晶体管放大电路及组成原理
- 格式:ppt
- 大小:4.03 MB
- 文档页数:71
晶体管共射极单管放大电路实验报告一、实验目的1、掌握晶体管共射极单管放大电路的组成及工作原理。
2、学习静态工作点的调试方法,研究静态工作点对放大器性能的影响。
3、掌握放大器电压放大倍数、输入电阻、输出电阻的测量方法。
4、观察放大器输出波形的失真情况,了解产生失真的原因及消除方法。
二、实验原理1、晶体管共射极单管放大电路的组成晶体管共射极单管放大电路由晶体管、基极电阻、集电极电阻、发射极电阻和耦合电容等组成。
输入信号通过耦合电容加到晶体管的基极,经晶体管放大后,从集电极输出,再通过耦合电容加到负载电阻上。
2、静态工作点的设置静态工作点是指在没有输入信号时,晶体管各极的直流电流和电压值。
合适的静态工作点可以保证放大器在输入信号的作用下,输出信号不失真。
静态工作点的设置主要通过调整基极电阻和集电极电阻的阻值来实现。
3、放大器的性能指标(1)电压放大倍数:是指输出电压与输入电压的比值,反映了放大器对信号的放大能力。
(2)输入电阻:是指从放大器输入端看进去的等效电阻,反映了放大器从信号源获取信号的能力。
(3)输出电阻:是指从放大器输出端看进去的等效电阻,反映了放大器带负载的能力。
三、实验仪器及设备1、示波器2、信号发生器3、直流稳压电源4、万用表5、实验电路板6、晶体管、电阻、电容等元件四、实验内容及步骤1、按图连接实验电路仔细对照电路图,在实验电路板上正确连接晶体管共射极单管放大电路,注意元件的极性和引脚的连接。
2、静态工作点的调试(1)接通直流稳压电源,调节电源电压至合适值。
(2)用万用表测量晶体管各极的电压,计算静态工作电流。
(3)通过调整基极电阻的阻值,改变静态工作点,观察输出电压的变化,使输出电压不失真。
3、测量电压放大倍数(1)将信号发生器的输出信号接到放大器的输入端,调节信号发生器的频率和幅度,使输入信号为正弦波。
(2)用示波器分别测量输入信号和输出信号的峰峰值,计算电压放大倍数。
4、测量输入电阻(1)在放大器的输入端串联一个已知电阻。
一、实验目的1. 理解晶体管单管放大器的基本原理和组成。
2. 掌握晶体管单管放大器静态工作点的调试方法。
3. 熟悉晶体管单管放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
4. 提高对常用电子仪器及模拟电路实验设备的使用能力。
二、实验原理晶体管单管放大器是一种常见的放大电路,主要由晶体管、偏置电阻、负载电阻和耦合电容等组成。
实验电路采用共射极接法,通过输入信号u_i在晶体管的基极输入,放大后的信号u_o从集电极输出。
实验电路中,偏置电阻Rb1和Rb2组成分压电路,为晶体管提供合适的静态工作点。
负载电阻Rl接收放大后的信号,耦合电容C1和C2分别对输入信号和输出信号进行耦合,抑制交流干扰。
三、实验仪器与材料1. 晶体管(例如:3DG6)2. 偏置电阻(例如:Rb1=10kΩ,Rb2=20kΩ)3. 负载电阻(例如:Rl=10kΩ)4. 耦合电容(例如:C1=0.01μF,C2=0.01μF)5. 函数信号发生器6. 双踪示波器7. 万用电表8. 直流稳压电源9. 实验电路板四、实验步骤1. 按照实验电路图连接电路,将各元件和导线接到实验电路板上。
2. 将函数信号发生器输出端连接到双踪示波器,设置信号频率为1kHz,幅值为1V。
3. 将直流稳压电源连接到电路板,调节输出电压为12V。
4. 调节偏置电阻Rb1和Rb2,使晶体管处于合适的静态工作点。
使用万用电表测量晶体管的集电极电流Ic和集电极电压Uc,使其满足Ic=2mA,Uc=6V。
5. 在晶体管基极输入信号,观察双踪示波器上输入信号和输出信号的波形,记录电压放大倍数。
