ 例 2]已知直l 1:3x-y+12=0和 l 2:3x+2y-6=0,求 l 1,l 2, y 成的三角形的面.写出解决本的一个算法.[ 思路点 ]先求出l1,l2的交点坐,再求l 1, l 2与 y 的交点的坐,即获取三角形的底;最后求三角形的高,依据面公式求面.3x-y+ 12= 0,[ 精解析 ]第一步解方程得l1,l2的交点P(-3x+ 2y- 6= 02,6) ;第二步在方程 3x-y+ 12= 0 中令x=0 得y= 12,进而获取A (0,12) ;第三步在方程 3 x +2 -6=0 中令x =0 得 y = 3,获取 (0,3) ;yB第四步 求出△ ABP 底边 AB 的长 | AB | =12- 3= 9;第五步求出△ ABP 的底边 AB 上的高 h =2;1第六步 代入三角形的面积公式计算S =2| AB | · h ;第七步 输出结果.[一点通]设计一个详细问题的算法,往常按以下步骤:(1) 仔细剖析问题,找出解决本题的一般数学方法; (2) 借助相关变量或参数对算法加以表述; (3) 将解决问题的过程区分为若干步骤;(4) 用精练的语言将这个步骤表示出来.3.写出求两底半径分别为1 和 4,高也为 4 的圆台的侧面积、表面积 及体积的算法.解:算法步骤以下:第一步 取 r1=1, 2=4, =4;rh第二步第三步第四步第五步计算 l =r 2- r 12+ h 2;22=π(r + r ) l ;计算 S =π r,S =π r ; S1122侧1 2计算 S 表=S +S +S;12侧1计算 V = 3( S 1+ S 1S 2+ S 2 ) h .4.已知球的表面积为 16π,求球的体积.写出解决该问题的两个算法.解:算法 1:第一步 S =16π;第二步计算 =S ( 因为 =4π 2) ;R4πS R第三步 计算 V =34πR 3 ;第四步 输出运算结果 V .算法 2:第一步=16π;S计算 V =4S3第二步3π(4π );第三步输出运算结果V.[例3](12分 ) 某居民区的物业部门每个月向居民收取卫生费,计算方法是:3人或 3人以下的住宅,每个月收取 5 元;超出 3 人的住户,每高出 1 人加收 1.2元.设计一个算法,依据输入的人数,计算应收取的卫生费.[ 精解详析 ]设某户有 x 人,依据题意,应收取的卫生费y 是 x 的分段函数,即 y=5,≤3,x(4 分)1.2 x+ 1.4 ,x>3.算法以下:第一步输入人数 x;(6 分)第二步假如 x≤3,则 y=5,假如 x>3,则 y=1.2 x+1.4;(10 分)第三步输出应收卫生费 y.(12分)[一点通]对于此类算法设计应用问题,应该第一成立过程模型,依据模型,达成算法.注意每步设计时要用简炼的语言表述.5.以下算法:第一步输入 x 的值;第二步若 x≥0成立,则 y=2x,不然履行第三步;第三步y=log2(- x);第四步输出 y 的值.若输出结果 y 的值为4,则输入的x的值为 ________.分析:算法履行的功能是给定x,2x,x≥0,求分段函数 y=- x 对应的函数值.log 2, x<0由 y=4知2x=4或log2(- x)=4.∴x=2或-16.答案: 2 或- 166.已知直角三角形的两条直角边分别为a, b,设计一个求该三角形周长的算法.解:算法以下:第一步计算斜边 c=a2+ b2;第二步计算周长 l =a+ b+ c;第三步输出 l .1.算法的特色:有限性、确立性、逻辑性、不独一性、广泛性.2.在详细设计算法时,要明确以下要求:(1)算法设计是一类问题的一般解法的抽象与归纳,它要借助一般问题的解决方法,又要包括这种问题的全部可能情况.设计算法时常常要把问题的解法区分为若干个可履行的步骤,有些步骤是重复履行的,但最后却一定在有限个步骤以内达成.(2)借助相关的变量或参数对算法加以表述.(3)要使算法尽量简单,步骤尽量少.课下能力提高( 一 )一、填空题1.写出解方程2x+ 3= 0 的一个算法过程.第一步 __________________________________________________________________ ;第二步 __________________________________________________________________ .答案:第一步将常数项 3 移到方程右侧得2x=- 3;3第二步在方程两边同时除以2,得x=-2.2.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99. 求他的总分和均匀分的一个算法为:第一步令 A=89, B=96, C=99;第二步计算总分 S=________;第三步计算均匀分M=________;第四步输出 S和 M.分析:总分S 为三个成绩数之和,A+B+C S均匀数 M=3=3.答案: A+ B+ C S 33.