六年级数学概念知识点整理
- 格式:doc
- 大小:227.50 KB
- 文档页数:14
一、数与运算1.个位数、十位数和百位数的概念及其读法2.数的读法、写法和表达法(阿拉伯数字、罗马数字、简单英文表达)3.加法和减法的口算和竖式计算(进位、退位)4.乘法表的记忆与运用(乘法口诀)5.乘法的口算和竖式计算(乘法进位)6.除法的口算和竖式计算(除法退位)7.加减法、乘法和除法的综合运用(四则运算)二、分数1.分数的概念与表示2.分数的读法和写法3.通分与异分之间的转换4.分数的比较与排序5.分数的加法和减法6.分数的乘法和除法7.分数与整数的综合运用三、百分数1.百分数的概念和表示法2.百分数与分数、整数的相互转化3.百分数的加法、减法、乘法和除法4.百分法在解决实际问题中的应用四、倍数与约数1.倍数的概念与求法2.倍数的运算(加法、减法和乘法)3.有关倍数的问题的解决4.约数的概念与求法5.约数的运算(加法、减法和乘法)6.有关约数的问题的解决五、整数1.整数的概念和数轴的应用2.整数的加法和减法(同号相加、异号相减)3.整数运算的混合运用六、平方与平方根1.正整数的平方2.非负数的平方根3.平方与平方根的解决实际问题中的应用七、尺度与单位换算1.长度、质量和容量的换算(公制单位和市制单位的换算)2.时间的换算3.速度的换算与运用八、图形1.点、线段、射线、直线和角的概念与性质2.直角、钝角和锐角的区别3.平行线、垂线、相交线与角的关系4.四边形的概念和性质(矩形、正方形、长方形、平行四边形和任意四边形)5.三角形的概念和性质(直角三角形、等腰三角形、等边三角形)6.圆的概念和性质(半径、直径、弧)7.图形的放大和缩小九、数据统计1.数据的收集和整理2.数据的描述和分析3.数据的表示和解读(表格、柱状图和折线图)以上是小学六年级数学的重要知识点梳理,希望对你的学习有所帮助。
祝你学业进步!。
小学六年级数学知识点归纳第一部分数与代数一、数的认识知识点一:数的意义及分类1.整数是无限的,没有最小或最大的整数。
2.自然数是无限的,最小的自然数是1,没有最大的自然数。
3.既不是正数也不是负数的数称为零。
4.分数有真分数、假分数、带分数和最简分数。
5.百分数是百分数和分数的对比。
6.小数是有限小数和无限小数(无限不循环小数和无限循环小数)。
知识点二:计数单位和数位1.个、十、百……以及十分之一、百分之一……都是计数单位。
2.各个计数单位所占的位置称为数位。
3.十进制计数法。
4.数的分级。
知识点三:数的读、写法1.整数、小数、分数、百分数、正数和负数的读写法。
知识点四:数的改写1.把多位数改写成以“万”或“亿”为单位的数,可直接改写或省略尾数。
2.求小数的近似数。
3.假分数和带分数、整数之间的互化。
4.分数、小数与百分数之间的互化。
知识点五:数的大小比较1.整数、小数、分数、正数和负数的大小比较。
2.比较小数、分数和百分数的大小时,可把分数和百分数化成小数,把各小数的相同数位上下对齐进行比较,最后排序结果一定要排列原数。
知识点六:数的性质1.分数的基本性质。
2.小数的基本性质。
3.移动小数点的位置可引起小数大小变化,需要补位。
知识点七:因数倍数质数合数1.因数和倍数的意义。
2.因数和倍数的特征,一个数的因数个数有限,最小因数为1,最大因数为本身;一个数的倍数个数无限,最小倍数为本身,没有最大倍数;一个数既是它本身的因数,也是它本身的倍数。
3.2、3、5的倍数的特征。
4.奇数和偶数的意义,自然数不是奇数就是偶数,最小奇数为1,最小偶数为2.5.质数和合数的意义,最小质数为2,2是唯一的偶质数,没有最大质数;最小合数为4,没有最大合数。
6.判断一个数是质数还是合数的方法。
7、质因数、分解质因数、分解质因数的方法质因数是指能整除一个数的质数,分解质因数是将一个数分解成若干个质因数的乘积。
分解质因数的方法有多种,常用的有试除法和分解质因数法。
一、数与代数1.整数:正整数、负整数、零、绝对值、相反数、数轴等概念。
2.分数:分数的意义、分数的大小比较、分数的加减乘除等基本运算。
3.小数:小数的读法与写法、小数的大小比较、小数的加减乘除等基本运算。
4.百分数:百分数的意义、百分数的读法与写法、百分数的换算与应用等。
5.用字母表示数:用字母表示数的含义、字母与实际问题之间的转化。
二、数的运算与应用1.加法与减法:两位或多位整数的加减法、带有括号的加减法、应用问题的解决。
2.乘法与除法:两位或多位整数的乘除法、小数的乘除法、应用问题的解决。
3.整数运算:加减法与乘除法有关的整数运算、应用问题的解决。
4.分数的四则运算:分数的加减乘除、分数的化为整数、分数的运算综合应用。
5.小数的四则运算:小数的加减乘除、小数与分数之间的运算、小数的运算综合应用。
6.百分数的应用:百分数的加减乘除、百分数与分数、百分数与小数之间的运算。
