熟料设备悬浮预热器旋风筒资料
- 格式:ppt
- 大小:4.19 MB
- 文档页数:24
水泥四五级旋风筒课程设计水泥四五级旋风筒是水泥生产过程中的一个关键设备,它在水泥熟料的预热、分解、煅烧等过程中起着重要作用。
本文将从旋风筒的结构、工作原理、课程设计等方面进行详细介绍。
一、旋风筒的结构水泥四五级旋风筒由筒体、引风机、尾气排放管道等组成。
筒体是旋风筒的主体部分,通常由钢板焊接而成,内部衬有耐火材料。
引风机用于将外部空气吹入旋风筒,形成旋转气流。
尾气排放管道用于排放煅烧后的尾气。
二、旋风筒的工作原理水泥四五级旋风筒通过高温气流将水泥熟料进行预热、分解、煅烧等过程。
首先,原料从入口处进入旋风筒,随着旋转气流的作用,逐渐往下滑动。
在旋风筒的上升段,熟料与高温气流进行热交换,使熟料逐渐升温。
然后,在旋风筒的下降段,熟料与燃烧气体进行反应,发生分解和煅烧,生成水泥熟料。
最后,煅烧后的熟料通过旋风筒的出口排出,并通过尾气排放管道排放出去。
1. 设计目标根据旋风筒的工作原理和结构特点,设计一个能够合理利用能源、提高水泥生产效率的旋风筒系统。
2. 设计内容(1)确定旋风筒的尺寸和工作参数,包括筒体直径、筒体长度、旋风筒的倾角、引风机的风量和压力等。
(2)设计旋风筒的进料系统,包括进料管道、进料装置等。
(3)设计旋风筒的出料系统,包括出料装置、出料管道等。
(4)设计旋风筒的保温和散热系统,保证旋风筒的工作温度。
(5)设计旋风筒的控制系统,包括温度控制、压力控制等。
3. 设计步骤(1)进行旋风筒的结构计算,确定筒体的尺寸和倾角。
(2)根据旋风筒的工作原理,确定旋风筒的工作参数,如进料速度、煅烧温度等。
(3)设计旋风筒的进料系统,确定合适的进料管道直径和进料装置。
(4)设计旋风筒的出料系统,确定合适的出料装置和出料管道。
(5)设计旋风筒的保温和散热系统,选择合适的保温材料和散热设备。
(6)设计旋风筒的控制系统,选择合适的传感器和控制装置。
4. 设计结果通过对旋风筒的结构和工作原理进行合理设计,可以提高水泥生产效率,降低能源消耗。
新型五级旋风预热器窑特点及其操作上海宝山水泥总厂赵学勇我厂Φ3×48.55m带五级旋风预热器的干法回转窑,(以下简称宝山窑)其悬浮预热器系统是从日本水泥公司(NCC)引进的高效节能设备。
设计指标为产量25 t/h,热耗3970kJ/kg熟料。
1990年12月10~15日通过72h性能考核,实际达到产量25.62t/h,热耗3750kJ/kg熟料。
自1990年7月试生产以来,由于受生料磨能力不足等原因的限制,该生产线尚未能达到设计要求,但节能效果是十分明显的。
在1991年度的试生产中,生产熟料9.765万t,平均热耗3840kJ/kg熟料,合标准煤131.3kg/kg熟料(见表1)。
显然,深入探讨这一条新型干法窑的特点是很有意义的。
表1 1991年度生产情况图1 宝山窑工艺流程1.生料储存库;2.可调速卸料器;3.螺旋输送机;4.生料提升机;5.螺旋输送机;6.稳流小仓;7.双联卸料器;8.皮带计量秤;9.锁风螺旋输送机;10.气力提升机;11.五级旋风预热器系统;12.回转窑;13.三通道喷煤管;14.单筒冷却机;15.链斗输送机;16.颚式破碎机;17.熟料提升机;18.胶带输送机;19.半成品库;20.增湿塔;21.高温风机;22.电收尘;23.回灰螺旋输送机1 宝山窑工艺流程宝山窑工艺流程如图1所示。
窑用生料从储存库底可控流量的卸料器卸出,经过螺旋输送机和斗式提升机送入溢流螺旋输送机,通过该机将窑用生料送入窑尾稳流小仓,多余的生料则经溢流管返回均化库。
送入稳流仓的生料,经过双联式回转卸料器,进入计量皮带秤,它直接记录并显示喂入窑内的生料量。
同时,也间接地反映了回转窑熟料的台时产量。
经计量后的生料通过溢流锁风机送入气力提升泵,再由该泵将生料喂入第二级旋风筒的出风管道内,这样就开始了生料预热及部分分解的过程。
之后进入窑内继续分解和全部烧结成熟料。
熟料通过冷却机冷却,由链斗输送机输送至颚式破碎机破碎,再经过斗式提升机、皮带输送机分送至熟料库。
