第十章 常用半导体器件
- 格式:doc
- 大小:14.46 MB
- 文档页数:37
什么是半导体器件常见的半导体器件有哪些半导体器件是指在半导体材料基础上制造的电子器件。
它具有介于导体与绝缘体之间的特性,既能够传导电流,又能够控制电流的大小和方向。
半导体器件广泛应用于电子、通信、计算机、光电等领域,是现代科技发展的基础之一。
半导体器件的种类繁多,涵盖了许多不同的功能和应用。
下面将介绍一些常见的半导体器件:1. 整流器件整流器件用于将交流电转换为直流电,常见的整流器件有二极管和整流桥。
二极管是最基础的半导体器件之一,通过正向电压使电流通路畅通,而反向电压则阻止电流流动。
整流桥由四个二极管组成,可以实现更高效的电流转换。
2. 放大器件放大器件可以将输入信号信号放大输出,常见的放大器件有晶体管和场效应晶体管(FET)。
晶体管通过控制输入电流,改变输出电流的放大倍数,广泛应用于各种放大和开关电路中。
FET则是利用场效应原理,通过控制栅极电压来调节输出电流。
3. 逻辑器件逻辑器件用于实现逻辑运算和数据处理,常见的逻辑器件有门电路、触发器和寄存器。
门电路包括与门、或门、非门等,用于实现与、或、非等逻辑运算。
触发器和寄存器则用于存储和传输数据,实现时序逻辑功能。
4. 可控器件可控器件可以通过控制信号来改变器件的电特性,常见的可控器件有可控硅(SCR)和可控开关。
可控硅是一种具有双向导电性的半导体器件,可以实现高压大电流的控制。
可控开关通过改变输入信号的状态,控制输出电路的导通和断开。
5. 光电器件光电器件将光信号转换为电信号,或将电信号转换为光信号。
常见的光电器件有光电二极管、光敏电阻和光电晶体管。
光电二极管具有较快的响应速度,可用于光电转换和光通信。
光敏电阻对光信号具有较大的灵敏度,常用于光控开关和光敏电路。
光电晶体管通过光控电流来控制电流的通断,常用于光电触发器和光电继电器。
除了以上提到的常见半导体器件,还有诸如二极管激光器、发光二极管(LED)、MOSFET、IGBT等。
这些器件在不同的应用领域发挥着重要的作用,推动着科技的不断进步和创新。
半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。
第一章 直流电路 复习与考工模拟参考答案一、填空题1.12 V 、24 V 、36 V 2.5 W 3.2.178×108 J 4.并联 5.12 K Ω 二、选择题 1.D2.A3.D4.D5.C三、判断题1.× 2.× 3.× 4.√ 5.√ 四、分析与计算题1.0.01 A ;10 mA ;1.0×104 μA 2.(1)A 115(或0.45 A )(2)5.6 KW •h (3)2.8元第二章 电容与电感 复习与考工模拟参考答案一、填空题 1.106;1012 2.耐压3.储能;磁场;电场 4.103;1065.电阻(或欧姆) 二、选择题 1.D2.A3.C4.B5.A三、判断题1.√2.×3.×4.√5.√四、简答题略第三章磁场及电磁感应复习与考工模拟参考答案一、填空题1.安培定则(或右手螺旋定则)2.安培;BIlF=3.软磁物质;硬磁物质;矩磁物质4.电磁感应现象5.楞次二、选择题1.B 2.A 3.C 4.A 5.B三、判断题1.√2.√3.√4.×5.×四、分析与作图题1.略2.电流方向:BADCB第四章单相正弦交流电复习与考工模拟参考答案一、填空题1.振幅(最大值或有效值);频率(周期或角频率);初相2.V220(或311 V);s2.0;rad/s)02(或314πrad/s1003.有效值4.电压与电流同频同相;电压超前电流900;电流超前电压9005.正比;反比6.在电感性负载两端并联一容量适当的电容器二、选择题1.B 2.B 3.B 4.D 5.C三、判断题1.×2.√3.×4.×5.√ 6. ×7. ×四、分析与计算题1.最大值:10 A;有效值:A5;周期:0.2 s;频率:5 Hz;初相:150022.440 W3.(1)R=6Ω;L=25.5 mH (2)0.6第五章三相正弦交流电复习与考工模拟参考答案一、填空题1.线电压;相电压;相电压;线电压2.220 V;380 V3.3;等于4.使不对称负载获得对称的相电压5.3;等于二、选择题1.D2.C3.A4.B5. A三、判断题1.√2.√3.√4.√5.×四、分析与作图题1.星形和三角形两种;画图略2.星形联结承受220V相电压;三角形联结时则承受380V线电压。