给出以下算法:第一步输入 x 的值;第二步当x >4 时,计算y=+ 2;不然履行下一步;x第三步计算 y=4-x;第四步输出 y.当输入 x=0时,输出 y=__________.分析:因为x=0>4不可立,故y=4-x= 2.答案: 24.已知点P0( x0, y0)和直线 l : Ax+By+ C=0,求点到直线距离的一个算法有以下几步:①输入点的坐标x0, y0;②计算 z1= Ax0+By0+ C;③计算 z2= A2+ B2;④输入直线方程的系数A, B和常数 C;⑤计算= | z1|;z2⑥输出 d 的值.其正确的次序为 ________.分析:利用点到直线的距离公式:| 0+0+|Ax By Cd=A2+ B2.答案:①④②③⑤⑥5.已知数字序列: 2,5,7,8,15,32,18,12,52,8.写出从该序列搜寻18 的一个算法.第一步输入实数 a.第二步__________________________________________________________________.第三步输出 a=18.分析:从序列数字中搜寻18,一定挨次输入各数字才能够找到.答案:若 a=18,则履行第三步,不然返回第一步二、解答题6.写出求a, b, c 中最小值的算法.解:算法以下:第一步比较a ,b的大小,当>时,令“最小值”为b;不然,令“最小值”为a;a b第二步比较第一步中的“最小值”与 c 的大小,当“最小值”大于 c 时,令“最小值”为c;不然,“最小值”不变;第三步“最小值”就是a, b, c 中的最小值,输出“最小值”.7.某铁路部门规定甲、乙两地之间游客托运转李的花费为c=0.53 ω,ω≤50,50×0.53 +ω- 50×0.85 ,ω >50.此中ω(单位:kg)为行李的重量,怎样设计计算花费c(单位:元)的算法.解:算法步骤以下:第一步输入行李的重量ω;第二步假如ω≤50,那么c=0.53ω ;假如ω>50,那么c=50×0.53+(ω-50)×0.85;第三步输出运费 c.8.下边给出一个问题的算法:第一步输入 a;第二步若 a≥4,则履行第三步,不然履行第四步;第三步输出 2a- 1;第四步输出 a2-2a+3.问题: (1) 这个算法解决的是什么问题?(2)当输入a 等于多少时,输出的值最小?解: (1) 这个算法解决的问题是求分段函数2x- 1,x≥4,f ( x)=x2-2x+3,x<4的函数值问题.(2)当 x≥4时, f ( x)=2x-1≥7,当 x<4时, f ( x)= x2-2x+3=( x-1)2+2≥2.∴当 x=1时, f ( x)min=2.即当输入 a 的值为1时,输出的值最小.。
高中数学必修三课后习题答案第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序: 习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.”ELSE IF t>0 AND t<=180 THENy=0.2ELSEIF (t -180) MOD 60=0 THENy=0.2+0.1*(t-180)/60ELSEy=0.2+0.1*((t-180)\60+1)END IFEND IFPRINT “y=”;yEND IF END INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本. 练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差. 2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值(1)散点图如下: y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(2)回归直线如下图所示:(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。
《必修3》第一章《算法初步》
第11课时 程序框图与算法的基本逻辑结构
)班 第 小组 姓名: 评价:
1.掌握程序框图的概念及其基本程序框图的功能;
2.会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;
教学重点:程序框图的顺序结构的画法;程序框图的概念及其基本程序框图的功能; 一、思考学习算法的意义并自学课本第6-8页,完成以下问题: 1. 问题情境:
如果你向全班同学介绍一下你心中偶像的形象,你认为用语言描述好还是拿出偶像的 照片给同学们看好?说明一下你的理由。
2.新课探究
(1).右边的程序框图(如图所示),能判断任意输入的数x 的 奇偶性,请大家参考书本第六页的表格,完成下表:
(2).你能用语言描述一下框图的基本结构特征吗?