三、图形与几何1.平面图形:正方形、长方形、三角形、圆的性质和计算等。
2.空间图形:立方体、正方体、圆柱体、圆锥体、圆球等的性质和计算。
3.图形的变换:图形的平移、旋转、翻转等。
4.图形的分类和比较:根据性质和特征对图形进行分类和比较。
5.图形的计算:图形面积与图形周长的计算、应用问题的解决。
四、数据的处理1.图表的读取与解读:条形图、折线图、饼图等数据图形的读取与应用。
2.平均数:平均数的意义、平均数的计算、平均数的应用。
3.数字的估算:对数字进行近似估算、对计算结果进行估算。
五、应用题解决能力1.实际问题的模型构建和解决:将实际问题转化为数学模型,并运用相应方法进行解答。
2.问题的分析和提炼:将复杂问题进行分析和提炼,从中找出解决问题的关键点。
一、数与代数1.数的读法:百分数、小数、分数、整数2.数的大小比较:大小关系、用大小符号表示大小关系3.数的进位与退位:百位、千位、万位4.数的四则运算:加法、减法、乘法、除法5.数的倍数和约数:倍数的概念、约数的概念6.乘法的应用:乘法与加法、乘法与减法、乘法与除法7.除法的应用:商的概念、余数的概念、数的整除性质8.分数的认识与比大小:分数的概念、分数的大小比较、分数的简化与扩展9.分数的四则运算:分数的加法、分数的减法、分数的乘法、分数的除法10.整数的认识:正整数、负整数、零、整数的大小比较11.纸带图与有向数线:纸带图的绘制、有向数线的绘制、正负数坐标轴上数的位置表示二、空间与图形1.点、线、面:点的认识、线的认识、面的认识2.平面图形:三角形、四边形、多边形、圆形、椭圆形、正方形、长方形、平行四边形、直角三角形、等腰三角形、等边三角形3.立体图形:长方体、正方体、棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.图形的名称和性质:平行四边形、矩形、正方形、菱形、三角形、四边形等5.平面镜像与空间镜像:平面图形的镜像、立体图形的镜像6.位置与方向:方向的认识、位置的认识、位置关系的认识三、量的认识与运用1.长度的换算:米与厘米的换算、分米与厘米的换算、运用换算计算长度2.长度和重量的比较:比较长度的大小、比较重量的大小3.时间的认识与计算:时、分、秒的认识、时间段的计算、时钟的读法4.面积的认识与计算:长方形的面积计算、正方形的面积计算5.体积的认识与计算:长方体的体积计算、正方体的体积计算6.资料的收集和整理:资料的收集方法、用表格整理资料四、数据的收集与处理2.数据的处理与分析:数据的整理、数据的比较、数据的运算3.数据的表示与解释:数据的图表表示、图表的读取与解读五、解决问题的策略与方法1.数学问题求解:分析问题、选择适当的计算方法、验证和总结解答结果2.解决实际问题:问题与计算、问题与图形3.数学建模:抽象、分析、解决。
小学六年级数学全册知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数7.整数的倒数分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是8.小数的倒数:11.分数除法计算法则:甲数除以乙数(除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与个中一个因数求另外一个因数。
13.分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系便能够说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。
表示两个比相等的式子叫做比例,是比的意义。
比例有4项,前项后项各2个.15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。
比值不变。
比的性质用于化简比。
1比表示两个数相除;只有两个项:比的前项和后项。
比例是一个等式,透露表现两个比相等;有四个项:两个外项和两个内项。
16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。
比例的性质用于解比例。
17.比和比例的区别(1)意义、项数、各部分名称不同。
