非线性方程组的迭代解法
- 格式:ppt
- 大小:484.00 KB
- 文档页数:26
毕业论文开题报告信息与计算科学非线性方程组的迭代解法一、选题的背景和意义=的系数矩阵具有两非线性问题是近代数学研究的主流之一,随着计算问题的日益复杂化Ax b个明显的特点:大型化和稀疏化。
大型化指系数矩阵阶数可达上万甚至更高,稀疏性指A的零元素占绝大多数对这样的A作直接三角分解,稀疏性会遭到破坏,零元素被大量填入变为非零元素,因此迫切需要新的数值方法,适用于大型稀疏线性方程,以节省储存空间和计算时间,即提高计算效=是数值计算的重要任务,但是率,迭代法在这样的背景下得到关注和发展,求解线性方程组Ax b大多数科学和实际问题本质上是非线性的,能做线性化的毕竟有限,对这些非线性问题是各种解决方案,常常归纳为求解一个非线性方程组,而与线性方程相比非线性方程组的求解要困难和复杂的多,计算量也大的多,现有的理论研究还比较薄弱。
而对于非线性方程,一般都用迭代法求解。
二、国内外研究现状、发展动态近年来,国内外专家学者非线性方程组的迭代解法的研究兴趣与日俱增,他们多方面、多途径地对非线性方程组进行了广泛的领域性拓展(科学、物理、生产、农业等),取得了一系列研究成果。
这些研究,既丰富了非线性方程组的内容,又进一步完善了非线性方程组的研究体系,同时也给出了一些新的研究方法,促进了数值计算教学研究工作的开展,推动了课程教学改革的深入进行。
三、研究的主要内容,拟解决的主要问题(阐述的主要观点)非线性的迭代法是解非线性方程组的基本途径,是数值计算中非线性方程组求根的重要工具,也是研究非线性方程组整体性质和具体分布的重要工具。
就因为这样,很多专家学者对非线性方程组的迭代法进行研究。
在前人研究的基础上,本文首先介绍非线性方程组迭代法的产生背景以及国内外状况,然后从数值计算的定义及理论定理出发来研究非线性方程组的迭代法的一些相关的结论,包括非线性方程组的基于不动点原理的迭代法、newton迭代法及其收敛性、非线性方程组的迭代法及其收敛性、最小二乘法、迭代法的收敛加速性等,进一步讨论非线性方程组迭代解法的收敛性质以及其他一些相关定理,以便我们更好、更清楚的看到非线性方程组和迭代法之间的联系,以及收敛和加速。
牛顿迭代法解非线性方程(组)在辨识工作中,常常需要对辨识准则或者判据进行求极值,这往往涉及到求非线性方程(组)的解问题。
牛顿迭代法是一种常用方法。
下面把自己对牛顿迭代法的学习和理解做个总结。
1.一元非线性方程的牛顿迭代公式和原理以一元非线性方程 f(x)=0 为例,对函数 f(x)进行Taylor级数展开(只展开至线性项)得f(x) = f(x0)+f'(x0)(x-x0)所以方程可写成f(x0)+f'(x0)(x-x0) = 0其中x0是给定的已知值,则不难推导出方程的解(当然,只是近似解,毕竟Taylor展开过程中只取了线性项)x = x0 - f(x0) / f'(x0)其中x不是真实解,但是相比之前的x0更靠近真实解了,因此可以多重复几次上述过程,从而使得到的解非常接近准确值。
所以,对于一元非线性方程,牛顿拉夫逊迭代公式为:x(k+1) = x(k) - f(x(k)) / f'(x(k))根据Taylor级数的几何意义我们可以从几何上形象的看牛顿迭代法的求解f(x)=0的过程。
第一次迭代x1 = x0 - f(x0) / f'(x0),其中f(x0) / f'(x0)的几何意义很明显,就是x0到x1的线段长度(这可以从直角三角形的知识得到)。
第二次迭代x2 = x1 - f(x1) / f'(x1),其中f(x1) / f'(x1)的几何意义很明显,就是x1到x2的线段长度。
同理可以进行第三次迭代第四次迭代,可以明显的看出x的取值在不断逼近真实解x*。
可能有人问,迭代求得的结果会不会不收敛,也就是x会不会偏离x*。
由于x0是在x*附近区域取值的,因此x0到x1这段曲线应该认为是平滑的没有转折的,因此切线与x轴的交点只会越来越接近真实解x*。