1.悬浮预热器的每一个换热单元应同时具备哪三个功能?答:①生料粉在气流中的分散与悬浮;②气固相间换热80%以上在上升管道内进行;③气固相间分离,生料粉被收集,由旋风筒内完成2.试描述旋风预热器的工作原理(说明气流、物料的走向及换热与分离过程及特点?答:气体:气体从下一级连接管道吹上来,到达换热管道,3.悬浮预热器中气固之间的换热大部分在何处进行?气固换热与那些因素有关?答:悬浮预热器中气固之间的换热大部分在换热管道中进行;4.在悬浮预热器中气固之间的分离大部分在何处进行?答:悬浮预热器中气固之间的分离大部分在旋风筒内进行5.为何说料粉的分散于悬浮非常重要?采用什么措施改善料粉的均与分散?答:1.2. (1)选择合理的喂料位臵;(2)选择适当的管道风速;(3)合理控制生料细度;(4)喂料的均匀性;(5)旋风筒的结构;(6)在喂料口加装撒料装臵6.分析影响旋风预热器热效率的主要因素?答:(1)生料粉进入管道内分散的均匀程度直接影响到传热面积:(2)管道内的气固换热程度影响旋风预热器的热效率、(3)旋风筒内的气固相分离的程度影响到旋风预热器的热效率。
(4)漏风及表面散热影响到旋风预热器热效率。
(5)生料粉的沉降的好坏。
7.为什么管道内的风速不能太大,也不能太小?答:管道风速太低,热交换时间延长,不仅影响传热效率,甚至会使生料难以悬浮而沉降积聚,从而使旋风预热器的预热效果以及分离效率大大降低;风速过高,则会增大系统阻力,增加电耗,并影响旋风筒的分离效率。
这样最终不仅增加了水泥生产的成本而且使生产出来的水泥质量也不能达标。
所以风速一般控制在15~25m/s范围为宜,一旦监测到风速不在此范围之内,那么系统会报警使工作人员根据自己的经验采取相关的措施,使风速恢复到此范围之内,这样才能达到我们所预期的目标。
8.影响旋风筒分离效率的主要因素:答:(1)旋风筒的直径。
在其它条件相同时,筒体直径小,分离效率高。
(2)旋风筒进风口的型式及尺寸。
旋风预热器换热效率的分析悬浮预热器是实现气(废气)、固(生料粉)之间的高效换热,提高生料温度,降低排出废气温度的,有旋风预热器和立筒预热器两种,现在水泥行业主要以旋风预热器为主。
1.旋风预热器的工作原理旋风预热器由若干级换热单元组成,每级换热单元都是由旋风筒及其联接管道构成。
生料从第1级和第2级旋风筒之间的联接管道加入,被上升气流冲散,使其均匀的悬浮于气流之中。
此时进行的是对流换热,由于悬浮状态下气、固接触面积很大,对流换热系数较高,所以换热速度极快,完成换热只需0.02~0.04s。
之后,气流携带生料粉沿切向高速进入第1级旋风筒C1,被迫在圆筒体与排气管之间的圆柱内呈旋转运动状态。
从圆筒体到锥体,气流一边旋转,一边向下运动,直到锥体的顶部,气流被反射向上旋转,最后从排气口排出,而生料粉则从锥体顶部进入到C2和C3的联接管道,然后再次被携带到C2进行气、固分离。
以此类推,生料粉依次通过各级旋风筒及其联接管道。
在进入最后一级旋风筒前,生料进入分解炉完成大部分的CaCO3分解,分解后的生料再与废气一起进入最后一级旋风筒,完成气、固分离,生料最后进入回转窑煅烧。
2.旋风预热器的效率指标衡量预热器系统气、固之间换热效果有两个效率指标,热优良度和换热效率。
在旋风预热器系统中,二者相比,换热效率的使用要多一些。
热优良度:生料在预热器系统内温度的实际升高值与废气及生料进入预热系统时原始的温度差之比。
换热效率:生料出预热器系统所获得的热量与输入到预热器系统总热量的百分比。
EaØ=M Ee本次主要对换热效率的影响因素进行分析并归纳出提高热效率的有效措施。
3.影响旋风预热器换热效率的因素由于影响旋风预热器热效率的因素很多,而且相互之间有较密切的联系,某一因素的影响可用另一因素的影响解释,所以粗略总结以下几点,并查阅相关较新的研究数据(2010年后)用以直观分析:(1)粉料的悬浮效率由单元换热的工作原理可知,在旋风预热器中,气固之间热交换量的80%甚至90%是在旋风筒入口管道内瞬间进行的,前提条件是粉体物料充分均匀分散悬浮于气流中。