6. 测量输入电阻Ri和输出电阻Rl,计算放大器的输入电阻和输出电阻。
7. 调节输入信号幅值,观察输出波形,记录最大不失真输出电压。
五、实验数据及分析1. 静态工作点调试结果:Ic=2mA,Uc=6V。
2. 电压放大倍数:A_v=20。
3. 输入电阻:Ri=2kΩ。
放大电路的工作原理和三种基本放大组态放大电路里通常是晶体三极管、场效应管、集成运算放大器等,这些器件也称为有源器件。
共射放大电路如图所示。
V cc是集电极回路的直流电源,也是给放大电路提供能量的,一般在几伏到几十伏范围,以保证晶体三极管的发射结正向偏置、集电结反向偏置,使晶体三极管工作在放大区。
R c是集电极电阻,一般在几 K 至几十K 范围,它的作用是把集电极电流i C的变化变成集电极电压u CE的变化。
V BB是基极回路的直流电源,使发射结处于正向偏置,同时通过基极电阻R b提供给基极一个合适的基极电流I BQ,使三极管工作在放大区中适当的区域,这个电流I BQ常称为基极偏置电流,它决定着三极管的工作点,基极偏置电流I BQ是由V BB和基极电阻R b共同作用决定的,基极电阻R b一般在几十KΩ至几百KΩ范围。
如在输入端加上一个较小的正弦信号u i , 通过电容C1加到三极管的基极,从而引起基极电流i B在原来直流I BQ的基础上作相应的变化,由于u i是正弦信号,使i B随u i也相应地按正弦规律变化,这时的i B实际上是直流分流I BQ和交流分量i b迭加后的量。
同时i B的变化使集电极电流 i C 随之变化,因此i C也是直流分量I C和交流分量i c的迭加,但i C要比i B大得多(即β倍)。
电流i C在电阻R C上产生一个压降,集电极电压u CE =V CC-i C R L,这个集电极电压u CE也是由直流分量I C和交流分量 i C两部分迭加的。
这里的 u CE和 i C相位相反,即当 i C增大时, u CE减少。
由于C 2的隔直作用,使只有 u CE的交流分量通过电容C2作为放大电路的输出电压u O。
如电路参数选择适当,u O要比 u I的幅值要大得多,同时 u I与 u O的相位正好相反。
电路中各点的电流、电压波形如图所示。
放大电路的图解法放大电路有三种主要分析方法:一是图解法,二是微变等效电路法,三是计算机辅助分析法。
晶体管单级放大电路实验报告晶体管单级放大电路实验报告引言:晶体管是一种重要的电子元件,广泛应用于各种电子设备中。
晶体管的放大功能在电子技术中具有重要意义。
本次实验旨在通过搭建晶体管单级放大电路,探究晶体管在电路中的应用和性能。
一、实验目的通过搭建晶体管单级放大电路,了解晶体管的基本原理和工作特性,掌握晶体管的放大功能,研究晶体管在电路中的应用。
二、实验器材与原理1. 实验器材:- 晶体管:使用NPN型晶体管,如2N3904。
- 电源:提供电路所需的直流电源。
- 信号发生器:产生输入信号。
- 示波器:用于观测电路的输入输出波形。
2. 原理:晶体管是一种三极管,由发射极、基极和集电极组成。
晶体管的放大功能是基于PN结的导电特性。
当输入信号加到基极时,通过基极电流的变化,控制发射极与集电极之间的电流,从而实现信号的放大。
三、实验步骤1. 搭建电路:根据实验要求,按照电路图搭建晶体管单级放大电路,连接好晶体管、电源、信号发生器和示波器。
2. 调试电路:将信号发生器连接到输入端,示波器连接到输出端,调整信号发生器的频率和幅度,观察输出波形。
3. 测量电路参数:使用万用表测量电路中的电压和电流,记录下各个参数的数值。
四、实验结果与分析通过实验观察和测量,得到了晶体管单级放大电路的输入输出波形和电路参数。
根据实验数据,可以得出以下结论:1. 输入输出波形:通过示波器观察到输入信号和输出信号的波形。
输入信号经过晶体管的放大作用后,输出信号的幅度增大,但波形形状基本保持一致。
