赤平投影原理及讲解
- 格式:doc
- 大小:575.00 KB
- 文档页数:17
一、序言岩质边坡稳定性分析方法有许多,但无论是平面滑动的单一楔形断面滑体、单滑块和多滑块分析法,还是楔体滑动的仿平面分析法、楔体分割法、立体分析法、霍克分析法以及《岩土工程勘察规范》(GB50021-94)推荐法等,在计算边坡稳定性系数时,需要知道滑体控制平面(包括结构面和坡面、坡顶面)或直线(包括平面的法线)的地质产状,以及平面与平面、直线与直线、直线与平面间夹角等。
其中平面和直线的产状可以通过现场测量获取,除此之外的几何参数,在没有发明极射赤平投影之前,都是用计算法求得,不仅它们的计算公式复杂,而且计算过程繁琐,也很容易出错。
如果采用极射赤平投影求解边坡稳定性分析所需的几何参数,那就可以简化这些几何参数的计算过程,而且一般情况下只需要在现场测量出各个控制平面的地质产状即可。
二、极射赤平投影的基本原理(一)投影要素极射赤平投影(以下简称赤平投影)以圆球作为投影工具,其进行投影的各个组成部分称为投影要素,包括:1.投影球(也称投射球):以任意长为半径的球。
2.球面:投影球的表面称为球面。
3.赤平面(也称赤平投影面):过投影球球心的水平面。
4.大圆:通过球心的平面与球面相交而成的圆,统称为大圆(如图一(a)中ASBN、PSFN、NESW),所有大圆的直径相等,且都等于投影球的直径。
当平面直立时,与球面相交成的大圆称为直立大圆(如图一(a)中PSFN);当平面水平时,与球面相交成的大圆称为赤平大圆或基圆(如图一(a)中NESW);当平面倾斜时,与球面相交成的大圆称为倾斜大圆(如图一(a)中ASBN)。
5.小圆:不过球心的平面与球面相而成的圆,统称为小圆(如图一(b)、(c)中AB、CD、FG、PACB)。
当平面直立时,与球面相交成的小圆称为直立小圆(如图一(b)中DC);当平面水平时,与球面相交成的小圆称为水平小圆(如图一(b)中AB);当平面倾斜时,与球面相交成的小圆称为倾斜小圆(如图一(b)中FG或图一(c)中PACB)。
赤平投影原理及讲解Newly compiled on November 23, 2020一、序言岩质边坡稳定性分析方法有许多,但无论是平面滑动的单一楔形断面滑体、单滑块和多滑块分析法,还是楔体滑动的仿平面分析法、楔体分割法、立体分析法、霍克分析法以及《岩土工程勘察规范》(GB50021-94)推荐法等,在计算边坡稳定性系数时,需要知道滑体控制平面(包括结构面和坡面、坡顶面)或直线(包括平面的法线)的地质产状,以及平面与平面、直线与直线、直线与平面间夹角等。
其中平面和直线的产状可以通过现场测量获取,除此之外的几何参数,在没有发明极射赤平投影之前,都是用计算法求得,不仅它们的计算公式复杂,而且计算过程繁琐,也很容易出错。
如果采用极射赤平投影求解边坡稳定性分析所需的几何参数,那就可以简化这些几何参数的计算过程,而且一般情况下只需要在现场测量出各个控制平面的地质产状即可。
二、极射赤平投影的基本原理(一)投影要素极射赤平投影(以下简称赤平投影)以圆球作为投影工具,其进行投影的各个组成部分称为投影要素,包括:1.投影球(也称投射球):以任意长为半径的球。
2.球面:投影球的表面称为球面。
3.赤平面(也称赤平投影面):过投影球球心的水平面。
4.大圆:通过球心的平面与球面相交而成的圆,统称为大圆(如图一(a)中ASBN、PSFN、NESW),所有大圆的直径相等,且都等于投影球的直径。
