高三数学解三角形和数列
- 格式:pdf
- 大小:1.16 MB
- 文档页数:22
数列和解三角形大题专练1.(2023•济宁一模)已知数列{a n}的前n项和为S n,且满足:a1=1,na n+1=2S n+n(n∈N*).(1)求证:数列为常数列;(2)设,求T n.2.(2023•江宁区一模)设S n为数列{a n}的前n项和,a2=7,对任意的自然数n,恒有.(1)求数列{a n}的通项公式;(2)若集合A={x|x=a n,n∈N*},B={x|x=3n,n∈N*},将集合A∪B中的所有元素按从小到大的顺序排列构成数列{b n},计数列{b n}的前n项和为T n.求T102的值.3.(2023•汕头一模)已知T n为正项数列{a n}的前n项的乘积,且a1=3,=.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求[S2023]([x]表示不超过x的最大整数).4.(2023•广州模拟)已知数列{a n}的前n项和为S n,且.(1)求a,并证明数列是等差数列;1(2)若,求正整数k的所有取值.5.(2023•广东模拟)已知数列{a n}的前n项和为S n,且.(1)求数列{a n}的通项公式;(2)若b n=na n,且数列{b n}的前n项和为T n,求证:当n≥3时,.6.(2023•宁波模拟)y=f(x)的图象为自原点出发的一条折线,当n-1≤y≤n(n∈N*)时,该函数图象是斜率为b n(b≠0)的一条线段.已知{a n}由定义.(1)用b表示a1,a2;(2)若b=2,记T n=a1+2a2+⋯+na n,求证:.7.(2023•邵阳二模)已知S n为数列{a n}的前n项和,a1=2,S n+1=S n+4a n-3,记b n=log2(a n-1)+3.(1)求数列{b n}的通项公式;(2)已知,记数列{c n}的前n项和为T n,求证:.8.(2022秋•慈溪市期末)记x i=x1+x2+x3+⋯+x n,,x i=x1×x2×x3×⋯×x n,n∈N*,已知数列{a n}和{b n}分别满足:a i=n2,b i=()n2+n.(1)求{a n},{b n}的通项公式;(2)求a i b i.9.(2023•南平模拟)已知数列{a n}的前n项和为S n,,a2=3.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求T n的取值范围.10.(2023•杭州一模)已知数列{a n}的前n项和为S n,且S n+2=2a n.(1)求a2及数列{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,求数列{}的前n项和T n.11.(2023•南通模拟)设数列{a n}的前n项和为S n,已知S n=2a n-n+1.(1)证明:数列{a n+1}是等比数列;(2)若数列{b n}满足b1=a2,,求数列{b n}的前14项的和.12.(2023•杭州一模)已知△ABC中角A、B、C所对的边分别为a、b、c,且满足2c sin A cos B+2b sin A cos C=a,c>a.(1)求角A;(2)若b=2,BC边上中线AD=,求△ABC的面积.13.(2023•宁波模拟)记锐角△ABC的内角为A,B,C,已知sin2A=sin B sin C.(1)求角A的最大值;(2)当角A取得最大值时,求2cos B+cos C的取值范围.14.(2022秋•温州期末)记△ABC的内角A,B,C的对边分别为a,b,c,已知=1.(1)求B;(2)若,△ABC内切圆的面积为π,求△ABC的面积.15.(2023•龙岩模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,.(1)求角B;(2)若D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,求sinθ的值.16.(2023•湖北模拟)在△ABC中,记角A,B,C的对边分别为a,b,c,已知,且c= 2,点D在线段BC上.(1)若,求AD的长;(2)若的面积为,求的值.17.(2023•南通模拟)如图,在平面四边形ABCD中,AB=1,,CD=2,.(1)若BC⊥CD,求sin∠ADC;(2)记△ABD与△BCD的面积分别记为S和S2,求的最大值.118.(2023•广州模拟)记△ABC的内角A,B,C的对边分别为a,b,c.已知a.(1)证明:sin A+sin C=2sin B;(2)若,求△ABC的面积.19.(2023•平湖市模拟)已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角A的大小;(2)设AD是BC边上的高,且AD=2,求△ABC面积的最小值.20.(2023•烟台一模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c-2b cos A=b.(1)求证:A=2B;(2)若A的角平分线交BC于D,且c=2,求△ABD面积的取值范围.参考答案与试题解析一.解答题(共20小题)1.(2023•济宁一模)已知数列{a n}的前n项和为S n,且满足:a1=1,na n+1=2S n+n(n∈N*).