(3).通过以上算法与上一节课比较,你觉得用框图来表达算法有哪些特点?
m=0?
(1)顺序结构:;(2)条件结构:;(3)循环结构:;
例1:预习书本第9页例3,仿照其程序框图画出“输入矩形的边长求它的面积”的程序框图。
例2:预习书本第10页例4,仿照完成“求x的绝对值”的程序框图。
例3:预习书本第13页例6,仿照其程序框图设计一个计算222
12+100
++…的值的算法,并出程序框图。
设计算法求12+23+34+99100
……的值.要求画出程序框图
⨯⨯⨯⨯。
学习目标1.熟悉各种程序框及流程线的功能和作用.2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.3.通过比较体会程序框图的直观性、准确性.重点难点数学重点:程序框图的概念及画法.数学难点:程序框图中的符号的意义.学习过程导入新课用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图. 新知探究提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能.(3)说出输入、输出框的图形符号与功能.(4)说出处理框(执行框)的图形符号与功能.(5)说出判断框的图形符号与功能.(6)说出流程线的图形符号与功能.(7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能.讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.图形符号名称功能例1左图所示的是一个算法的流程图,已知a1=3,输出的b=7,求a2的值.例2.画出由直角三角形的两条直角边a, b,求斜边长的程序框图课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法.。
1.1.1 算法的概念【学习要求】1.了解算法的含义,体会算法的思想;2.能够用自然语言描述解决具体问题的算法; 3.理解正确的算法应满足的要求;4.会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.【学法指导】通过分析、抽象、程序化二次方程消去法的过程,体会算法的思想,发展有条理地清晰地思维能力,提高算法素养;发展对具体问题的过程与步骤的分析能力,发展从具体问题中提炼算法思想的能力.【知识要点】2.算法与计算机计算机解决任何问题都要依赖于 ,只有将解决问题的过程分解为若干个 ,即 ,并用计算机能够接受的“ ”准确地描述出来,计算机才能够解决问题. 【问题探究】[问题情境] 赵本山和宋丹丹的小品《钟点工》中有这样一个问题:宋丹丹:要把大象装入冰箱,总共分几步?哈哈哈哈,三步.第一步,把冰箱门打开;第二步,把大象装进去;第三步,把冰箱门带上. 探究点一 算法的概念问题1 一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.试问他们怎样渡过河去?请写出一个渡河方案.小结 广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法.在数学中,主要研究计算机能实现的算法,即按照某种步骤一定可以得到结果的解决问题的程序.问题2 在初中,对于解二元一次方程组你学过哪些方法?解二元一次方程组⎩⎪⎨⎪⎧x -2y =-1 ①2x +y =1 ②的具体步骤是什么?问题3 写出求方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0 ①A 2x +B 2y +C 2=0 ②(A 1B 2-B 1A 2≠0)的解的算法.问题4 由问题3我们得到了二元一次方程组的求解公式,利用此公式可得到问题2的另一个算法,请写出此算法.小结 根据上述分析,用加减消元法解二元一次方程组,可以分为三、四或五个步骤进行,这些步骤就构成了解二元一次方程组的一个“算法”.在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.从以上问题中我们看到某一个问题的算法不唯一.探究点二 算法的步骤设计例1 设计一个算法,判断7是否为质数. 分析1 质数是怎样定义的?分析2 根据质数的定义,怎样判断7是否为质数? 问题1 根据分析1、分析2写出例1的解答过程.跟踪训练1 设计一个算法,判断35是否为质数.