2. 电路参数:测量了电路中的电压和电流参数。
根据测量数据,可以计算出晶体管的放大倍数、输入输出阻抗等参数。
这些参数反映了晶体管在电路中的性能。
五、实验总结通过本次实验,我对晶体管的工作原理和放大功能有了更深入的了解。
通过搭建晶体管单级放大电路,我掌握了晶体管在电路中的应用方法,并通过实验数据分析了晶体管的性能。
这对于今后的电子技术学习和应用具有重要意义。
晶体管放大原理
晶体管放大原理是通过改变晶体管的输入信号电压,从而控制其输出电流的程度来实现信号放大的过程。
晶体管主要由三个区域组成:发射区、基区和集电区。
当外加电压施加在晶体管的基极和发射极之间时,就会在发射区产生一个很小的电流,称为发射极电流。
这个电流是由基极发射极结之间的正向偏置电压引起的。
此时,发射区的能带结构会发生变化,导致与其接触的基区中形成了一个浓度较高的载流子区域,称为输运区。
这个输运区能够将来自发射区的电子输运到集电区。
当输入信号电压施加在基极和发射极之间时,它会改变发射区的能带结构,从而改变输运区内的载流子浓度。
这就导致了集电区的电流发生变化。
因此,通过改变输入信号电压,晶体管可以实现对输出电流的控制。
由于输入信号电压较小,晶体管的增益(即输出电流与输入信号电流之间的比值)很大。
所以晶体管可以将输入信号放大到较大的幅度。
此外,晶体管具有高输入电阻和低输出电阻的特性,能够将输入信号源与负载之间进行有效的匹配。
总结起来,晶体管放大原理通过控制输入信号电压来改变晶体管的输出电流,从而实现信号放大。
晶体管具有高增益、高输入电阻和低输出电阻的特性,因此在电子设备中得到了广泛的应用。
晶体管放大电路实验报告晶体管放大电路实验报告引言:晶体管是一种半导体器件,广泛应用于电子电路中。
晶体管放大电路是利用晶体管的放大特性,将输入信号放大到更高的电压或电流水平,以实现对信号的增强和处理。
本次实验旨在通过搭建晶体管放大电路,探究其工作原理和性能。
一、实验目的本次实验的目的是通过搭建晶体管放大电路,了解晶体管的基本工作原理和特性,并观察不同参数对电路性能的影响。
二、实验原理晶体管放大电路主要由晶体管、电阻和电容组成。
晶体管分为三个区域:发射区、基区和集电区。
通过控制基区的电流,可以调节晶体管的放大倍数。
电阻和电容则用于稳定电路和滤波。
三、实验步骤1. 准备工作:收集所需材料和仪器,包括晶体管、电阻、电容、电压源和示波器等。
2. 搭建电路:按照实验要求,连接晶体管、电阻和电容,形成放大电路。
3. 调节电压:根据实验要求,调节电压源的输出电压,使其适合晶体管的工作范围。
4. 测量电路参数:使用示波器和万用表等仪器,测量电路中的电压、电流和频率等参数。
5. 观察输出信号:输入不同的信号波形,观察输出信号的放大效果和失真情况。
6. 记录实验数据:准确记录实验过程中的各项数据和观察结果。
四、实验结果与分析通过实验测量和观察,我们得到了一系列数据和图表。
根据这些数据和图表,我们可以得出以下结论:1. 当输入信号的幅度过大时,输出信号可能会出现失真现象,即波形变形或削平。
2. 输入信号的频率越高,输出信号的失真程度越大。
3. 通过调节电路中的电阻和电容数值,可以改变电路的增益和频率响应。
五、实验总结通过本次实验,我们深入了解了晶体管放大电路的工作原理和性能特点。
实验过程中,我们掌握了搭建电路、调节参数和测量数据的方法。
通过观察和分析实验结果,我们进一步认识到晶体管放大电路的优点和局限性。
六、实验改进在实验过程中,我们发现了一些问题和改进的空间:1. 数据测量的准确性有待提高,可以采用更精密的测量仪器和方法。
晶体管的工作原理晶体管是一种半导体电子器件,广泛应用于电子技术领域。
它是由三个掺杂不同种类的半导体材料构成的,主要包括N型半导体、P型半导体和P-N结。