半导体器件的基本概念和应用有哪些一、半导体器件的基本概念1.半导体的定义:半导体是一种导电性能介于导体和绝缘体之间的材料,常见的有硅、锗、砷化镓等。
2.半导体的导电原理:半导体中的载流子(电子和空穴)在外界条件(如温度、光照、杂质)的影响下,其浓度和移动性会发生变化,从而改变半导体的导电性能。
3.半导体器件的分类:根据半导体器件的工作原理和用途,可分为二极管、三极管、晶闸管、场效应晶体管等。
二、半导体器件的应用1.二极管:用于整流、调制、稳压、开关等电路,如电源整流器、数字逻辑电路、光敏器件等。
2.三极管:作为放大器和开关使用,如音频放大器、数字电路中的逻辑门等。
3.晶闸管:用于可控整流、交流调速、电路控制等,如电力电子设备、灯光调节等。
4.场效应晶体管:主要作为放大器和开关使用,如场效应晶体管放大器、数字逻辑电路等。
5.集成电路:由多个半导体器件组成的微型电子器件,用于实现复杂的电子电路功能,如微处理器、存储器、传感器等。
6.光电器件:利用半导体材料的光电效应,实现光信号与电信号的转换,如太阳能电池、光敏电阻等。
7.半导体存储器:用于存储信息,如随机存储器(RAM)、只读存储器(ROM)等。
8.半导体传感器:将各种物理量(如温度、压力、光照等)转换为电信号,用于检测和控制,如温度传感器、光敏传感器等。
9.半导体通信器件:用于实现无线通信功能,如晶体振荡器、射频放大器等。
10.半导体器件在计算机、通信、家电、工业控制等领域的应用:计算机中的微处理器、内存、显卡等;通信设备中的射频放大器、滤波器等;家电中的集成电路、传感器等;工业控制中的电路控制器、传感器等。
以上就是关于半导体器件的基本概念和应用的详细介绍,希望对您有所帮助。
习题及方法:1.习题:请简述半导体的导电原理。
方法:半导体中的载流子(电子和空穴)在外界条件(如温度、光照、杂质)的影响下,其浓度和移动性会发生变化,从而改变半导体的导电性能。
什么是半导体器件有哪些常见的半导体器件半导体器件是指由半导体材料制成的用于电子、光电子、光学和微波等领域的电子元器件。
它具有半导体材料固有的特性,可以在不同的电压和电流条件下改变其电子特性,从而实现电子器件的各种功能。
常见的半导体器件有以下几种:1. 二极管(Diode):二极管是最简单的半导体器件之一。
它由一个P型半导体和一个N型半导体组成。
二极管具有单向导电性,可以将电流限制在一个方向。
常见的二极管应用包括整流器、稳压器和光电二极管等。
2. 晶体管(Transistor):晶体管是一种电子放大器和开关器件,由三层或两层不同类型的半导体材料构成。
晶体管可分为双极型(BJT)和场效应型(FET)两种。
它广泛应用于放大器、开关电路和逻辑电路等领域。
3. MOSFET(金属氧化物半导体场效应晶体管):MOSFET是一种常用的场效应晶体管。
它具有低功耗、高开关速度和可控性强等特点,被广泛应用于数字电路、功率放大器和片上系统等领域。
4. 整流器(Rectifier):整流器是一种将交流电转换为直流电的器件。
它主要由二极管组成,可以实现电能的转换和电源的稳定。
整流器广泛应用于电源供电、电动机驱动和电子设备等领域。
5. 发光二极管(LED):发光二极管是一种能够将电能转换为光能的器件。
它具有高亮度、低功耗和长寿命等特点,被广泛应用于照明、显示和通信等领域。
6. 激光二极管(LD):激光二极管是一种能够产生相干光的器件。
它具有高亮度、窄光谱和调制速度快等特点,广泛应用于激光打印、激光切割和光纤通信等领域。
7. 三极管(Triode):三极管是晶体管的前身,它由三层不同类型的半导体材料构成。
三极管可以放大电流和电压,被广泛应用于放大器、调制器和振荡器等领域。
8. 可控硅(SCR):可控硅是一种具有开关特性的器件。
它可以控制电流的导通和截止,广泛应用于交流电控制、功率调节和电能转换等领域。
9. 电压稳压器(Voltage Regulator):电压稳压器是一种用于稳定输出电压的器件。
半导体器件基础半导体器件是由半导体材料制成的电子元件,用于控制和放大电流和电压。
常见的半导体器件有二极管、晶体管、场效应管、双极型晶体管、光电二极管等。