当平面直立时,与球面相交成的大圆称为直立大圆(如图一(a)中PSFN);当平面水平时,与球面相交成的大圆称为赤平大圆或基圆(如图一(a)中NESW);当平面倾斜时,与球面相交成的大圆称为倾斜大圆(如图一(a)中ASBN)。
5.小圆:不过球心的平面与球面相而成的圆,统称为小圆(如图一(b)、(c)中AB、CD、FG、PACB)。
当平面直立时,与球面相交成的小圆称为直立小圆(如图一(b)中DC);当平面水平时,与球面相交成的小圆称为水平小圆(如图一(b)中AB);当平面倾斜时,与球面相交成的小圆称为倾斜小圆(如图一(b)中FG或图一(c)中PACB)。
一、序言岩质边坡稳定性分析方法有许多,但无论是平面滑动的单一楔形断面滑体、单滑块和多滑块分析法,还是楔体滑动的仿平面分析法、楔体分割法、立体分析法、霍克分析法以及《岩土工程勘察规范》(GB50021-94)推荐法等,在计算边坡稳定性系数时,需要知道滑体控制平面(包括结构面和坡面、坡顶面)或直线(包括平面的法线)的地质产状,以及平面与平面、直线与直线、直线与平面间夹角等。
其中平面和直线的产状可以通过现场测量获取,除此之外的几何参数,在没有发明极射赤平投影之前,都是用计算法求得,不仅它们的计算公式复杂,而且计算过程繁琐,也很容易出错。
如果采用极射赤平投影求解边坡稳定性分析所需的几何参数,那就可以简化这些几何参数的计算过程,而且一般情况下只需要在现场测量出各个控制平面的地质产状即可。
ﻫ二、极射赤平投影的基本原理(一)投影要素极射赤平投影(以下简称赤平投影)以圆球作为投影工具,其进行投影的各个组成部分称为投影要素,包括:1.投影球(也称投射球):以任意长为半径的球。
2.球面:投影球的表面称为球面。
3.赤平面(也称赤平投影面):过投影球球心的水平面。
4.大圆:通过球心的平面与球面相交而成的圆,统称为大圆(如图一(a)中ASBN、PSFN、NESW),所有大圆的直径相等,且都等于投影球的直径。
当平面直立时,与球面相交成的大圆称为直立大圆(如图一(a)中PSFN);当平面水平时,与球面相交成的大圆称为赤平大圆或基圆(如图一(a)中NESW);当平面倾斜时,与球面相交成的大圆称为倾斜大圆(如图一(a)中ASBN)。
5.小圆:不过球心的平面与球面相而成的圆,统称为小圆(如图一(b)、(c)中AB、CD、FG、PACB)。
当平面直立时,与球面相交成的小圆称为直立小圆(如图一(b)中DC);当平面水平时,与球面相交成的小圆称为水平小圆(如图一(b)中AB);当平面倾斜时,与球面相交成的小圆称为倾斜小圆(如图一(b)中FG或图一(c)中PACB)。
构造地质实训4极射赤平投影的基本原理及应用地质实训是培养学生实践能力的重要环节之一,能够帮助学生将课堂学到的地质知识应用到实际工作中。
4极射赤平投影是地质实训中常用的一种图形展示方式,下面将就其基本原理及应用进行详细讨论。
1.基本原理:4极射赤平投影是一种将地球表面的地理地貌信息以平面图形的形式展示的方法。
它基于地球表面的四个特殊点,即地球两个地轴极点、黄道平面和本初子午线来进行投影。
首先,从地球的黄道平面和本初子午线出发,通过地球的北极点和南极点,在黄道平面上确定一个点,称之为方程点。
方程点的位置取决于观察者所在的位置。
然后,从观察者所在位置引出一条射线,穿过地球的表面并与黄道平面相交。
最后,通过对地轴的绕点旋转变换,将地球的曲面信息转换为平面图形。
2.应用:4极射赤平投影在地质实训中有广泛的应用,下面列举一些常见的应用场景:2.1绘制地质剖面图地质剖面图是地质学研究和实践工作中经常使用的工具,它能够以明确的方式展示地下地质结构和构造特征。
通过4极射赤平投影,可以将地球表面的地形和地质信息转换为平面图形,有利于地质学家对地质剖面进行详细分析和研究。