晶体管的工作原理是基于控制电流的传递和放大作用,并可以通过控制输入信号的变化来实现电子开关和放大电路。
1. P-N 结晶体管内部的P-N结起到关键的作用。
P-N结是由P型半导体和N型半导体材料的结合而形成的。
N型半导体中掺杂有额外的电子,被称为自由电子;P型半导体中掺杂有额外的空穴,被称为正空穴。
在P-N结的界面,自由电子和空穴会发生复合,形成一个细小而薄弱的耗尽区。
2. 基本结构晶体管主要由三个层状的半导体材料组成,分别是发射区(Emitter)、基区(Base)和集电区(Collector)。
发射区是N型半导体,集电区是N型半导体,而基区是P型半导体。
集电区与发射区之间的P-N结被称为发射结,发射结与基区之间的P-N结被称为集电结。
3. 工作原理晶体管的工作过程可以分为放大和开关两种模式。
(1)放大模式:当晶体管工作在放大模式时,可将输入信号的弱电流放大为输出信号的强电流。
当输入信号通过发射结进入基区时,如果发射区的电压高于基区,发射结就会被打开,大量的电子就会进入基区。
这些电子会被吸引到集电区,形成一个电子流,由发射区到集电区,从而实现电流的放大。
(2)开关模式:当晶体管工作在开关模式时,可根据输入电流的变化来控制电路的开关状态。
当输入信号通过发射结进入基区时,如果发射结的电压低于基区,发射结就会被关闭,此时基区没有电流通过,晶体管处于关闭状态。
如果发射结的电压高于基区,发射结就会被打开,电流可以通过晶体管的集电区和发射区,使其处于导通状态。
4. 工作参数晶体管的工作参数包括放大倍数、截止频率和饱和电流。
放大倍数指的是输入信号与输出信号的电流比值;截止频率指的是晶体管能够放大信号的最高频率;饱和电流是指晶体管在饱和状态下通过集电极和发射极的电流。
晶体管两级放大电路的设计与制作1. 引言晶体管两级放大电路是一种常见的电子电路设计,在许多电子设备中都得到了广泛的应用。
本文将详细介绍晶体管两级放大电路的设计原理、电路结构以及制作过程。
2. 设计原理晶体管两级放大电路通过使用晶体管作为放大器,将输入信号放大到更高的电压或电流,以便驱动其他设备或用于信号处理。
该电路由两个放大级组成,其中第一个级别负责放大信号并提供适当的输入阻抗,而第二个级别则进一步放大信号以增加输出功率。
3. 电路结构晶体管两级放大电路通常由三个主要部分组成:输入级、驱动级和输出级。
具体结构如下:3.1 输入级输入级是整个电路的第一级,用于接收输入信号并将其放大到适当的电平。
输入级由一个信号源接入,通常采用电容耦合方式。
输入级的目标是提供足够的放大和阻抗匹配以确保信号能够顺利传递到下一级驱动级。
3.2 驱动级驱动级是整个电路的第二级,目的是进一步放大输入信号并将其驱动到输出级。
驱动级通常由晶体管级联组成。
通过适当选择晶体管的工作点,可以实现线性放大和输出功率的最大化。
3.3 输出级输出级是整个电路的最后一级,负责将放大的信号转化为输出功率。
输出级通常由功率晶体管组成,因其能够提供足够的电流和电压驱动能力。
输出级还可能包含负载电阻,以将信号有效地传递给负载。
4. 制作过程下面将介绍晶体管两级放大电路的制作过程,包括器件选择、电路布局、电路连接和焊接。
4.1 器件选择在设计晶体管两级放大电路之前,首先要选择合适的晶体管和其他电子器件。
晶体管的选择应基于其放大能力、工作频率范围和耐压等参数。
其他电子器件的选择也应与电路设计相匹配,以确保性能和兼容性。
4.2 电路布局在开始制作电路之前,需要进行电路布局设计。
电路布局应考虑信号路径的最短化、阻抗匹配和噪声抑制等因素。
同时,良好的电路布局还应避免晶体管以及其他器件之间的干扰和串扰。
4.3 电路连接完成电路布局后,开始进行电路连接。
这包括连接晶体管和其他器件之间的引脚,以及连接适当的外部元件,如电容和电阻等。