5基于状态观测器的状态估计
- 格式:pdf
- 大小:402.65 KB
- 文档页数:40
控制系统的状态观测与估计在控制系统中,状态观测与估计是实现系统控制的关键步骤之一。
通过对系统状态的观测与估计,我们可以了解系统当前的状态,并作出相应的控制策略。
本文将介绍控制系统的状态观测与估计的基本原理和常用方法。
一、状态观测与估计的概述状态观测与估计是指通过对系统的输入和输出进行测量,利用系统的数学模型和观测数据推断系统的内部状态。
在实际应用中,往往无法直接测量到系统的所有状态变量,因此需要通过观测和估计的方法来获取系统状态信息。
二、状态观测的基本原理1. 定义系统的状态变量:在进行状态观测前,需要明确系统的状态变量。
状态变量可以是系统的输出量和输入量的某些函数,也可以是系统的内部变量。
2. 设计观测器:观测器是用来估计系统状态的一个数学模型。
观测器根据系统的输入和输出计算出系统状态的估计值。
3. 滤波器设计:为了减小测量误差和噪声对系统状态估计的影响,可以设计滤波器对测量数据进行滤波处理,提高状态估计的准确性。
三、常用的状态观测与估计方法1. 最小二乘法:最小二乘法是一种常用的状态估计方法,通过最小化观测数据与估计值之间的误差平方和,求解最优的状态估计值。
2. 扩展卡尔曼滤波器(EKF):扩展卡尔曼滤波器是一种非线性系统的状态估计方法。
它通过将系统状态的概率分布线性化,将非线性系统转化为线性系统的问题,进而进行状态估计。
3. 粒子滤波器:粒子滤波器是一种基于随机采样的状态估计方法。
它利用一组粒子来表示系统的状态分布,并通过对粒子进行加权采样来计算状态的估计值。
四、状态观测与估计的实际应用状态观测与估计在控制系统中有广泛的应用,例如:1. 航空航天领域:在飞行器控制系统中,通过对飞行器的动力学模型和传感器数据进行观测与估计,实现姿态控制和轨迹跟踪。
2. 机器人控制:在机器人控制系统中,通过对机器人的运动模型和传感器测量数据进行观测与估计,实现自主定位和导航。
3. 资源管理:在电力系统等资源管理领域,通过观测和估计系统状态,实现对资源的优化调度和能源的有效利用。
毕业论文文献综述轮机工程船舶故障诊断技术研究一、研究背景及意义故障诊断的发展和应用,是随着船舶设备技术以及相应的维修模式的发展相联系的。
20世纪以前,船舶结构简单,维修费用低人类对船舶的维修基本上是事后维修,即某部分出现问题后在进行故障分析和维护,故障诊断完全没有引起人们的注意。
进入20世纪后,随着船舶设备本身技术水平和复杂程度的提高,设备故障对船舶产生显著影响,出现了定期维修,一边事故发生前加以处理。
1960年代以后,海南事故频发,人类开始意识到传统的定期维修的弊端,开始变定期为修为与之维修,及监测船舶的工作,预先发现潜在的故障因素,及早采取措施,防止突发性故障。
预知维修方式,不仅大大减少了灾难的发生,而且避免了失修和过剩维修,经济效益可观,很快被大多数船公司认可,促使故障诊断技术得到了迅速发展。
二、国内外故障诊断技术研究现状故障诊断发展至今,取得了很大进步。
但是目前,故障诊断方法的分类还没有统一标准。
根据其理论和方法特点,一般为基于信号处理的方法、基于解析模型的方法和基于知识的方法等三类[]2。
2.1 基于信号处理的方法基于信号处理的方法,通常利用信号模型,直接根据检测数据判断,也可采用相应的信号分析和处理方法,如相关函数如相关函数、频谱、自回归滑动平均等,提取诸如方差、幅值、频率等特征。
直接利用信号模型、回避了抽取对象数学模型的难点,对于线性系统和非线性系统都适用,具有一定的通用性。
这种方法具体可分为下面几种实现方式[]2(1)直接测量法即通过仪器、仪表等,并借助操作人员的感官,通过看、听、摸、嗅等方法,直接测量或观测被诊断对象有关的输出。
若输出超出正常范围,则认为对象经或将要发生故障。
故障诊断技术发展的初期阶段,大多采用这种方法,特点是简单,但常常受操作人员的经验、技术水平和身体状态等的影响,容易出现误判和漏判。
(2)信号处理技术故障往往由于冲击、振荡、碰撞、转速突变等引起,从而也引发相应状态监测传感器的检测信号的突变和噪声增加,各种变化的奇变点处含有丰富的故障信息。
现代控制实验状态反馈器和状态观测器的设计现代控制实验中,状态反馈器和状态观测器是设计系统的重要组成部分。
状态反馈器通过测量系统的状态变量,并利用反馈回路将状态变量与控制输入进行耦合,以优化系统的性能指标。