2.2绘制地质地图地质地图是地质学研究中的重要成果之一,它能够全面反映地球表面的地质特征和地质构造。
4极射赤平投影可以将地球表面的地理地貌信息以平面图形的形式展示,为地质学家制作地质地图提供了重要的参考依据。
2.3测量地震活动地震是地球内部活动的重要表现形式之一,对地震活动的监测和研究有助于预测地震的发生和演化。
4极射赤平投影可以帮助地震学家将地震活动的数据以平面图形的形式表示,有助于对地震活动的时空分布进行精确测量和研究。
2.4矿产资源勘探地质资源是人类社会发展的重要支撑,对地质资源的勘探和研究有助于发现新的矿产资源。
4极射赤平投影可以将地球表面的地质特征以平面图形展示,为矿产资源的勘探和开发提供了重要的参考依据。
综上所述,4极射赤平投影是地质实训中常用的一种图形展示方式,它通过对地球四个特殊点的确定和地轴的旋转变换,将地球表面的地理地貌信息转换为平面图形。
赤平投影原理及讲解引言赤平投影是地图学中常用的一种投影方式,其最大的优点是可以充分保证地图上任意一点与赤道的角度都相等。
而赤平投影的实现原理,主要是利用了地球的旋转和中心线的垂直位置。
赤平投影原理坐标系在介绍赤平投影原理之前,我们需要先了解一下坐标系。
通常在地图制作中,我们使用的坐标系为地球坐标系。
地球坐标系是将地球上的点用三维坐标系表示的一种数学模型。
其中,地球坐标系的原点为地球质心,地球的赤道为该坐标系的 XY 平面,而该坐标系的 Z 轴即为地球北极点指向质心的连线。
在地球坐标系中,我们一般采用经度和纬度作为解释地球上位置的方式。
经度是一个定点的短圆弧与本初子午线之间的夹角,而纬度则是一个点与赤道之间的夹角。
它们的表示方式为度、分、秒,分别用符号 °、′、″ 表示。
赤平投影原理赤平投影又称为正射平面投影,需要满足投影面与地球的平面垂直,且中心点正好位于地球的北极或南极上。
投影点与赤道面的夹角都相等。
在赤平投影中,将地球的南北极作为坐标轴的原点,与水平面相交的平面即为投影面。
将该平面放在一张纸上,用垂线去描绘地球上的各个点。
这时,地球上的每一个点都可以在平面上找到一个对应的点,使得该点到点 O(即南极或北极)的距离与该点所对应的角度相等。
由于在赤平投影中,地球上的任何一点都可以延长与南北极的连线垂直于平面,这就形成了“正射平面投影”的名称。
在赤平投影中,投影长度与原长之比始终等于该点到南北极的夹角。
赤平投影的应用赤平投影具有保持等角性的特点,在工程制图、城市规划、制造业等领域得到了广泛的应用。
同时,在天文学中,赤平投影也是观测恒星时使用的一种重要工具。
赤平投影的应用广泛且其实现原理简单,只需将地球的南北极作为坐标轴的原点,与平面相交,以垂线去描绘地球上的各个点,便可以获得等角性的投影效果。
赤平投影原理与操作方法
赤平投影是一种把三维球体表面映射到二维平面上的技术。
技术原理是从球体中心到表面上各点的线段与平面垂直,投影到平面上得到的投影坐标。
操作方法:
1. 选择一个球体,并确定其中心坐标和半径大小。
2. 确定投影平面,通常为xoy 平面或者xoz 平面,也可以自定义一个平面。
3. 将球体表面上的每个点投影到平面上得到对应的坐标点。
4. 将投影得到的坐标点按照一定的规律映射到二维平面上形成图像,通常会使用等距投影或者等面积投影等方法进行映射。
5. 根据需要作出相应的修改,例如旋转角度、缩放大小等。
赤平投影可以有效地呈现球体表面上的信息,并且具有保持距离和角度比例不变、投影区域面积相等等优点。
常用于地图制作、天文学和计算机图形学等领域。