一、基础知识1.数的认识:整数、正数、负数、零的概念2.数的读法和写法3.顺序比较与排序4.数的正序、逆序、顺序相等5.十进制的认识与运算二、基本运算1.加法的概念与运算法则2.减法的概念与运算法则3.乘法的概念与运算法则4.除法的概念与运算法则5.加减法、乘除法的混合运算6.乘方与开方三、数的性质与运算1.数的位数与数位的认识2.偶数与奇数的判断3.求一个数的相反数4.数与数的加减法性质5.乘法的交换律、结合律和分配律6.乘法的一些特殊性质7.除法的性质与应用四、单位换算1. 长度的单位换算(mm、cm、dm、m、km)2.容量的单位换算(mL、L)3. 质量的单位换算(g、kg、t)五、数的应用1.问题解决能力的训练2.两步及以上的问题解决3.阶梯问题的解决4.包含数学思想的问题解决六、四则混合运算1.四则混合运算的顺序2.分数的加减乘除法七、图形的认识与性质1.直线、线段与射线的认识2.角的认识与性质3.三角形、四边形及其分类4.圆的分类与计算5.长方形、正方形与平行四边形的性质6.梯形与矩形的性质八、计量单位1. 长度的计量单位(mm、cm、dm、m、km)2.容量的计量单位(mL、L)3. 质量的计量单位(g、kg、t)4.时间的计量单位(秒、分钟、小时、天)九、简单方程1.简单方程的解法2.利用方程式解决问题3.推理解决方程问题十、时钟与时间1.时钟的读法与写法2.时间的计算与比较3.年、月、星期的认识4.时间的应用问题十一、小数的认识与运算1.小数的读法与写法2.小数与分数的转换3.小数的比较与排序4.小数的四则运算。
小学六年级数学知识点汇总归纳整理
1. 算术运算
- 加法和减法:掌握多位数和小数的加法和减法运算,包括进
位和退位的处理。
- 乘法和除法:熟练掌握乘法口诀表,并能进行多位数的乘法
和除法计算。
2. 小数和分数
- 小数:理解小数的概念,能进行小数的加减乘除运算。
- 分数:掌握分数的基本概念,能进行分数的加减乘除运算。
3. 几何
- 图形的认识:认识常见的二维图形,如正方形、长方形、圆等,并了解它们的性质。
- 周长和面积:掌握计算图形的周长和面积的方法,包括矩形、三角形、圆形等。
4. 数据与统计
- 数据收集与整理:学会使用图表和表格整理收集到的数据,并能从中提取出有效的信息。
- 数据的分析与表达:学会使用数据进行简单的分析,并能使用图表和文字形式展示数据分析结果。
5. 运算规则和方程式
- 运算规则:理解运算规则的概念,包括加法交换律、乘法结合律等,并能应用于各种运算中。
- 方程式:了解方程式的概念,能够解一元一次方程式和简单的应用题。
6. 时间和单位
- 时、分、秒:掌握时、分、秒的换算关系,能进行简单的时间计算。
- 长度、重量和容量:认识常用的长度、重量和容量单位,并能进行换算和简单的计算。
7. 实际问题的应用
- 实际问题解决:通过数学知识解决日常生活中的实际问题,如购物、旅行等,培养数学思维和解决实际问题的能力。
- 创造性思维:鼓励学生在数学研究中运用创造性思维,提出问题和解决问题的方法。
以上是小学六年级数学的主要知识点的汇总归纳整理,希望能对学生的学习有所帮助。
一、整数1.整数的概念:包括正整数、零和负整数。
2.整数的比较:大于、小于和等于的判断。
3.整数的加减法:同号相加、异号相减。
4.整数的乘法:同号得正,异号得负。
5.整数的除法:同号得正,异号得负。
二、小数1.小数的读法和写法:如0.8读作"零点八"。
2.小数的大小比较:整数部分相等时,比较小数部分的大小。
3.小数的加减法:按位计算,注意进位和借位。
4.小数的乘法:先不考虑小数点,进行整数的乘法,最后确定小数点的位置。
5.小数的除法:先将除数和被除数都化为整数,然后进行整数的除法,最后确定小数点的位置。
三、分数1.分数的概念:包含真分数、假分数和整数。
2.分数的读法和写法:如2/3读作"二分之三"。
3.分数的大小比较:通分后比较分子的大小。
4.分数的加减法:通分后按位计算,注意约分。
5.分数的乘法:分子相乘,分母相乘。
6.分数的除法:被除数乘以倒数,然后进行分数的乘法。
四、百分数1.百分数的概念:表示百分之几,记作%。
2.百分数的转换:百分数转换为小数,除以100;小数转换为百分数,乘以100。
3.百分数的比较:转换为小数进行比较。
4.百分数的运算:加减法和乘除法同小数的运算。
五、几何图形1.平面图形的分类:包括三角形、四边形、多边形和圆等。
2.三角形的分类:包括等边三角形、等腰三角形、直角三角形和普通三角形等。
3.四边形的分类:包括矩形、正方形、菱形、长方形和梯形等。
4.图形的面积:根据图形的形状和尺寸,计算图形的面积。
5.图形的周长:计算图形边长的和。
6.图形的旋转和翻转:基本了解图形的旋转、翻转和对称性等。
六、代数方程1.方程的概念:等式中含有未知数的式子。
2.解方程:通过逆运算,求得方程的解。
3. 一元一次方程:形如ax+b=0的方程。
4.一元一次方程的应用问题:通过方程来解决实际问题。
七、数据统计1.数据的收集和整理:通过观察、实践和调查收集数据,并整理成表格或图表。
六年级数学的知识点总结一、整数与有理数1. 整数的基本概念:整数由正整数、零和负整数组成。
整数相加、相减的规则。
2. 整数的运算:整数的加法、减法、乘法和除法运算规则。
3. 有理数的概念:有理数包括整数和分数,有理数的大小关系与比较。
二、分数与小数1. 分数的基本概念:分数的定义,分子、分母、真分数、假分数等。
2. 分数的运算:分数的加法、减法、乘法、除法运算规则,分数的化简。
