状态反馈与状态观测器
- 格式:doc
- 大小:281.50 KB
- 文档页数:10
现代控制实验状态反馈器和状态观测器的设计现代控制实验中,状态反馈器和状态观测器是设计系统的重要组成部分。
状态反馈器通过测量系统的状态变量,并利用反馈回路将状态变量与控制输入进行耦合,以优化系统的性能指标。
状态观测器则根据系统的输出信息,估计系统的状态变量,以便实时监测系统状态。
本文将分别介绍状态反馈器和状态观测器的设计原理和方法。
一、状态反馈器的设计:状态反馈器的设计目标是通过调整反馈增益矩阵,使得系统的状态变量在给定的性能要求下,达到所需的一组期望值。
其设计步骤如下:1.系统建模:通过对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
通常表示为:ẋ=Ax+Buy=Cx+Du其中,x为系统状态向量,u为控制输入向量,y为系统输出向量,A、B、C、D为系统的状态矩阵。
2.控制器设计:根据系统的动态性能要求,选择一个适当的闭环极点位置,并计算出一个合适的增益矩阵。
常用的设计方法有极点配置法、最优控制法等。
3.状态反馈器设计:根据控制器设计得到的增益矩阵,利用反馈回路将状态变量与控制输入进行耦合。
状态反馈器的输出为:u=-Kx其中,K为状态反馈增益矩阵。
4.性能评估与调整:通过仿真或实验,评估系统的性能表现,并根据需要对状态反馈器的增益矩阵进行调整。
二、状态观测器的设计:状态观测器的设计目标是根据系统的输出信息,通过一个状态估计器,实时估计系统的状态变量。
其设计步骤如下:1.系统建模:同样地,对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
2.观测器设计:根据系统的动态性能要求,选择一个合适的观测器极点位置,以及一个合适的观测器增益矩阵。
常用的设计方法有极点配置法、最优观测器法等。
3.状态估计:根据观测器设计得到的增益矩阵,通过观测器估计系统的状态变量。
状态观测器的输出为:x^=L(y-Cx^)其中,L为观测器增益矩阵,x^为状态估计向量。
4.性能评估与调整:通过仿真或实验,评估系统的状态估计精度,并根据需要对观测器的增益矩阵进行调整。
状态反馈与状态观测器实验状态反馈与状态观测器一、实验目的1.自学全系列状态意见反馈布局极点的方法。
2.自学降维状态观测器的设计方法。
3.学习带有状态观测器的状态反馈系统的设计方法。
二、实验仪器1.el-at-ii型自动控制系统实验箱一台2.计算机一台三、实验建议1.1)用全状态反馈配置极点的方法,按给定的性能指标进行综合设计。
2)检验极点布局理论的正确性。
2.设计一个带有状态观测器的状态反馈系统。
四、实验前分析排序和设计已知被控系统如图所示:u10.05s+1x210.1sx1y图5-1被控系统结构图1、设计一个全状态反馈系统,闭环系统性能要求为ξ=0.707,ts≤0.2s.设计k阵,并图画出来尖萼电路图挑选适当元件参数。
2、假设x2不能直接测量,设计一个降维状态观测器将x2进行估计得到估计值,然后用2形成全系列状态意见反馈,并使闭环系统ξ=0.707,ts≤0.2s,并图画出来尖萼电路图挑选x1和x独以适当元件参数。
100k50k1uf1ufda1100k25k2-out650k2-out63100k+3+x2100k2-out6x1ad131k100k0-6out+321k0+1k100k01k0图5-2状态反馈系统演示电路图图5-3带有状态观测器的状态反馈系统模拟电路图五、实验步骤1.连接被测量典型环节的模拟电路。
电路的输入u1接a/d、d/a卡的da1输出,电路的输入u2接a/d、d/a卡的ad1输出。
检查有误后拨打电源。
2.启动计算机,在桌面双击图标[自动控制实验系统]运转软件。
3.测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
4.在实验课题下拉菜单中挑选实验二[二阶系统阶跃积极响应],具有状态观测器的状态反馈系统挑选实验五[状态意见反馈与状态观测器],鼠标单击该选项弹头出来实验课题参数窗口。
5.观测表明的波形记录最小市场汇率量mp和调节时间ts的数值和积极响应动态曲线,并与理论值比较。
实验七 状态反馈与状态观测器
一、实验目的
1. 掌握用状态反馈进行极点配置的方法。
2. 了解带有状态观测器的状态反馈系统。
二、实验原理
1. 闭环系统的动态性能与系统的特征根密切相关,在状态空间的分析中可利用状态反馈来配置系统的闭环极点。
这种校正手段能提供更多的校正信息,在形成最优控制率、抑制或消除扰动影响、实现系统解耦等方面获得广泛应用。
在改善与提高系统性能时不增加系统零、极点,所以不改变系统阶数,实现方便。
2. 已知线形定常系统的状态方程为
x Ax Bu
y cx
=+=为了实现状态反馈,需要状态变
量的测量值,而在工程中,并不是状态变量都能测量到,而一般只有输出可测,因此希望利用系统的输入输出量构成对系统状态变量的估计。
解决的方法是用计算机构成一个与实际系统具有同样动态方程的模拟系统,用模拟系统的状态向量
ˆ()x
t 作为系统状态向量()x t 的估值。
状态观测器的状态和原系统的状态之间存在着误差,而引起误差的原因之一是无法使状态观测器的初态等于原系统的初态。
引进输出误差ˆ()()y
t y t -的反馈是为了使状态估计误差尽可能快地衰减到零。
状态估计的误差方程为
误差衰减速度,取决于矩阵(A-HC )的特征值。
3. 若系统是可控可观的,则可按极点配置的需要选择反馈增益阵k ,然后按观测器的动态要求选择H ,H 的选择并不影响配置好的闭环传递函数的极点。
因此系统的极点配置和观测器的设计可分开进行,这个原理称为分离定理。
三、实验内容
1. 设控制系统如6.1图所示,要求设计状态反馈阵K ,使动态性能指标满足超调量%5%σ≤,峰值时间0.5p t s ≤。
2. 被控对象传递函数为
写成状态方程形式为
式中
模拟电路图如6.2图所示。
3. 带有状态观测器的状态反馈系统方框图如6.3图所示。
四、实验结果
1、图6.1系统状态空间表达式
[]11222020010110x x u
x x y x
-⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣
⎦⎣⎦⎣⎦⎣⎦= 设计状态反馈矩阵[]5.910.9k =-
加入状态反馈的系统结构图
2、对给定系统配置状态观测器
状态反馈阵K 与状态观测阵H 均由计算机给出,系统模拟运算电路图如下:
输入阶跃信号,系统仿真结果如下:(图1、3未加状态观测,图2、4加状态观测)
数字仿真结果:
不加状态观测器
图1
加状态观测器
图2
半实物仿真结果:
图3
图4
结论:从实验的波形能够看出,系统增加状态观测器后,可以减小超调量和调节时间,另外系统的振荡性降低,更加平稳。
3改变观测极点值:
0.1+0.1i0.1-0.1i
0.1+0.2i0.1-0.2i
0.1+0.25i0.1-0.25i
0.1+0.3i0.1-0.3i
0.1+0.4i0.1-0.4i
数字
结论:观测极点y绝对值小于0.3时,系统超调量减少,调节时间变短,振荡减少。
当y绝对值大于0.3,系统处于发散状态。
实验感想:学习并了解用状态反馈进行极点配置的方法。
了解带有状态观测器的状态反馈系统,了解改变观测极点对系统影响。
【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】。