半导体器件的基础知识包括以下几个方面:1. 半导体材料:半导体器件主要使用硅(Si)和砷化镓(GaAs)等半导体材料。
半导体材料具有介于导体和绝缘体之间的电导特性,可以通过控制材料的掺杂来调节其导电性。
2. PN结:PN结是半导体器件中最基本的结构,由P型和N型半导体材料直接接触而成。
在PN结中,P型半导体中的空穴与N型半导体中的电子发生复合,形成一个电子云区,这称为耗尽区。
耗尽区的存在使得PN结具有正向导通和反向截止的特性。
3. 二极管:二极管是一种最简单的半导体器件,由PN结构成。
在正向偏置(即P端连接正电压)时,二极管导通,允许电流通过;在反向偏置(即N端连接正电压)时,二极管截止,电流无法通过。
二极管广泛用于整流和保护电路中。
4. 晶体管:晶体管是一种三层构造的半导体器件,通常分为NPN和PNP两种类型。
晶体管可以作为开关或放大器使用,可以控制一个输入电流或电压来控制另一个输出电流或电压。
晶体管的放大性能使得它在电子设备中有广泛的应用。
5. 场效应管:场效应管是一种基于电场效应的半导体器件,包括MOSFET(金属-氧化物-半导体场效应管)和JFET (结型场效应管)两种。
场效应管具有高输入电阻、低输入电流、低噪声等特点,常用于放大和开关电路中。
6. 光电器件:光电器件包括光电二极管和光电三极管,它们能够将光信号转换为电信号。
光电器件广泛应用于光通信、光电传感、光能转换等领域。
以上是半导体器件基础的概述,深入了解半导体器件还需要学习更多的电子物理和电路理论知识。
半导体器件的基本知识在现代科技的高速发展中,半导体器件扮演着至关重要的角色。
从我们日常使用的智能手机、电脑,到各种智能家电、汽车电子,乃至医疗设备和航空航天领域,半导体器件无处不在。
那么,什么是半导体器件?它们又是如何工作的呢?让我们一起来揭开半导体器件的神秘面纱。
半导体,顾名思义,其导电性能介于导体和绝缘体之间。
常见的半导体材料有硅(Si)、锗(Ge)等。
这些材料的原子结构和特性使得它们在特定条件下能够实现对电流的控制和调节。
半导体器件的种类繁多,其中最基本的包括二极管、三极管和场效应管等。
二极管是一种最简单的半导体器件。
它具有单向导电性,也就是说电流只能从一个方向通过。
二极管的结构就像是一个 PN 结,P 型半导体和 N 型半导体结合在一起。
当在二极管上施加正向电压时,电流可以顺利通过;而施加反向电压时,电流几乎无法通过,只有极小的反向漏电流。
二极管在电路中常用于整流、稳压、检波等功能。
比如,在电源适配器中,二极管就被用来将交流电转换为直流电。
三极管则比二极管复杂一些,它有三个电极,分别是基极(B)、发射极(E)和集电极(C)。
根据结构的不同,三极管分为 NPN 型和PNP 型。
三极管的主要作用是放大电流信号。
当基极输入一个较小的电流变化时,会引起集电极和发射极之间较大的电流变化,从而实现信号的放大。
此外,三极管还可以用作开关,控制电路的通断。
场效应管也是一种重要的半导体器件。
它是利用电场来控制电流的。
场效应管分为结型场效应管和绝缘栅型场效应管。
绝缘栅型场效应管中的 MOSFET(金属氧化物半导体场效应管)在现代集成电路中应用广泛。
它具有输入电阻高、噪声低、功耗小等优点,常用于数字电路和模拟电路中。
半导体器件的制造工艺非常复杂和精细。
首先,需要通过一系列的化学和物理过程,将半导体材料提纯并制备成晶圆。
然后,在晶圆上通过光刻、蚀刻、掺杂等工艺制作出各种半导体器件的结构。
这些工艺要求极高的精度和纯度,以确保半导体器件的性能和可靠性。
半导体基本器件及应用电路1. 引言半导体基本器件是现代电子技术的基石,广泛应用于各个领域的电路设计中。
本文将介绍一些常见的半导体基本器件及其在电路中的应用。
2. 二极管二极管是一种具有两个电极的半导体器件,通常由PN结构组成。
它具有单向导电性,当施加正向电压时,电流可以流过二极管;而当施加反向电压时,电流几乎不会通过二极管。
2.1 理论原理二极管的导电特性可以通过PN结构的电子云移动来解释。
当施加正向电压时,P区的空穴趋向于向N区移动,而N区的电子趋向于向P区移动。
因此,在PN结处形成一个空穴和电子云的复合区域,称为耗尽区。
2.2 应用示例二极管广泛应用于电路中的整流器、电压稳定器和开关等电路中。