3. 小数的概念与运算:小数的读法,小数的四则运算与恒等式。
三、比例与百分数1. 比例的概念与性质:比例的含义,比例的延伸与比例的性质。
2. 解决实际问题的比例:比例的应用,解决实际问题的计算与分析。
3. 百分数的概念与应用:百分数的定义,百分数的转化,百分数的应用。
四、图形的认识与计算1. 图形的基本属性:点、线、线段、角、三角形、四边形等的概念与性质。
2. 计算图形的面积与周长:长方形、正方形、三角形等图形的面积与周长计算。
3. 运用比例解决图形问题:图形的相似与全等,相似与全等图形的计算与应用。
五、代数的认识与应用1. 代数式的基本概念:字母的代表数,代数式与算式的关系。
2. 代数式的计算:代数式的加法、减法与乘法,代数式的合并与展开。
3. 解一元一次方程:一元一次方程的解法,利用方程解决实际问题。
六、统计与概率1. 统计的基本概念:数据的收集与整理,直方图与折线图的制作与分析。
2. 概率的初步认识:随机事件的概念,概率的基本定义与计算。
3. 利用概率解决问题:利用概率分析与预测,解决实际问题的计算与讨论。
以上是六年级数学的知识点总结,通过对每个知识点的概念、性质、运算规则和应用进行了简要介绍。
希望这份总结能够帮助你回顾六年级数学学习的重点内容,并提供一定的学习指导。
记得多做习题和实际问题的应用练习,加深对知识点的理解和运用能力的提升。
祝你在数学学习中取得优异的成绩!。
下面是人教版六年级数学上册的概念知识点整理:1.数的认识-认识自然数、整数、分数、小数等概念-认识正数、负数和零的概念-了解数的大小比较和排列2.数的读法和写法-数字的读法和写法-十进制的概念,理解位权和数位-简单数的四则运算3.整数的加法和减法-整数的加减法运算-用数轴表示整数的加减法过程-整数运算的法则和性质-解决实际问题的整数运算4.有理数的加法和减法-有理数的加减法运算-解决实际问题的有理数运算5.小数的认识-认识小数的概念和意义-小数的读法和写法-小数的大小比较和排序6.小数的加法和减法-小数的加减法运算-用模拟算法和抽象算法解决小数运算问题7.分数的认识-分数的概念和意义-分数的读法和写法-分数的比较和排序8.分数的加法和减法-分数的加减法运算-分数运算的法则和性质-解决实际问题的分数运算9.对分数的认识-认识多个单位组成的分数-认识真分数、假分数和带分数10.分数的乘法-分数的乘法运算-解决实际问题的分数乘法11.分数的除法-分数的除法运算-解决实际问题的分数除法12.分数和小数的互化-分数和小数的互化过程-分数和小数的相互转换13.常用分数和小数的计算-分数和小数的计算技巧-解决实际问题的分数和小数的计算14.单位换算-体重、长度、容量等常用单位的换算-解决实际问题的单位换算15.图形的认识-认识直线、射线、线段等几何概念-认识多边形、圆等图形16.直角和直角三角形-认识直角和直角三角形的性质和特征-计算直角三角形的长度17.图形的相似-认识相似图形的概念和性质-判定相似图形的条件-计算相似图形的长度比和面积比。
书 香 浸 润, 励 志 成 长!第一单元 位置1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行)↓ ↓竖排叫列 横排叫行一般(从左往右看) (从前往后看)2、 平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。
3、 图形左、右平移: 行不变 图形上、下平移: 列不变第二单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少?也表示98的5倍是多少?5×98表示求5的98是多少2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少?(二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:一般在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。
4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为..倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数: 把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
因为1×1=1;0乘任何数都得0,01(分母不能为0) 4、 对于任意数(0)a a ≠,它的倒数为1a ;非零整数a 的倒数为1a ;分数b a 的倒数是a b; 5、 真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
