第三章 变分法基础 翟立强资料
- 格式:ppt
- 大小:415.00 KB
- 文档页数:18
第一章 变分原理与变分法1.1 关于变分原理与变分法(物质世界存在的基本守恒法则)一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理:昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理;对运动事物:能量守恒,动量(矩)守恒,熵增原理等。
变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。
Examples :① 光线最短路径传播;② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron );③CB AC EB AE +>+Summary : 实际上光的传播遵循最小能量原理;在静力学中的稳定平衡本质上是势能最小的原理。
二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论数学上的泛函定义定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映射)关系特征描述法:{ J :R x R D X ∈=→⊂r J )(|}Examples :① 矩阵范数:线性算子(矩阵)空间 数域‖A ‖1 = ∑=ni ij ja 1max ;∑=∞=nj ij ia A 1max;21)(1122∑∑===n j ni ij a A② 函数的积分: 函数空间数域 D ⊂=⎰n ba n f dxx f J )(Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。
Discussion :① 判定下列那些是泛函:)(max x f f b x a <<=;x y x f ∂∂),(; 3x+5y=2; ⎰+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。
物理问题中的泛函举例① 弹性地基梁的系统势能i. 梁的弯曲应变能: ⎰=∏l b dx dxw d EJ 0222)(21ii. 弹性地基贮存的能量: dx kw l f ⎰=∏0221 iii. 外力位能: ⎰-=∏l l qwdx 0iv. 系统总的势能:000;})({221222021===-+=∏⎰dxdww x dx qw kw dxw d EJ l泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统势能。
变分原理基础罗建辉2009年夏季1 能量原理能量原理是以能量形式表述的力学定律。
概括地说,在所有满足一定的约束条件的可能状态中,真实状态应使其能量取极值或驻值。
本课程讨论结构力学、弹性力学、薄板的能量原理,只讨论线性平衡问题。
2 弹性系统真实平衡状态的能量特征举例从能量角度看,弹性系统的真实平衡状态具有如下的能量特征:即与其他可能状态相比,真实状态的能量为极值或驻值。
对这一能量特征举几个简例。
例0—1. 弹簧系统真实平衡状态的能量特征图0—1 所示为一弹簧下端挂一重物。
弹簧的刚度系数为k ,重物的重力为P 。
用∆表示位移,当弹簧系统处于平衡状态时,求得位移∆的真解为kP =∆=∆0)(真解 (1)真解的能量特征是弹簧系统的势能p ∏为极小。
现检验如下:∆-∆=∏P k p221 (2)式(2)右边第一项是弹簧的应变能,第二项是重力P 的势能。
系统势能p ∏是位移∆的二次式。
由式(2)得221()22pP Pk kk∏=∆--(3)现考察真解的能量特征。
显然,真解(1)使势能p ∏取极小值。
换一个角度,求p ∏的一阶及二阶导数,得Pk d d p-∆=∆∏ (4)22>=∆∏k d d p(5)将真解(1)代入式(4),得0=∆∏d d p,故知势能p∏为驻值。
根据式(5),又知势能p∏变分原理广义变分原理单变量形式多变量形式为极小值。
例0—2 超静定梁真实平衡状态的能量特征图0—2a 所示为一超静定梁,取图0—2b 所示静定梁为其基本结构。
根据平衡条件,基本结构的弯矩可表示为PMX M M +=11 (6)其中p M 是在荷载作用下基本结构的弯矩,1M 是在单位多余力11=X 作用下基本结构的弯矩,1X 是任意值。
式(6)同时也是超静定梁满足平衡条件的可能弯矩,由于1X 是任意参数,因此超静定梁的可能弯矩尚未唯一确定。
为了确定1X 的真解,还必须应用变形协调条件)(1111=∆+p X 真解δ (7)式中⎰=∆dxEI M M pp 11 (8)⎰=dxEIM 2111δ试验证真解的能量特征是梁的余能c ∏为极小值,余能c ∏的表示式为dxMX M EIdx EIMpc ⎰⎰+==∏2112)(212 (9)余能c ∏是1X 的二次函数,由式(9)得11111122211221212211112221111111111(2)21[2]21[2]21[()]2p c p p p p p p p p M X M M X M dxEIM dx M M dx M dx X X EIEI EIM dx X X EIM dx X EIδδδδ∏=++=++=+∆+=+∆-∆+⎰⎰⎰⎰⎰⎰(10)由式(10)可知变形协调条件(7)使余能c ∏取极小值。