在整流器中,二极管可以将交流信号转换为直流信号;在电压稳定器中,二极管可以使输出电压稳定在一个恒定的值;在开关电路中,二极管可以用作开启或关闭电路的开关。
3. 三极管三极管是一种具有三个电极的半导体器件,通常由两个PN结构组成。
它可以放大电流和信号,并在电路中起到放大和开关作用。
3.1 理论原理三极管的原理可以通过PNP或NPN三层结构的电子云移动来解释。
当施加正向电压时,电子从PN结中的N区向P区移动,从而导致电流流动;而当施加反向电压时,电子从N区向P区移动,导致电流几乎不流动。
3.2 应用示例三极管在放大器和开关电路中得到了广泛应用。
在放大器电路中,三极管可以放大小信号输入,并将其输出为大信号;在开关电路中,三极管可以打开或关闭电路。
4. MOSFETMOSFET是一种金属氧化物半导体场效应管,是现代电子技术中最常见的半导体器件之一。
它具有高输入阻抗、低功耗和高速开关特性。
4.1 理论原理MOSFET是由一个PN结和一个金属-氧化物-半导体结构组成。
在接通时,当正向电压施加至栅极和源极之间时,形成一个电子通道,导致电流流动。
在截止时,电子通道被切断,电流不再流动。
4.2 应用示例MOSFET在集成电路和功率电子设备中得到了广泛应用。
半导体元件有哪些一、简介半导体元件是半导体材料制成的组件,广泛应用于电子和电力领域。
半导体元件的种类繁多,不同的元件具有不同的功能和特点,下面将介绍几种常见的半导体元件。
二、二极管(Diode)二极管是一种最简单的半导体元件,通常由P型半导体和N型半导体组合而成。
它具有导通方向和截止方向两种工作状态,能够将电流限制在一个方向上流动。
二极管被广泛用于整流和电源保护电路中。
三、晶体管(Transistor)晶体管是一种主要用于放大和开关电路的半导体元件。
它通常由三个掺杂不同的半导体材料层叠而成,包括发射极、基极和集电极。
晶体管可以放大电流和控制电路的开关,是现代电子设备中不可或缺的组成部分。
四、场效应管(FET)场效应管是一种利用电场调控电流的半导体元件,通常分为MOSFET和JFET两种类型。
它具有高输入阻抗、低输入电流、低功耗等特点,被广泛用于放大、开关和调制等电路中。
五、光电子器件(Photonic Device)光电子器件是一种能够在光和电信号之间相互转换的半导体元件,包括光电二极管、光伏电池、光发射二极管等。
它在通信、光纤传输、光储存等领域发挥着重要作用。
六、集成电路(Integrated Circuit)集成电路是将多个晶体管、二极管、电容器等元件集成在一块半导体芯片上的半导体元件。
它具有体积小、功耗低、成本低等优点,被广泛应用于电子产品中。
结语以上是几种常见的半导体元件,随着科技的发展,半导体元件的种类和应用领域将会不断扩展。
半导体元件的发展对电子、通信等行业起着至关重要的作用,带动了整个科技产业的发展和进步。
常见半导体器件常见半导体器件是指广泛应用于电子电路中的一类电子器件,它们都是利用半导体材料的特性,通过控制电场和电流来实现电子元件的功能。
这些器件的种类繁多,以下是其中一些常见的半导体器件。
1. 二极管二极管是最简单的半导体器件,它由一个p型半导体和一个n型半导体组成,通过正向电压和反向电压实现电流通路的阻截。
通常应用于整流、波形修整、振荡器等电路。
2. 功放管功放管是晶体管的一种,它的输出电流与控制电压成线性关系,通常应用于音频放大器、射频放大器、模拟计算等电路。
3. 晶体管晶体管是一种三端半导体器件,它包含一个发射极、一个基极和一个集电极,通常用作开关和放大器。
晶体管有各种类型,包括NPN、PNP、场效应晶体管等。
4. MOSFETMOSFET是MOS场效应晶体管的缩写,它由一个金属氧化物半导体结构组成。
MOSFET具有高输入阻抗、低输出电阻和低电源电流等特点,通常应用于数码电路中。
5. IGBTIGBT是晶闸管与MOSFET的融合产物,它继承了晶闸管的高电流承受能力和MOSFET的高输入阻抗和低输出电阻的特点。
IGBT通常应用于高电压、高电流开关电源和变频器等电路。
6. 二极管整流桥二极管整流桥是由四个二极管组成的整流电路,它能将交流电信号转换成直流电信号。
通常应用于电源电路中。
7. 三极管三极管是晶体管的一种,它比双极管多一个控制端,通过控制控制端电流来控制三极管的电流增益。