问题2 要判断整数89是否为质数,按照例1的思路需用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,如何改进这个算法,减少算法的步骤呢? 问题3 判断一个大于2的整数是否为质数的算法步骤如何设计?例2 写出用“二分法”求方程x 2-2=0(x >0)的近似解的算法. 小结 算法的特点:(1)有穷性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束. (2)确定性:算法的计算规则及相应的计算步骤必须是确定的.(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果.跟踪训练2 求2的近似值,精确度0.05.【当堂检测】1.看下面的四段话,其中不是解决问题的算法是________. (1)从济南到北京旅游,先坐火车,再坐飞机抵达;(2)解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1; (3)方程x 2-1=0有两个实根;(4)求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15. 2.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步: (1)计算c =a 2+b 2;(2)输入直角三角形两直角边长a ,b 的值; (3)输出斜边长c 的值. 其中正确的顺序是________【课堂小结】算法是建立在解法基础上的操作过程,算法不一定要有运算结果,答案可以由计算机解决,算法没有一个固定的模式,但有以下几个基本要求: (1)符合运算规则,计算机能操作; (2)每个步骤都有一个明确的计算任务; (3)对重复操作步骤返回处理; (4)步骤个数尽可能少;(5)每个步骤的语言描述要准确、简明.【课后作业】一、基础过关1.下面四种叙述能称为算法的是 ( )A .在家里一般是妈妈做饭B .做米饭需要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米 2.下列关于算法的描述正确的是 ( )A .算法与求解一个问题的方法相同B .算法只能解决一个问题,不能重复使用C .算法过程要一步一步执行,每步执行的操作必须确切D .有的算法执行完后,可能无结果3.下列所给问题中,不可以设计一个算法求解的是 ( )A .二分法求方程x 2-3=0的近似解 B .解方程组⎩⎪⎨⎪⎧x +y +5=0x -y +3=0C .求半径为3的圆的面积D .判断函数y =x 2在R 上的单调性 4.计算下列各式中S 的值,能设计算法求解的是 ( )①S =12+14+18+…+12100 ②S =12+14+18+…+12100+… ③S =12+14+18+…+12n (n ≥1且n ∈N *)A .①②B .①③C .②③D .①②③5.已知直角三角形两条直角边长分别为a ,b (a >b ).写出求最大锐角θ的余弦值的算法如下:第一步,输入两直角边长a ,b 的值. 第二步,计算c =a 2+b 2的值. 第三步,________________. 第四步,输出cos θ.将算法补充完整,横线处应填____________. 6.下面给出了解决问题的算法:第一步:输入x .第二步:若x ≤1,则y =2x -1,否则y =x 2+3. 第三步:输出y .(1)这个算法解决的问题是________;(2)当输入的x 值为________时,输入值与输出值相等.7.已知某梯形的底边长AB =a ,CD =b ,高为h ,写出一个求这个梯形面积S 的算法.8.试设计一个求一般的一元二次方程ax 2+bx +c =0的根的算法.二、能力提升9.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是( )A .只能设计一种算法B .可以设计两种算法C .不能设计算法D .不能根据解题过程设计算法10.对于算法:第一步,输入n .第二步,判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行第三步.第三步,依次从2到(n -1)检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n .满足条件的n 是( ) A .质数B .奇数C .偶数D .约数11.