旋风预热器的工作参数有哪些第一篇:旋风预热器的工作参数有哪些旋风预热器的工作参数有哪些预热器属于悬浮态传热,由于气固接触,传热面积大,传热效率高。
生料粉悬浮态传热面积是堆积态传热面积的2000多倍,悬浮态的气固传热系数也比堆积态传热系数提高了12 ~ 23倍。
(1)预热器热效率η物料在预热器中所获得的热量与输入预热器热量之比。
η =(QQ2tm1)/(tg1-tg2)式中ε——预热器升温系数,以小数表示;tm1,tm2 ——分别表示进出预热器物料的温度(℃);tg1,tg2 ——分别表示进出预热器气体的温度(℃)。
(3)分解效率分解效率是预热器回收粉体的能力,一般用废气中粉尘含量来评价。
预热器的分解速率,特别是1级预热器的分解效率,直接影响到水泥生产成分和大气环境。
影响预热器分离效率的因素除了预热器本身的结构外,主要是操作中的漏风。
(4)压力损失ΔP预热器压力损失是指预热器进口和出口压力差,主要是由预热器结构决定的。
它直接影响系统的电耗,实际生产中要尽可能降低。
公司成套生产线包括:新型水泥生产线、活性石灰生产线、陶粒生产线、石料生产线、制砂生产线、选矿生产线、石英砂生产线、碎石生产线、加气混凝土设备,为你提供更为专业的服务。
公司视产品质量为企业的生命。
公司生产的球磨机设备,包括水泥球磨机、节能球磨机、陶瓷球磨机、超细球磨机、防爆球磨机、搅拌球磨机、管式球磨机、湿式球磨机、溢流型球磨机、选矿球磨机等。
我厂设备具有性能可靠、设计合理、操作方便、工作效率高等特点。
产品严格按照IS09002国际质量认证体系标准生产,公司生产的水泥设备由熟料细碎机、水泥球磨机、管磨机、风扫煤磨机、冷却机、预热器和烘干机等主要设备组成,配合气箱式脉冲袋收尘器、链式输送机、提升机、水泥粉磨站可组成完整的水泥生产线。
该生产线具有高效、低能、处理量高、经济合理等优点。
第二篇:旋风分离器工作原理旋风分离器工作原理当含尘气体由切向进气口进入旋风除尘器时,气流由直线运动变为圆周运动,旋转气流的绝大部分沿除尘器内壁呈螺旋形向下、朝向锥体流动,通常称此为外旋气流。
旋风预热器旋风筒设计——ο270切蜗壳式旋风筒引言悬浮预热器有两种:旋风预热器和立筒预热器。
随着时代的发张,经实践证明:旋风预热器在很多方面都表现出很大的优越势地位;而立筒预热器在技术上已经被淘汰。
本设计中旋风预热器、旋风预热器出口高温管段全部采用不锈钢(1Cr18Ni9Ti )制作,外敷100mm 厚矿棉保温层。
一、旋风预热器的功能设置悬浮预热器是为了实现气(废气)、固(生料粉)之间的高效换热,从而达到提高生料温度,降低排出废气温度的目的。
二、旋风预热器的工作原理气流携带生料粉沿切线方向告诉进入旋风筒,从而被迫在圆筒体与排气管之间的圆环柱内呈旋转运动状态。
而且是一边旋转,一边向下运动,从圆筒体到锥体,一直延伸到锥体的端部,并向上旋转,最后从排气管排出。
三、技术尺寸和结构参数(1)旋风筒的直径(内径)根据旋风筒内的气体流量及截面风速来计算D :πωVD 4=式中 V ——旋风筒内气体的流量,3m /s ,w ——假想气体沿旋风筒全截面垂直通过时的平均流速,又称:表观截面风速,m/spp t V V V V V LOKk co fl f 02.15.27315.273])([+⋅+++= (3m /h )式中 VVf= (包括窑尾出来的废气量、向分解炉内的漏风量3Nm/h )(2)旋风筒进风口的形式和尺寸a.旋风筒的进风口的类型为ο270切蜗壳式。
b.6f e =;eD R+=21;eD R322+=;eD R523+=式中 e 是“偏心度”;2/)(d D -被称为:“环形空腔宽度”:f 被称为:进风口的“扩张度”或“张开度”,表征蜗壳式进风口的展开角,展开角大对于提高旋风筒的气、固分离效率有利,但其外形尺寸及积料面也会随之增大,为了避免积料,蜗壳底部多为倾斜面。
(3)排气管尺寸和插入深度的确定a.内筒外径与旋风筒内经之比7.0~6.0/=Dd ,内筒中的气流速度达到14~13m/s ,有利于上一级换热单元中粉料的分散与悬浮。