通常应用于放大器、振荡器、开关电源等电路。
8. 稳压二极管稳压二极管是一种特殊的二极管,它具有稳定的电压降,可以将电路中的电压稳定在一个固定的值。
通常应用于功率稳压器和稳压电源中。
9. 光电耦合器光电耦合器是一种集成了发光二极管和光敏二极管的器件,它能将电信号与光信号进行转换,通常应用于隔离、调制、解调、传输等电路。
10. 可控硅可控硅是一种电压控制的半导体器件,它的主要作用是将交流电信号变为直流电信号。
通常应用于电动机调速、焊接、电力电子等领域。
常见半导体器件一、二极管(Diode)二极管是一种常见的半导体器件,具有只允许电流在一个方向通过的特性。
它由P型半导体和N型半导体组成,通过P-N结的形成来实现电流的单向导通。
二极管在电子电路中有着广泛的应用,如整流器、稳压器、放大器等。
二、三极管(Transistor)三极管是一种具有放大作用的半导体器件,由P型半导体和N型半导体构成。
它有三个电极,分别是发射极、基极和集电极。
通过控制基极电流,可以调节集电极电流的大小,实现信号的放大功能。
三极管被广泛应用于放大器、开关、振荡器等电子设备中。
三、场效应晶体管(Field Effect Transistor,FET)场效应晶体管是一种常见的半导体器件,与三极管类似,也具有放大作用。
它由栅极、源极和漏极组成。
场效应晶体管通过栅极电压的变化来控制源漏极之间的电流。
与三极管相比,场效应晶体管具有输入阻抗高、功耗低、噪声小等特点,被广泛应用于放大器、开关、模拟电路等领域。
四、集成电路(Integrated Circuit,IC)集成电路是将大量的电子器件集成在一个芯片上的器件。
它由高度集成的晶体管、二极管、电阻、电容等元件组成,通过不同的连接方式实现各种电路功能。
集成电路具有体积小、功耗低、性能稳定等优点,被广泛应用于计算机、通信、消费电子等领域。
五、光电二极管(Photodiode)光电二极管是一种具有光电转换功能的半导体器件。
它具有二极管的结构,在光照条件下产生电流。
光电二极管常用于光电传感、光通信、光电测量等领域。
通过控制光照强度,可以实现对光信号的检测和转换。
六、发光二极管(Light Emitting Diode,LED)发光二极管是一种能够发出可见光的半导体器件。
它具有二极管的结构,在正向偏置电压下,通过复合效应产生光。
发光二极管具有发光效率高、寿命长、功耗低等特点,被广泛应用于照明、显示、指示等领域。
七、太阳能电池(Solar Cell)太阳能电池是一种将太阳能转化为电能的半导体器件。
半导体行业必备知识半导体是指一种导电性能介于导体和绝缘体之间的材料。
半导体被广泛地应用于电脑、手机、电视等电子产品中,成为现代电子产业的基础。
因此,半导体行业的发展越来越受到关注。
以下是半导体行业必备知识:1. 常见半导体元件半导体行业中常见的元件有:二极管、三极管、晶体管、场效应晶体管、可控硅等。
其中,二极管是最基本、最重要的半导体元件之一,晶体管是半导体器件中应用最广泛的器件。
2. 硅片制造过程硅片是半导体工业的主要材料之一。
硅片制造过程需要经过切割、成形、清洗等一系列过程。
硅片制造过程的精密程度决定了芯片制造的精密程度。
牢记硅片制造过程中的每个细节是半导体行业中不可或缺的知识。
3. 电路设计半导体行业需要掌握电路设计,电路设计是把电子元器件按照一定方式连接起来,形成所需功能的过程。
电路设计需要在保证功能的基础上,注重电路的稳定性和可靠性。
电路设计是半导体行业的核心知识之一。
4. 物理原理要想深入理解半导体行业,必须掌握一些与物理息息相关的知识。
了解半导体内部的电子结构、波特图、PN结、电阻电容等物理概念,有助于更好地理解半导体的本质和应用。
5. 产业链结构半导体产业链包括芯片制造、封装测试、电子产品制造等多个环节。
芯片制造是半导体产业链的核心,封装测试环节是半导体产业链中其中一个重要环节。
掌握半导体行业的产业链结构,对了解半导体行业的组织结构和发展趋势具有重要意义。
在现代科技和经济的发展趋势下,半导体行业愈发繁荣。
学习半导体行业的必备知识对找到优秀的职业机会以及实现个人职业发展大有裨益。
什么是半导体器件它们有哪些常见的类型半导体器件是指利用半导体材料制造的,具有特定功能的电子元件。