求1×3×5×7×9×11的值的一个算法是:第一步,求1×3得到结果3;第二步,将第一步所得的结果3乘5,得到结果15; 第三步,____________________________; 第四步,再将105乘9,得到945;第五步,再将945乘11,得到10 395,即为最后结果.12.在某次田径比赛中,男子100米A 组有8位选手参加预赛,成绩(单位:秒)依次为:9.88,10.57,10.63,9.90,9.85,9.98,10.21,10.86.请设计一个算法,在这些成绩中找出不超过9.90秒的成绩.三、探究与拓展13.写出求1+12+13+…+1100的一个算法.1.1.2 程序框图与算法的基本逻辑结构第1课时 程序框图、顺序结构 【学习要求】1.掌握程序框图的概念;2.熟悉各种程序框及流程线的功能和作用; 3.能用程序框图表示顺序结构的算法.【学法指导】通过观察、模仿、操作,经历通过设计顺序结构程序框图表达解决问题的过程,学会灵活、正确地使用顺序结构画程序框图;认识到学习程序框图是我们学习计算机的一个基本步骤.【知识要点】1.程序框图(1)程序框图又称 ,是一种用 、 及 来表示算法的图形.(2)在程序框图中,一个或几个 的组合表示算法中的一个步骤;带有 的流程线将程序框连接起来,表示算法步骤的 .3.顺序结构(1)顺序结构的定义由若干个 组成的,这是任何一个算法都离不开的基本结构. (2)结构形式【问题探究】[问题情境] 我们都喜欢旅游,进入景区大门后,我们首先看到的是景点线路图,通过观看景点线路图能直观、迅速、准确的知道景区有哪几个景点,各景点之间按怎样的路径走,从而避免迷途或者漏掉景点的事情发生.本节将探究使算法表达得直观、准确的方法,即程序框图. 探究点一 程序框图的概念问题1 为什么要用图形的方法表示算法?问题2 什么是“程序框图”?说出下列程序框的名称和所实现的功能?例1 一个完整的程序框图至少包含 () A .终端框和输入、输出框 B .终端框和处理框C .终端框和判断框D .终端框、处理框和输入、输出框 小结 画程序框图的规则: (1)使用标准的程序框符号;(2)框图一般从上到下,从左到右的方向画; (3)描述语言写在程序框内,语言清楚、简练.跟踪训练1 下列说法正确的是________.(填序号) ①程序框图中的图形符号可以由个人来确定; ②也可以用来执行计算语句;③输入框只能紧接在起始框之后;④程序框图一般按从上到下、从左到右的方向画; ⑤判断框是具有超出一个退出点的唯一符号.探究点二 顺序结构问题1 如何定义顺序结构?问题2 顺序结构可以用怎样的程序框图来表示?例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式(令p =a +b +c2,则三角形的面积S =))()(c p b p a p p ---,设计一个计算三角形面积的算法,并画出程序框图表示.小结 顺序结构的程序框图的基本特征:(1)必须有两个起止框,穿插输入、输出框和处理框,没有判断框. (2)各程序框从上到下用流程线依次连接.(3)处理框按计算机执行顺序沿流程线依次排列.跟踪训练2 一个笼子里装有鸡和兔共m 只,且鸡和兔共n 只脚,设计一个计算鸡和兔各有多少只的算法,并画出程序框图.例3 已知点P 0(x 0,y 0)和直线l :Ax +By +C =0,写出求点P 0到直线l 的距离d 的算法及程序框图. 小结 在使用顺序结构书写程序框图时,(1)要注意各种框图符号的正确使用;(2)要先赋值,再运算,最后输出结果.跟踪训练3 写出下列算法的功能:(1)图(1)中算法的功能是(a >0,b >0) . (2)图(2)中算法的功能是 .【当堂检测】1.下面程序框图输出的S表示.2.下面的程序框图是顺序结构的是()3.程序框图符号“▭”可用于()A.输出a=10 B.赋值a=10C.判断a=10 D.输入a=1【课堂小结】1.在设计计算机程序时要画出程序运行的程序框图,有了这个程序框图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端.2.规范程序框图的表示:(1)使用标准的框图符号;(2)框图一般按从上到下、从左到右的方向画,流程线要规范;(3)除判断框外,其它框图符号只有一个进入点和一个退出点;(4)在图形符号内描述的语言要非常简练、清楚.【课后作业】一、基础过关1.任何一种算法都离不开的基本结构为()A.逻辑结构B.条件结构C.循环结构D.顺序结构2.下列关于程序框图的说法正确的是()A.