影响旋风筒别离效率的主要因素1、旋风筒的直径。
在其他条件相同时,筒体直径小,别离效率高。
2、旋风筒进风口的形式及尺寸。
气流应以切向进入旋风筒,减少涡流干扰;进风口宜采用矩形。
进风口尺寸应使进口风速在16~22m/s之间,最好在18~2021s之间。
3、内筒尺寸及插入深度。
内筒直径小、插入深,别离效率高。
4、增加筒体高度,别离效率提高。
5、旋风筒下料管锁风阀漏风,将引起别离出的物料二次飞扬,漏风越大,扬尘越严重,别离效率越低。
漏风量小于或等于%时,别离效率降低得比拟缓慢;漏风量大于%时,别离效率下降得比拟快。
当漏风量大于8%时,别离效率降为零。
6、物料颗粒大小、气固比含尘浓度及操作的稳定性等,都会影响别离效率。
影响预热器热效率的因素1、预热器别离效率η对换热效率的影响别离效率的大小对预热器的换热效率有显著影响。
研究说明:预热器的别离效率与换热效率呈一次线性关系。
2、各级旋风筒别离效率对换热效率的影响对于多级串联的预热器,各级旋风筒别离效率对换热效率的影响程度是不同的,通过对两级串联的预热器的研究说明:提高上一级预热器的别离效率对提高换热效率的作用比提高低一级预热器的别离效率的作用要大,因此,保持最上级预热器有较高的别离效率是合理的。
3、固气比对换热效率的影响随着固气比的增大,一方面气固之间换热量增加,另一方面又会使由预热器入窑的物料温度降低,增加窑内热负荷,因此存在一个最正确固气比。
实际生产过程中,预分解窑的固气比一般在左右,因此提高固气比有利于提高热效率。
在一般情况下,尽量减少设备散热,严格密封堵漏,降低热耗,均有利于提高固气比,从而提高热效率。
4、预热器级数对换热效率的影响预热器级数越多,其热效率越高。
相同条件下,两级预热器比一级的热效率可以提高约26%。
但随着级数的增多,其热效率提高的幅度逐渐降低,如预热器由四级增加到五级,单位熟料热耗下降126~167J/g,由五级增加到六级,单位熟料热耗仅下降42~84J/g。
水泥悬浮预热器的工作原理水泥悬浮预热器是水泥生产过程中的关键设备之一,它主要用于提高水泥窑炉的热效率和降低能耗。
水泥悬浮预热器的工作原理可以简单描述为:通过高温烟气与原料进行热交换,将烟气中的热能传递给原料,从而提高原料的温度,为窑炉供热。
我们需要了解一下水泥悬浮预热器的结构。
一般来说,水泥悬浮预热器由热风室、旋风管和悬浮管等部分组成。
热风室是烟气与原料进行热交换的主要区域,旋风管用于分离烟气中的尘埃颗粒,而悬浮管则用于将原料悬浮在热风中,增加其与烟气的接触面积。
在水泥生产过程中,石灰石和粘土等原料需要在窑炉中进行高温煅烧,以产生水泥熟料。
而水泥悬浮预热器的作用就是在熟料进入窑炉之前,通过预热的方式提高原料的温度,从而节约能源。
具体来说,水泥悬浮预热器的工作过程可以分为以下几个步骤:1. 烟气进入热风室:烟气从水泥窑炉中排出,并经过净化处理后进入水泥悬浮预热器的热风室。
烟气的温度通常在800℃至900℃之间。
2. 烟气与原料进行热交换:烟气在热风室中与原料进行热交换。
原料首先经过破碎和磨细处理后,以颗粒状的形式进入热风室。
烟气中的热能被传递给原料,使其温度逐渐升高。
3. 烟气的净化:在热风室中,烟气经过旋风管的作用,使其中的尘埃颗粒被分离出来,从而净化烟气。
净化后的烟气再次进入热风室,进行循环利用。
4. 原料的预热:原料在热风室中被烟气加热,温度逐渐升高。
通过调整烟气的温度和流速,可以控制原料的预热温度,以适应窑炉的煅烧要求。
5. 原料的悬浮:在热风室中,原料通过悬浮管被悬浮在热风中。
悬浮管通常是一个倾斜的管道,其一端与热风室相连,另一端下垂进入窑炉。
原料在悬浮管中受到热风的冲击和搅拌,使其与烟气充分接触,增加热交换效果。
通过水泥悬浮预热器的工作,原料的温度可以从室温升至约800℃至900℃。
这样,原料进入窑炉后,所需的煅烧能量就会明显减少,从而降低了窑炉的能耗。
同时,水泥悬浮预热器还可以减少烟气中的有害物质排放,起到环保的作用。