由于半导体材料的特殊性质,半导体器件在现代电子技术中起着至关重要的作用。
本文将介绍半导体器件的定义、常见的类型以及它们的应用。
一、半导体器件的定义半导体器件是一种基于半导体材料制造的电子元件。
半导体材料是指电阻率介于导体和绝缘体之间的材料。
在晶体管发明之前,真空管是主要的电子元件。
然而,真空管体积大、功耗高、寿命短,限制了电子设备的缩小和便携性。
半导体器件的问世极大地改变了这一现状,使得电子技术取得了飞速的发展。
二、常见的半导体器件类型1. 二极管(Diode)二极管是最简单的半导体器件之一。
它由P型半导体和N型半导体连接而成。
二极管具有单向导电性,能够将电流从P型半导体导向N型半导体,并阻止反向电流的通过。
二极管广泛应用于电源转换、无线通信和光电器件等领域。
2. 三极管(Transistor)三极管是一种由三层不同类型半导体构成的器件。
它包括了晶体管的基极、发射极和集电极。
晶体管通过控制输入电流或电压,可以起到放大信号或作为开关进行控制的作用。
三极管广泛应用于放大电路、开关电路以及逻辑电路等方面。
3. MOSFET(金属氧化物半导体场效应管)MOSFET是一种重要的场效应管,由金属氧化物半导体(MOS)结构构成。
MOSFET具有高输入阻抗和低输出阻抗的特点,功率损耗较小,并且可靠性高。
它被广泛应用于功率放大器、电源管理、调制解调器等领域。
4. 快恢复二极管(Fast Recovery Diode)快恢复二极管是一种性能优越的二极管,具有快速恢复能力。
它的特点是在导通和截止时的恢复时间很短,适用于在高频开关电路和电力变换电路中。
5. 发光二极管(LED)发光二极管是一种电流通过后可以发出光的二极管。
它使用半导体材料发出特定颜色的光,广泛应用于显示屏、照明、显示指示等领域。
6. 整流器(Rectifier)整流器是指将交流电转换为直流电的器件。
电工与电子技术-半导体器件电子教案第一章:半导体基础知识1.1 半导体的概念与分类1.2 半导体的物理性质1.3 半导体材料的制备与掺杂1.4 半导体器件的优点与局限性第二章:二极管2.1 二极管的结构与工作原理2.2 二极管的伏安特性2.3 二极管的分类与参数2.4 二极管的应用举例第三章:晶体管3.1 晶体管的结构与工作原理3.2 晶体管的分类与参数3.3 晶体管的放大作用3.4 晶体管的应用举例第四章:场效应晶体管4.1 场效应晶体管的结构与工作原理4.2 场效应晶体管的分类与参数4.3 场效应晶体管与晶体管的比较4.4 场效应晶体管的应用举例第五章:集成电路5.2 集成电路的分类与特点5.3 集成电路的封装与测试5.4 集成电路的应用举例第六章:晶闸管6.1 晶闸管的结构与工作原理6.2 晶闸管的伏安特性6.3 晶闸管的触发与维持6.4 晶闸管的应用举例第七章:可控硅7.1 可控硅的结构与工作原理7.2 可控硅的触发与控制7.3 可控硅的应用领域7.4 可控硅与其他器件的比较第八章:集成电路设计基础8.1 集成电路设计的基本流程8.2 数字集成电路设计8.3 模拟集成电路设计8.4 集成电路设计软件与工具第九章:集成电路制造技术9.1 集成电路的制造流程9.2 晶圆制造技术9.4 集成电路制造的发展趋势第十章:半导体器件的检测与维护10.1 半导体器件的检测方法10.2 半导体器件的测试仪器与设备10.3 半导体器件的维护与保养10.4 半导体器件的故障分析与处理第十一章:功率半导体器件11.1 功率二极管和快恢复二极管11.2 晶闸管模块和GTO11.3 IGBT和MOSFET11.4 功率集成电路和模块第十二章:传感器与半导体器件12.1 温度传感器12.2 压力传感器12.3 光敏传感器和光电子器件12.4 超声波传感器和其他传感器第十三章:半导体器件在通信技术中的应用13.1 晶体管在放大器和振荡器中的应用13.2 集成电路在数字通信中的应用13.3 光电器件在光纤通信中的应用13.4 射频识别技术(RFID)和半导体器件第十四章:半导体器件在计算机技术中的应用14.1 微处理器和逻辑集成电路14.2 存储器原理和存储器芯片14.3 显卡和显示技术中的半导体器件14.4 固态硬盘和闪存技术第十五章:半导体器件的安全、环保与可靠性15.1 半导体器件的安全性15.2 环保型半导体器件的设计与制造15.3 半导体器件的可靠性原理15.4 故障诊断和寿命预测技术重点和难点解析本文主要介绍了电工与电子技术中的半导体器件相关知识,包括半导体基础知识、二极管、晶体管、场效应晶体管、集成电路、晶闸管、可控硅、集成电路设计基础、集成电路制造技术、半导体器件的检测与维护、功率半导体器件、传感器与半导体器件、半导体器件在通信技术中的应用、半导体器件在计算机技术中的应用以及半导体器件的安全、环保与可靠性等内容。