第三单元 分数除法一、 分数除法1、分数除法的意义:乘法: 因数 × 因数 = 积 除法: 积 ÷ 一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、 “[]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。
二、分数除法解决问题 (未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X ,用方程解答。
(2)算术(用除法): 对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就 一个数÷另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或: ① 求多几分之几:大数÷小数 – 1② 求少几分之几: 1 - 小数÷大数三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
比的后项不能为0,因为比的后项相当于除法中的除数,除数不能为0.例如 15 :10 = 15÷10= 23(比值通常用分数表示,也可以用小数或整数表示) ∶ ∶ ∶ ∶前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例: 路程÷速度=时间。
4、求比值的方法:用比的前项除以比的后项。
5、区分比和比值比:表示两个数的倍数关系,可以写成比的形式,也可以用分数表示。
有比的前项和比的后项比值:相当于商,是一个数,是一个结果,可以是整数,分数,也可以是小数。
6、根据分数与除法的关系,两个数的比也可以写成分数形式。
例如3:2也可以写成32,仍读作“3:2”。
7、 比和除法、分数的联系:8、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
9、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:①用比的前项和后项同时除以它们的最大公因数。
(1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。
如: 15∶10 = 15÷10 = 23 = 3∶2 5.按比例分配:把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
如: 已知两个量之比为:a b ,则设这两个量分别为ax bx 和。
6、路程一定,速度比和时间比成反比。
(如:路程相同,速度比是4:5,时间比则为5:4) 工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)(三)和比的应用题有关的概念1、求每份数的方法和÷分数和=每份数 相差数÷相差份数=每份数 部分数÷对应份数=每份数2、图形求比的常见公式长方体:(长+宽+高)的和=棱长和÷4 长方形: (长+宽)的和=周长÷23、相遇问题速度和 = 路程÷相遇时间第四单元 圆一、 认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O 表示。
它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d 表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
(画圆给出半径标半径r=?,给出直径标直径d=?)6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。
用字母表示为:d =2r 或r =2d 或r=d ÷2 8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
圆的周长总是它直径的3倍多一些。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π ≈ 3.14。
(2)在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C= πd ÷π或C=2π r÷2π5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2 计算方法:2π r÷ 2 即π r (2)半圆的周长:等于圆的周长的一半加直径。
计算方法:πr+2r 即 5.14 r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。
用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:(1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。