状态观测器则根据系统的输出信息,估计系统的状态变量,以便实时监测系统状态。
本文将分别介绍状态反馈器和状态观测器的设计原理和方法。
一、状态反馈器的设计:状态反馈器的设计目标是通过调整反馈增益矩阵,使得系统的状态变量在给定的性能要求下,达到所需的一组期望值。
其设计步骤如下:1.系统建模:通过对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
通常表示为:ẋ=Ax+Buy=Cx+Du其中,x为系统状态向量,u为控制输入向量,y为系统输出向量,A、B、C、D为系统的状态矩阵。
2.控制器设计:根据系统的动态性能要求,选择一个适当的闭环极点位置,并计算出一个合适的增益矩阵。
常用的设计方法有极点配置法、最优控制法等。
3.状态反馈器设计:根据控制器设计得到的增益矩阵,利用反馈回路将状态变量与控制输入进行耦合。
状态反馈器的输出为:u=-Kx其中,K为状态反馈增益矩阵。
4.性能评估与调整:通过仿真或实验,评估系统的性能表现,并根据需要对状态反馈器的增益矩阵进行调整。
二、状态观测器的设计:状态观测器的设计目标是根据系统的输出信息,通过一个状态估计器,实时估计系统的状态变量。
其设计步骤如下:1.系统建模:同样地,对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
2.观测器设计:根据系统的动态性能要求,选择一个合适的观测器极点位置,以及一个合适的观测器增益矩阵。
常用的设计方法有极点配置法、最优观测器法等。
3.状态估计:根据观测器设计得到的增益矩阵,通过观测器估计系统的状态变量。
状态观测器的输出为:x^=L(y-Cx^)其中,L为观测器增益矩阵,x^为状态估计向量。
4.性能评估与调整:通过仿真或实验,评估系统的状态估计精度,并根据需要对观测器的增益矩阵进行调整。
实验一 系统能控性与能观性分析一、实验目的1.理解系统的能控和可观性。
二、实验设备1.THBCC-1型 信号与系统·控制理论及计算机控制技术实验平台;三、实验内容二阶系统能控性和能观性的分析四、实验原理系统的能控性是指输入信号u 对各状态变量x 的控制能力,如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态引向状态空间的坐标原点,则称系统是能控的。
对于图21-1所示的电路系统,设i L 和u c 分别为系统的两个状态变量,如果电桥中4321R R R R ≠,则输入电压u r 能控制i L 和u c 状态变量的变化,此时,状态是能控的。
反之,当4321R R =R R 时,电桥中的A 点和B 点的电位始终相等,因而u c 不受输入u r 的控制,u r 只能改变i L 的大小,故系统不能控。
系统的能观性是指由系统的输出量确定所有初始状态的能力,如果在有限的时间内根据系统的输出能唯一地确定系统的初始状态,则称系统能观。
为了说明图21-1所示电路的能观性,分别列出电桥不平衡和平衡时的状态空间表达式:u 0L 1u i R4R3R3R4R2R1R1R2C 1R4R3R3R4R2R1R1R2C 1R4R3R3R4R2R1R1R2L 1R4R3R3R4R2R1R1R2L 1u i c L c L ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-+-⎪⎭⎫⎝⎛+++-⎪⎭⎫ ⎝⎛+-+-⎪⎭⎫⎝⎛+++-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ y=u c =[0 1] ⎪⎪⎪⎭⎫ ⎝⎛c L u i (1)u 0L 1u i R4R3R3R4R2R1R1R2C 1- 0 0 R4R3R3R4R2R1R1R2L 1u i c L c L ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+++-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛[0u y c == ]1 ⎪⎪⎪⎭⎫ ⎝⎛c L u i (2)由式(2)可知,状态变量i L 和u c 没有耦合关系,外施信号u 只能控制i L 的变化,不会改变u c 的大小,所以u c 不能控。
状态反馈观测设计状态反馈观测器是一种用于估计系统状态的控制器组件。