程序框图是描述算法的语言B.在程序框图中,一个判断框最多只能有1个退出点C.程序框图虽可以描述算法,但不如用自然语言描述算法直观D.程序框图和流程图不是一个概念3.尽管算法千差万别,但程序框图按其逻辑结构分类共有()A.2类B.3类C.4类D.5类4.对终端框叙述正确的是()A .表示一个算法的起始和结束,框图是B .表示一个算法输入和输出的信息,框图是C .表示一个算法的起始和结束,框图是D .表示一个算法输入和输出的信息,框图是5.以下给出对程序框图的几种说法:①任何一个程序框图都必须有起止框;②输入框只能紧接开始框,输出框只能紧接结束框;③判断框是唯一具有超出一个退出点的符号.其中正确说法的个数是________.6.下面程序框图表示的算法的运行结果是________.7.已知半径为r的圆的周长公式为C=2πr,当r=10时,写出计算圆的周长的一个算法,并画出程序框图.8.已知函数y=2x+3,设计一个算法,若给出函数图象上任一点的横坐标x(由键盘输入),求该点到坐标原点的距离,并画出程序框图.二、能力提升9.下列关于流程线的说法,不正确的是()A.流程线表示算法步骤执行的顺序,用来连接程序框B.流程线只要是上下方向就表示自上向下执行,可以不要箭头C.流程线无论什么方向,总要按箭头的指向执行D.流程线是带有箭头的线,它可以画成折线10.给出下列程序框图:若输出的结果为2,则①处的执行框内应填的是()A.x=2 B.b=2 C.x=1 D.a=511.根据如图所示的程序框图所表示的算法,可知输出的结果是______.12.如图所示的程序框图,当输入的x的值为0和4时,输出的值相等,根据该图和下列各小题的条件回答下面的几个问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为3时,求输出的f(x)的值.(3)要想使输出的值最大,求输入的x的值.三、探究与拓展13.有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用程序框图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.第2课时条件结构【学习要求】1.进一步熟悉程序框图的画法;2.掌握条件结构的程序框图的画法;3.能用条件结构框图描述实际问题.【学法指导】通过模仿、操作、探索,经历通过设计条件结构程序框图表达解决问题的过程,学会灵活、正确地利用条件结构画程序框图;认识到学习程序框图是我们学习计算机语言的必经之路.【知识要点】1.条件结构在一个算法中,经常会遇到一些条件的判断,算法的流程根据 是否成立有不同的流向.条件结构就是处理这种过程的结构.【问题探究】[问题情境] 前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们学习有分支的逻辑结构——条件结构. 探究点一 条件结构的概念问题1 举例说明什么是分类讨论思想?问题2 解关于x 的方程ax +b =0的算法步骤如何设计?问题3 问题2中的算法的程序框图还能不能只用顺序结构表示?为什么? 问题4 什么是条件结构?探究点二 用程序框图表示条件结构问题1 条件结构用程序框图表示有哪些形式?问题2 解关于x 的方程ax +b =0的算法的程序框图如何表示?例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三条边边长的三角形是否存在,并画出这个算法的程序框图.分析1 如何判断以3个任意给定的正实数为三条边边长的三角形是否存在? 分析2 验证3个数中任意两个数的和是否大于第3个数需要用到什么结构? 问题 写出例1的算法和程序框图.小结 凡是必须先根据条件作出判断然后再进行哪一个步骤的问题,在画程序框图时,必须引入一个判断框应用条件结构.跟踪训练1 “特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:⎩⎨⎧⨯-+⨯=85.0)50(53.05053.0ωωf 5050>≤ωω 其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克). 试设计计算费用f 的算法并画出程序框图.例2 设计一个求解一元二次方程ax 2+bx +c=0的算法,并画出程序框图.小结 当给出一个一元二次方程时,必须先确定判别式的值,然后再根据判别式的值的取值情况确定方程是否有解.该例仅用顺序结构是办不到的,要对判别式的值进行判断,需要用到条件结构.