但是如果x0的取值离x*比较远的话,那么x0到x1这段曲线上可能有“转折”,这样就可能引起迭代的不收敛。
文献综述信息与计算科学非线性方程组的迭代解法一、国内外状况 近年来,国内外专家学者非线性方程组的迭代解法的研究兴趣与日俱增,他们多方面、多途径地对非线性方程组进行了广泛的领域性拓展(科学、物理、生产、农业等),取得了一系列研究成果。
这些研究,既丰富了非线性方程组的内容,又进一步完善了非线性方程组的研究体系,同时也给出了一些新的研究方法,促进了数值计算教学研究工作的开展,推动了课程教学改革的深入进行。
非线性问题是数值分析中一种研究并解决数值计算问题的近似解的数学方法之一。
数值是各高校信息与计算科学专业的一门核心基础课程。
它既有数学专业课理论上的抽象性和严谨性,又有解决实际问题的实用性。
80年代以前,数值分析课程只在计算数学专业和计算机专业开设,限于计算机的发展,课程的重心在数学方法理论分析方面,是一门理论性较强的课程。
近年来,随着计算机技术的迅速发展,以及计算机的普及和应用,数值分析课程也在国内外各大高校得到了迅速的推广。
特别是Mathworks公司对Matlab软件的研发,给数值分析课程注入了新的活力。
利用Matlab 所含的数值分析计算工具箱,可以进行数值计算方法的程序设计,同时利用图形图像处理功能,可以对数值分析的近似解及误差进行可视化分析,特别是对非线性问题的求解,利用软件计算求解的方法简单多了。
二、进展情况经过多年的不断研究探索,非线性问题的理论性质得到了更多的认证,我们通过对理论的学习,将它融入其他知识体系中比如:动力学,农业学等等。
非线性问题在经过人们不断的探索努力下发现了很多定理定义,比如不动点迭代法,牛顿法,拟牛顿法,以及各种迭代法。
并且对于各种迭代法的收敛性质和收敛速度进行了深入的研究,从而了解了迭代法的构造、几何解释、并对它的收敛性(全部收敛和局部收敛)、收敛阶、误差估计等。
由于迭代法的计算步骤比较多,计算量大且复杂,很多学者对迭代法的加速方法进行了研究。
而对非线性方程组的迭代解法也初步有了研究的进展。
非线性方程组的迭代解法
非线性方程组是指由非线性函数组成的方程组,它们通常无法使用数学公式解出解析解。
一种常用的求解非线性方程组的方法是迭代法。
迭代法是一种近似求解方法,它通过不断进行迭代来逼近解。
常用的迭代法有牛顿迭代法、共轭梯度法、线性共轭法等。
牛顿迭代法是一种常用的迭代法,它使用了泰勒展开式来逼近非线性函数,并使用这个近似函数的零点来迭代求解非线性方程组。
共轭梯度法是一种高效的迭代法,它使用了共轭梯度来求解非线性方程组。
线性共轭法是一种高效的迭代法,它通过使用共轭梯度来求解非线性方程组,并使用线性共轭条件来加速收敛。
这些迭代法都是基于迭代的方法,需要给定初始解和终止条件,并且在迭代过程中可能会出现收敛问题,所以需要设计合适的迭代步骤来保证收敛性。
一:非线性方程的基本迭代方法简单迭代法非线性方程的一般形式f(x)=0 其中f(x)是一元非线性函数。
若存在常数s 使f(s)=0,则称s 是方程的根。
把方程转化为其等价的方程)(x x ϕ=,因而有)(s s ϕ=。
选定s 的初始近似值0x ,用迭代公式)(1k k x x ϕ=+,得到}{k x 收敛于s ,就求出了方程的解。
收敛性:)(s s ϕ=,)(x ϕ'在包含s 的某个开区间内连续。
如果|)(x ϕ'|<1则存在δ>0,0x ∈[s-δ,s+δ]时,由该迭代函数产生的迭代法收敛。
收敛速度:(}{k x 收敛于s ,k e 为s 与k x 的差值绝对值,则c e e r k k k =+∞→1lim,c 是常数,则该迭代是r 阶收敛)Newton 法为了使迭代的收敛速度更快,应尽可能使)(x ϕ在s 处有更多阶的导数等于零。
令)(x ϕ=)()(x f x h x +,)(x h 为待定函数,已知)(s ϕ'=0,推出)(x h =)(1x f '-。