它通过测量系统的输出和输入,并使用状态方程对系统状态进行估计。
以下是一个详细精确的状态反馈观测器设计步骤:1. 确定系统的状态方程:首先,需要确定系统的状态方程,通常采用线性时不变系统表示。
状态方程可以表示为:x' = Ax + Buy = Cx + Du其中,x是系统的状态向量,u是系统的输入向量,y是系统的输出向量,A、B、C和D是系统的系数矩阵。
2. 设计状态反馈控制器:使用控制理论中的状态反馈控制器设计方法,根据系统的要求和性能指标,选择合适的状态反馈增益矩阵K。
状态反馈控制器的输出可以表示为:u = -Kx3. 设计状态观测器:状态观测器的目标是估计系统的状态向量x。
根据系统的输出和输入,可以使用以下观测器方程进行状态估计:x̂' = A x̂ + Bu + L(y - C x̂)其中,x̂是状态观测器的估计状态向量,L是观测器增益矩阵。
4. 确定观测器增益矩阵L:观测器增益矩阵L的选择可以使用线性二次调节器(LQR)设计方法,根据系统的要求和性能指标,通过求解代数矩阵方程来确定L。
5. 实施状态反馈观测器:将状态反馈控制器和状态观测器结合在一起,形成一个状态反馈观测器控制系统。
系统的输入通过状态反馈控制器计算得到,系统的输出通过状态观测器估计得到,从而实现对系统状态的估计和控制。
6. 优化观测器性能:根据实际应用需求,可以通过调整观测器增益矩阵L来优化观测器的性能,例如减小状态估计误差、提高状态估计的收敛速度等。
以上是一个详细精确的状态反馈观测器设计过程。
根据具体的系统和应用需求,可能需要进行一些额外的步骤或调整来优化控制系统的性能。
实验九控制系统极点的任意配置一、实验目的1.掌握用全状态反馈的方法实现控制系统极点的任意配置;2.用电路模拟与软件仿真的方法,研究参数的变化对系统性能的影响。
二、实验设备1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台2.PC机1台(含上位机软件) 37针通信线1根3.双踪慢扫描示波器1台(可选)三、实验内容1.用全状态反馈实现二阶系统极点的任意配置,并分别用电路模拟与软件仿真予于实现;2.用全状态反馈实现三阶系统极点的任意配置,并分别通过电路模拟实验和软件仿真予于实现。
四、实验原理由于控制系统的动态性能主要取决于它的闭环极点在S平面上的位置,因而人们常把对系统动态性能的要求转化为一组希望的闭环极点。
一个单输入单输出的N阶系统,如果仅靠系统的输出量进行反馈,显然不能使系统的n个极点位于所希望的位置。
基于一个N阶系统有N个状态变量,如果把它们分别作为系统的反馈信号,则在满足一定的条件下就能实现对系统极点的任意配置,这个条件是系统能控。
理论证明,通过状态反馈的系统,其动态性能一定要优于只有输出反馈的系统。
本实验分别研究二阶和三阶系统的状态反馈,有关理论的说明和实验系统的模拟电路,请参见附录。
五、实验步骤1.典型二阶系统1) 设计一个二阶系统的模拟电路(可参考本实验附录),测取其阶跃响应,并与软件仿真的结果相比较。
2) 根据上面的典型二阶系统,用极点配置的方法,设计一个全状态反馈的增益矩阵。
3) 按确定的参数设计构建系统的模拟电路,测取其阶跃响应,并与软件仿真结果相比较。
2.典型三阶系统1) 设计一个三阶系统的模拟电路(可参考本实验附录),测取其阶跃响应,并与软件仿真的结果相比较。
2) 根据上述的三阶系统,用极点配置的方法设计全状态反馈的增益矩阵。
3) 按确定的参数设计并构建系统的模拟电路,测取其阶跃响应,并与软件仿真的结果相比较。
以上两步骤中,测取阶跃响应以及系统软件仿真的具体操作方法请参阅“实验一”的实验步骤2和3。
基于时域观测器的系统状态估计与反馈控制设计概述:本文将讨论基于时域观测器的系统状态估计与反馈控制设计。
我们将详细介绍时域观测器的原理和设计方法,并探讨其在系统状态估计和反馈控制中起到的作用。
同时,我们还将讨论如何利用时域观测器来实现系统状态估计和反馈控制,并基于实例进行说明。
1. 时域观测器的原理时域观测器是一种用于估计系统状态的技术。
它通过测量系统的输出和输入信号,利用系统的数学模型对状态进行估计。
时域观测器的原理基于系统的状态方程和输出方程,通过对观测误差进行修正来实现状态估计。
2. 时域观测器的设计方法时域观测器的设计方法主要包括两个步骤:观测器增益的选择和观测器误差的修正。