跟踪训练2 设计算法判断一元二次方程ax 2+bx +c =0是否有实数根,并画出相应的程序框图.【当堂检测】1.下面三个问题中必须用条件结构才能实现的是________. (1)已知梯形上、下底分别为a ,b ,高为h ,求梯形面积; (2)求三个数a ,b ,c 中的最小数;(3)求函数f (x )=⎩⎪⎨⎪⎧x -1, x ≥0,x +2, x <0的函数值.2.某算法的程序框图如图所示,则输出量y 与输入量x 满足的关系式是_____________________3.某次考试,为了统计成绩情况,设计了如图所示的程序框图.当输入一个同学的成绩x =75时,输出结果为_______【课堂小结】1.条件结构是程序框图的重要组成部分.其特点是:先判断后执行.2.在利用条件结构画程序框图时要注意两点:一是需要判断条件是什么,二是条件判断后分别对应着什么样的结果. 3.设计程序框图时,首先设计算法步骤,再转化为程序框图,待熟练后可以省略算法步骤直接画出程序框图,对于算法中分类讨论的步骤,通常设计成条件结构来解决.【课后作业】一、基础过关1.条件结构不同于顺序结构的特征是含有 ( )A .处理框B .判断框C .输入、输出框D .起止框2.下列算法中,含有条件结构的是 ( )A .求两个数的积B .求点到直线的距离C .解一元二次方程D .已知梯形两底和高求面积3.下列关于条件结构的描述,不正确的是 ( )A .条件结构的出口有两个,但在执行时,只有一个出口是有效的B .条件结构的判断条件要写在判断框内C .双选择条件结构有两个出口,单选择条件结构只有一个出口D .条件结构根据条件是否成立,选择不同的分支执行4.中山市的士收费办法如下:不超过2公里收7元(即起步价7元),超过2公里的里程每公里收2.6元,另每车次超过2公里收燃油附加费1元(不考虑其他因素).相应收费系统的程序框图如图所示,则①处应填 ()A .y =7+2.6xB .y =8+2.6xC .y =7+2.6(x -2)D .y =8+2.6(x -2)5.函数y =⎩⎪⎨⎪⎧x 2+1 (x >0)0 (x =0)x +6 (x <0)的程序框图如图所示,则①②③的填空完全正确的是________.(1)①y =0;②x =0?;③y =x +6 (2)①y =0;②x <0?;③y =x +6 (3)①y =x 2+1;②x >0?;③y =0 (4)①y =x 2+1;②x =0?;③y =0 6.如图是求实数x 的绝对值的算法程序框图,则判断框①中可填________.7.画出计算函数y =|2x -3|的函数值的程序框图.(x 由键盘输入)8.已知函数y =⎩⎪⎨⎪⎧1x(x >0)0 (x =0)1x 2(x <0),试设计一个算法的程序框图,计算输入自变量x 的值时,输出y 的值.二、能力提升9.输入-5,按图中所示程序框图运行后,输出的结果是()A .-5B .0C .-1D .110.给出一个程序框图,如图所示,其作用是输入x 的值,输出相应的y 的值.若要使输入的x 的值与输出的y 的值相等,则输入的这样的x 的值有()A .1个B .2个C .3个D .4个11.已知函数y =⎩⎪⎨⎪⎧log 2x , x ≥22-x , x <2,如图表示的是给定x 的值,求其对应的函数值y 的程序框图.①处应填写________;②处应填写________.12.画出解不等式ax >b (b ≥0)的程序框图.三、探究与拓展13. 有一城市,市区为半径为15 km 的圆形区域,近郊区为距中心15~25 km 的范围内的环形地带,距中心25 km 以外的为远郊区,如右图所示.市区地价每公顷100万元,近郊区地价每公顷60万元,远郊区地价为每公顷20万元,输入某一点的坐标为(x ,y ),求该点的地价,写出公式并画出程序框图.第3课时 循环结构、程序框图的画法【学习要求】1.掌握两种循环结构的程序框图的画法,能进行两种循环结构程序框图间的转化; 2.掌握画程序框图的基本规则,能正确画出程序框图.【学法指导】通过模仿、操作、探索,经历通过设计循环结构程序框图表达解决问题的过程,学会灵活、正确地利用三种结构画程序框图;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路.【知识要点】1.循环结构的定义在一些算法中,经常会出现从某处开始,按照一定的条件 某些步骤的情况,这就是循环结构,反复执行的步骤称为【问题探究】[问题情境] 经济的高速增长也给我们的生态环境造成了一定程度的污染,治理污染营造优美的生态环境是社会发展的必然要求.