新授课
.二极管的分类
常见二极管的分类:
)以材料分类:硅二极管和锗二极管。
)以PN结面积大小分类:点接触型、面接触型。
)以用途分类:整流二极管、稳压二极管、开关二极管、光敏二极管、热敏二极管、发光二极管等。
.二极管的命名方法
由五部分组成,各部分意义如图所示。
2、3位字母含义如下表所示。
第2位第3位
意义字母意义字母
N型锗材料P 普通管S
P型锗材料W 稳压管U
N型硅材料Z 整流管N
P型硅材料K 开关管L
2BS21的含义:
二极管正极加低电平(-),负极加高电平(+)时,指示灯灭,说明
二极管加正向电压导通,反向电压截止,这一导电特性,
二极管是用半导体材料制成的单向导电性器件,电路中的符号如图所示。
电路中具有广泛应用。
二极管的核心就是一个PN结。
四、二极管的伏安特性
二极管正、反向特性实验
)在实验线路板上安装如图所示电路。
)在实验线路板上安装如图所示电路。
P R ,可改变二极管VD 的反向电压VD U 和反向电流上图第三象限所示曲线。
上图曲线即为二极管的伏安特性曲线,它描述了二极管两端的电压和流过二极管的:如上图第一象限的曲线。
起始阶段,正向电压较小,正向电流极小,称为死区,二极管电阻很大,处于正向电压超过门坎电压或死区电压(硅管0.5V ,锗管0.2V 升急剧增大,二极管电阻得变很小,进入导通状态,二极管导通后,正向电流与正向电正向电流变化较大时,二极管两端正向压降近于定值,,锗管约为0.3V 。
检波二极管的特点是PN结的结电容小、工作频率高、反向电流小。
多用点接触型结构。
多数采用玻璃封装。
检波二极管要正常工作必须加正偏电压。
:识别整流二极管
如图所示为整流二极管的实物图,塑封二极管的外壳上有色环的一端为负极,
封装二极管的螺栓一端为负极,金属封装二极管、大功率二极管和贴片二极管的表面一
塑封(b)金属封装(c)大功率二极管(d)贴片二极管
整流二极管的特点是允许通过大电流。
多用面接触型结构。
多数采用金属或塑料封装。
整流二极管要正常工作必须加正偏电压。
项目3:识别稳压二极管
如图所示为稳压二极管的实物图,外壳上有色环一端为负极。
稳压二极管的特点是工作在反向击穿区,起稳压作用。
多数采用金属、玻璃或塑料封装,较多采用塑料封装。
稳压二极管要正常工作必须加反偏电压。
:识别发光二极管
光电二极管的特点是反向电流与光照强度成正比。
采用金属或黑色树脂封装,其顶端有玻璃窗口或者侧面开有受光窗口。
光电二极管要正常工作必须加反偏电压。
变容二极管的特点是变容二极管的电容量与其两端所加的反向电压成反比。
电路中变容二极管相当于一只微调电容,
万用表调零
如下图所示,万用表的红、黑表笔分别接二极管两端,若测得电阻小
再将红、黑表笔对调后接二极管两端,而测得的电阻大(几百千欧以上),两次测量的电阻值差别越大,说明二极管的性能越好。
阻值小的那一次黑表笔接的是二极管的正极,
(a)正偏导通(b)反偏截止
如果两次测量的电阻差别不大,则说明二极管的性能不好;如果两次测量的电阻均很小,则说明二极管内部已击穿短路;如果两次测量的电阻均很大,则说明二极管内部已断路。
以上三种二极管均不能使用。
159
新授课
发射极的箭头表示电流的方向,文字符号用“V”表示,电路符号如下图所示。
常见三极管的外形如图所示。
160
161
.晶体三极管类型
按结构分⎩⎨⎧型型
PNP NPN 硅管锗管
162
E 1)以改变基极电流I B 的大小,记录每一次测得的数据2 3 0.01 0.02 0.56 1.14 0.57
1.16
)直流电流分配关系:B C E I I I += C I 5801
.002.056
.014.1ΔΔB C =--=I I 基极电流的微小变化可引起集电极电流的较大变化,B
C ΔΔI I =β
值不同,即电流的放大能力不同,一般为β
B
C
I I =
β 晶体三极管的放大作用的意义:
163
低于发射结的死区电压时,0B =I ,此时0C ≠I ,称为穿透电流晶体三极管处于截止状态,c 、e 间呈现很大电阻,故晶体三极管处于截止状态的条件:发射结反偏(或零偏)判断方法:用万用表的直流电压挡三极点电位,有V C 0>,集电极电流C I 受B I 控制,即晶体三极管处于放大状态的条件是:发射结正偏,集电结反偏,即不断增大,当B I 增大到一定数值时,C I 不再随c C 2CE R I E U -=
增加而增大时,CE U 逐渐下降,
由于CE U 的下降有一定的限度,增加也是有一定限度的。
假设0CE =U ,那么C I 达到最大,即大了,这就是饱和状态,此时,B I 失去了对C I 的控制作用。
集电极和发射极之间相当于短路或认为是一个导通开关。
晶体三极管处于饱和状态的条件:集电结、发射结处于正偏状态,
164
165
新授课
166
万用表转换开关,选择R ⨯ 100或R ⨯ 1k挡。
167
168
199
新授课
晶闸管由P1、N1、P2、N2四层半导体组成,从P1引出的是阳极A,从N2
的是阴极K,控制极G从P2引出,显然,有三个PN结,分别用J1、J2、J3表示。
.单向晶闸管的特点及工作原理
199
200
图10-31 常见单向晶闸管的管脚排列
项目2:万用表判断单向晶闸管的管脚
单向晶闸管的管脚识别:将万用表拨至欧姆挡
定的控制极相接,红表笔分别与另外两只脚相接。
摆),则假定的控制极是对的,而导通那次红表笔所接一端为阴极
A。
如果两次均不导通,则说明假定的不是控制极,可重新设定一端为控制极重复上述
201
(a) 双向晶闸管实物
符号中的T1、T2称为两个主电极,无所谓阳极和阴极之分,其中电极,T2称为第二主电极,G
2.导电特性
202
203
204
21b
b e 第二基极第一基极发射极
结
故称单结晶体管或双基极二极管。
图示箭头指向表示电流方向,只流向b 1极。
BT33、BT35等。
)等效电路分析:
205
206
207
208
新授课 ⎪⎩
⎪
⎨⎧D S G 漏极源极栅极三个电极
二、场效晶体管的放大作用
209
——场效晶体管的直流偏置电阻,产生静态输出电流I D 。
——静态输出电流,I S = I D 。
——静态栅偏压U R S = U G -U S = 0 - I S R S = -I D R S 。
GS ,使场效晶体管工作于放大区。
所以上图称为自偏压放大电路。
——交流旁路电容,相当于共射放大电路中的C e 。
——分别为输入端、输出端耦合电容。
——漏极电阻,将交流输出电流转换成交流输出信号电压的作用下,电路进入动态。
改变u i 使管子的栅源偏压化,变化的电流通过负载L D L
//R R R =',从而得到L D o R i u '-=输出。
负号表示输出与输三、场效晶体管的主要参数 )
(常数
m S ΔΔDS
GS D
m ==U U I g 越大,场效晶体管的放大能力越强。
P 或开启电压U T
D =0,U GS 的值为夹断电压U P ,场效晶体管开始导通时的DSS
管子用作放大时的最大输出电流。
该值越大,表明信号动态范围越大。
)漏源极间穿透电压U (BR)DS
指漏极和源极开始雪崩击穿,I D 恒流值急剧增加时的U DS 值。
)最大耗散功率P DM
的最大积的允许值,否则将烧坏管子。
)构成:
V形)采用金属;源极S和漏极D采用半导体;“MOS
氧化物、半导体的英文缩写。
)应用:
管作简易话筒放大器为例。
压电陶瓷电容话筒的输出音频信号输入VMOS管的栅、源极之间,经过放大后送,即可得到放大的声音。
调节R P使声音最响又不失真即可。
210
2.打开电源开关,将示波器预热。
3.当S在图示位置时。
(1)输入频率为1 000 Hz,0.5 V的电压,观察输出电压(看毫伏表和示波器)U o=____V。
(2)输入频率为1 000 Hz,1 V的电压,观察输出电压(看毫伏表和示波器)U =____V。
4.将场效晶体管的D与S极对调,重复上述步骤。
5.将开关置于恒流源位置时,重复上述步骤。
通过实验总结
1.当R D一定,U DS一定时,I D随U GS的增大而增大/减小。
2.输出电流I D与U o有固定/不定关系。
3.对换场效晶体管D与S,输出电压变/不变。
练习
211
212。