观测器增益的选择可以通过最优化方法来实现,例如线性二次调节(LQR)方法。
观测器误差的修正可以通过状态误差修正器进行实现,例如卡尔曼滤波器。
3. 系统状态估计与时域观测器系统状态估计是指在没有直接测量系统状态的情况下,通过观测系统的输出和输入信号来估计系统的状态。
时域观测器可以作为一种常用的状态估计方法。
它利用系统的模型以及观测误差的修正来实现状态估计,并具有较好的性能和稳定性。
4. 反馈控制与时域观测器反馈控制是指通过对系统状态的测量和估计,根据某种控制策略对系统的输出进行调节和控制。
时域观测器能够提供对系统状态的估计,从而在反馈控制中发挥关键作用。
通过利用时域观测器估计的状态信息,我们可以设计合适的反馈控制器,实现对系统的稳定性、精度和鲁棒性的提高。
5. 实例分析:基于时域观测器的控制系统为了更好地理解基于时域观测器的系统状态估计和反馈控制设计,我们以一个控制系统为例进行分析。
假设我们要设计一个机器人的控制系统,根据外部环境的变化和用户的指令,控制机器人的运动。
首先,我们需要建立机器人的数学模型,包括系统的状态方程和输出方程。
然后,通过选择合适的观测器增益,并利用状态误差修正器对观测误差进行修正,实现对机器人状态的估计。
实验十三 状态观测器及其应用一、实验目的1、熟悉状态观测器的的原理与结构组成;2、用状态观测器的状态估计值对系统的极点进行任意配置。
二、实验设备同实验一三、实验内容1、设计受控系统和相应状态观测器的模拟电路图。
2、观测实验系统的状态)(t x 与观测器的状态估计值)(ˆt x两者是否一致。
3、观测实际系统在状态反馈前的阶跃响应和用观测器的状态进行反馈后的阶跃响应。
四、实验原理状态反馈虽然能使系统获得满意的动态性能,但对于具体的控制系统,由于物理实现条件的限制,不可能做到系统中的每一个状态变量x 都有相应的检测传感器。
为此,人们设想构造一个模拟装置,使它具有与被控系统完全相同的动态方程和输入信号。
由于这种模拟装置的状态变量xˆ都能被检测,因此可采用它作为被控系统的状态进行反馈,这个模拟装置称为系统的状态观测器。
为了能使在不同的初始状态)()(ˆ00t x t x≠,使)(ˆt x 能以最快的速度趋于实际系统的状态变为)(t x ,必须把状态观测器接成闭环形式,且它的极点配置距S 平面虚轴的距离至少大于状态反馈系统的极点距虚轴的距离5倍。
1. 状态反馈的设计其二阶系统的原理方框图如图13-1所示。
图13-1 二阶系统的原理方框图⎢⎣⎡=00x u x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤-+1011, 1[=y x ]0 已知系统能控和能观,假设状态变量X 1和X 2均不能测量,需用状态反馈使闭环系统的阻尼比21=ξ,1=n ω根据给定的ξ和n ω,求得系统期望的闭环极点 2222122,1j j S n n ±-=-±-=ξωξω 相应的特征方程为 12)2222)(2222()(2++=++-+=*S S j S j S S ϕ (13-1) 因为能控,所以闭环极点能任意配置,令1[K K = ]2K ,则状态反馈后系统的闭环特征多项式为:0)1()](det[122=+++=--K S K S bK A SI (13-2) 对比式(13-1)、(13-2)得K 1=1,K 2=12-=0.4142. 状态观测器的设计状态观测器的状态方程为 Gy bu x Gc A x ++-= )(令 ⎥⎦⎤⎢⎣⎡=21g g G ,⎢⎣⎡--=-21g g Gc A ⎥⎦⎤-+11 )()1()](det[2112g g S g S Gc A SI ++++=-- (13-3) 为使x能尽快地趋于实际的状态X ,要求观测器的特征值远小于闭环极点的实部,现设观测器的特征值S 1,2=-5,据此得2510)5(22++=+S S S (13-4) 比较(13-3)、(13-4)得g 1+g 2=25,g 1+1=10即: g 1=9,g 2=16于是求得观测器的状态方程为 ⎢⎣⎡--=169x y u x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤-1691011 用观测器的状态估计值构成系统的控制量为 1[-=u]12-⎥⎦⎤⎢⎣⎡21ˆˆx x 21ˆ414.0ˆx x --= 图13-2为用观测器的状态估计值对系统进行状态反馈的方框图。