大家知道工厂的污水是怎样处理的吗?污水进入处理装置后要进行多次循环处理才能达到排放标准.算法中也有很多问题需要反复循环运行后,才能计算出结果,能够反复操作的逻辑结构就是循环结构.探究点一 循环结构、循环体的概念问题1 你能举出需要反复循环计算的数学问题吗?问题2 什么是循环结构、循环体?探究点二 循环结构的形式问题 循环结构有哪两种形式?它们有什么不同点和相同点?例1 设计一个计算1+2+…+100的值的算法,并画出程序框图. 问题1 写出例1的算法和程序框图.问题2 上述程序框图用的是当型循环结构,如果用直到型循环结构表示,则程序框图如何?小结 变量S 作为累加变量,来计算所求数据之和.当第一个数据送到变量i 中时,累加的动作为S =S +i ,即把S 的值与变量i 的值相加,结果再送到累加变量S 中,如此循环,则可实现数的累加求和. 跟踪训练1 已知有一列数12,23,34,…,nn +1,设计程序框图实现求该数列前20项的和.探究点三 程序框图的画法问题 画程序框图的基本步骤是怎样的? 例2 结合前面学过的算法步骤,利用三种基本逻辑结构画出程序框图,表示用“二分法”求方程x 2-2=0(x >0)的近似解的算法.小结 在用自然语言表述一个算法后,可以画出程序框图,用顺序结构、条件结构和循环结构来表示这个算法,这样表示的算法清楚、简练,便于阅读和交流.跟踪训练2 设计程序框图实现1+3+5+7+…+131的算法.例3 某工厂2005年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%,设计一个程序框图,输出预计年生产总值超过300万元的最早年份.小结 程序框图画完后,要进行验证,按设计的流程分析是否能实现所求的数的累加,分析条件是否达到就结束循环,所以我们要注意初始值的设置、循环条件的确定以及循环体内语句的先后顺序,三者要有机地结合起来.最关键的是循环条件,它决定循环次数.跟踪训练3 高中某班一共有40名学生,设计程序框图,统计班级数学成绩良好(分数>80)和优秀(分数>90)的人数.【当堂检测】1.如图所示的程序框图包含算法结构中的哪些结构 ()(1)条件结构 (2)顺序结构 (3)循环结构 (4)无法确定 A .(1)(2) B .(1)(3) C .(2)(3) D .(4)2.如图所示的程序框图运行后,输出的结果为________.【课堂小结】1.循环结构需要重复执行同一操作的结构称为循环结构,即从某处开始,按照一定条件反复执行某一处理步骤.反复执行的处理步骤称为循环体.(1)循环结构中一定包含条件结构;(2)在循环结构中,通常都有一个起循环计数作用的变量,这个变量的取值一般都含在执行或中止循环体的条件中.2.程序框图中的任何结构内的每一部分都有机会被执行到,也就是说对每一个框来说都应当有一条从入口到出口的路径通过它.如图1中的A ,没有一条从入口到出口的路径通过它,就是不符合要求的程序框图.结构内不存在死循环,即无终止的循环.像图2就是一个死循环.在程序框图中是不允许有死循环出现的.【课后作业】一、基础过关1.在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是 ( )A .分支型循环B .直到型循环C .条件型循环D .当型循环 2. 如图所示是一个循环结构的算法,下列说法不正确的是 ()A .①是循环变量初始化,循环就要开始B .②为循环体C .③是判断是否继续循环的终止条件D .①可以省略不写3.执行如图所示的程序框图,输出的S 值为 ()A .2B .4C .8D .164.某程序框图如图所示,若输出的S =57,则判断框内为 ()A .k >3?B .k >4?C .k >5?D .k >6?5.阅读如图所示的程序框图,运行相应的程序,输出的s 值等于______.6.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为x 1,…,x n (单位:吨).根据如图所示的程序框图,若n =2,且x 1,x 2分别为1,2,则输出的结果S 为______.7.画出计算1+12+13+…+1999的值的一个程序框图.8.求使1+2+3+4+5+…+n >100成立的最小自然数n 的值,画出程序框图.二、能力提升9.如果执行如图所示的程序框图,输入n =6,m =4,那么输出的p 等于( )。