这就得出了牛顿法的迭代形式 )()(1k k k k x f x f x x '-=+,(k=0、1、···) 牛顿法是二阶收敛的迭代方法,但是牛顿法的是局部收敛的,因此要求初值要靠近根。
求解中,对于每一个k 都要计算)(k x f ',而导数的计算比较麻烦,否则会产生很大误差。
割线法 在牛顿法基础上,用11)()(----k k k k x x x f x f 来代替)(k x f ',其中1-x 、0x 预先给定。
得到了割线法的迭代形式 )()())((111--+---=k k k k k k k x f x f x x x f x x ,(k=0、1、···) 割线法的收敛速度至少为1.618这样就避免了牛顿法求导数的繁琐程序单点割线法单点割线法就是在割线法的基础上,用))(,(00x f x 代替))(,(11--k k x f x ,得到的迭代形式 )()()(001k k k k k x f x f x f x x x x ---=+,(k=1、2、···) 单点割线法是一阶收敛的方法,它比割线法初值要少取一个点更加容易选取初值二:非线性方程的迭代解法的拓展修正的Chebyshev 法思想:将函数)(x f 在k x 处进行泰勒展开既 +-''+-'+≈!2)()())(()()(2k k k k k x x x f x x x f x f x f ,如果)(x f ≠0,先取线性部分来代替原来函数,既)(x f =)(k x f +))((k k x x x f -'=0,得到k x x -=)()(k k x f x f '-; 再用二次多项式部分代替原函数,既!2)()())(()()(2k k k k k x x x f x x x f x f x f -''+-'+==0,合并这两次的结果得到)()()))((2)()(1(2k k k k k k x f x f x f x f x f x x ''''⋅+-=,令1+=k x x ,得到就得到了新的迭代公式,这就是Chebyshev 方法的思想,该方法的迭代公式具有三阶收敛速度。
第六章非线性方程组的迭代解法6.3 一元方程的常用迭代法6.3.1 Newton迭代法6.3.2 割线法与抛物线法第六章非线性方程组的迭代解法设x*是方程f(x)=0的实根,是一个近似根,用Taylor展开式有,)(2)())(()()(02*"*'*k k k k x x f x x x f x f x f −+−+==ξ*xx k ≈k x 这里假设存在并连续。
若,可得)(''x f 0)('≠k x f ,)()(2)()()(2*'"'*k k k k k x x x f f x f x f x x −−−=ξ(6.3.1)其中。
若(6.3.1)的右端最后一项忽略不记,作为x*新的一个近似值,就有之间与在k x x *ξ)()('1k k k k x f x f x x −=+,k=0,1,…,(6.3.2)这就是Newton 迭代法。
6.3.1 Newton 迭代法第六章非线性方程组的迭代解法对(6.3.2)可作如下的几何解释:为函数f(x)在点处的切线与横坐标轴的交点,见图6-3.因此Newton 迭代法也称为切线法.k x 1+k x Y1+k x *xy=f(x))(k x f kxX将(6.3.2)写成一般的不动点迭代(6.2.3)的形式,有,)()()('x f x f x x −=ϕ2'"')]([)()()(x f x f x f x =ϕ所以有Newton 迭代法是超线性收敛的。
更准确地,从(6.3.1)和(6.3.2)可得下面的定理.)0)((,0)(*'*'≠=x f x ϕ第六章非线性方程组的迭代解法定理6.5, 且f(x)在包含x*的一个区间上有二阶连续导数,则Newton 迭代法(6.3.2)至少二阶收敛,并且0)(,0)(*'*≠=x f x f 设.)(2)()(*'*"2**1lim x f x f x x x x k k k =−−+∞→以上讨论的是Newton 法的局部收敛性。