(1)求证:数列为常数列;(2)设,求T n.【解答】解:(1)证明:∵na n+1=2S n+n,+n-1,n≥2,∴(n-1)a n=2S n-1两式相减得:na n+1-(n-1)a n=2a n+1,∴na n+1=(n+1)a n+1,+1)=(n+1)(a n+1),∴n(a n+1∴,(n≥2),又a2=2S1+1=2a1+1=3,∴,上式也成立,∴数列为常数列;(2)由(1)得,∴a n=2n-1,∴=,∴,两式相减得=,∴.2.(2023•江宁区一模)设S n为数列{a n}的前n项和,a2=7,对任意的自然数n,恒有.(1)求数列{a n}的通项公式;(2)若集合A={x|x=a n,n∈N*},B={x|x=3n,n∈N*},将集合A∪B中的所有元素按从小到大的顺序排列构成数列{b n},计数列{b n}的前n项和为T n.求T102的值.【解答】解:(1)a2=7,对任意的自然数n,恒有,可得n=1时,a1=2a1-3,解得a1=3;n=2时,2a2=2S2-6=2(a1+a2)-6,解得a1=3;n=3时,3a3=2S3-9=2(a1+a2+a3)-9,解得a3=11.当n≥2时,na n=2S n-3n变为(n-1)a n-1=2S n-1-3(n-1),两式相减可得(n-2)a n=(n-1)a n-1-3,当n≥3时,上式变为(n-3)a n-1=(n-2)a n-2-3,上面两式相减可得a n+a n-2=2a n-1,且a1+a3=2a2,所以数列{a n}是首项为3,公差为4的等差数列,可得a n=3+4(n-1)=4n-1;(2)集合A={x|x=4n-1,n∈N*},B={x|x=3n,n∈N*},集合A∪B中的所有元素的最小值为3,且3,27,243三个元素是{b n}中前102项中的元素,且是A∩B中的元素,所以T102=(a1+a2+a3+...+a100)+9+81=×100×(3+400-1)+90=20190.3.(2023•汕头一模)已知T n为正项数列{a n}的前n项的乘积,且a1=3,=.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求[S2023]([x]表示不超过x的最大整数).【解答】解:(1)T n为正项数列{a n}的前n项的乘积,且a1=3,=,可得n≥2时,==,即为=,两边取3为底的对数,可得(n-1)log3a n=n log3a n-1,即为==...==1,所以log3a n=n,则a n=3n,对n=1也成立,所以a n=3n,n∈N*;(2)b n===1-,数列{b n}的前n项和为S n=n-(++...+)>n-2(++...+)=n-1+,所以S2023>2023-1+=2022+>2022,又S2023=2023-(+...+)<2023,所以[S2023]=2022.4.(2023•广州模拟)已知数列{a n}的前n项和为S n,且.(1)求a1,并证明数列是等差数列;(2)若,求正整数k的所有取值.【解答】解:(1)证明:∵①,∴当n=1时,S1+2=2a1+1,解得a1=1,当n≥2时,S n-1+2n-1=2a n-1+1②,由①-②得a n+2n-1=2a n-2a n-1,即a n-2a n-1=2n-1,∴-=,又,∴数列{}是首项为,公差为的等差数列;(2)由(1)得=+(n-1)=n,即a n=n•2n-1,∴S n=1+2×2+3×22+...+n•2n-1③,2S n=2+2×22+3×23+...+n•2n④,由③-④得-S n=1+2+22+...+2n-1-n•2n=-n•2n=(1-n)2n-1,∴S n=(n-1)•2n+1,则S2k=(2k-1)•22k+1,2=k2•22k-1,∵,∴k2•22k-1<(2k-1)•22k+1,即k2-4k+2-<0,令f(x)=x2-4x+2-,∵y=x2-4x+2=(x-2)2-2在(2,+∞)上单调递减,y=-在(2,+∞)上单调递减,∴f(x)=x2-4x+2-在(2,+∞)上单调递减,又f(1)=1-4+2-=-<0,f(2)=4-8+2-=-<0,f(3)=9-12+2-=-<0,f(4)=2->0,要使,即f(x)<0,故正整数k的所有取值为1,2,3.5.(2023•广东模拟)已知数列{a n}的前n项和为S n,且.(1)求数列{a n}的通项公式;(2)若b n=na n,且数列{b n}的前n项和为T n,求证:当n≥3时,.【解答】解:(1)∵,∴n≥2时,S1+2S2+⋯+(n-1)S n-1=(n-1)3,相减可得:nS n=n3-(n-1)3,可得S n=3n-3+,n=1时,a1=S1=1.n≥2时,a n=S n-S n-1=3n-3+-[3(n-1)-3+]=3+-,n=1时,上式不满足,∴a n=.(2)证明:n=1时,b1=1,n≥2时,b n=na n=3n+1-=3n-,当n≥3时,数列{b n}的前n项和为T n=1+6-1+3×(3+4+⋯+n)-(++⋯+)=6+3×-(++⋯+)=-3-(++⋯+),要证明当n≥3时,,即证明当n≥3时,1≤++⋯++,令f(n)=++⋯++-1,n=3时,f(3)=0成立,而f(n)单调递增,因此当n≥3时,1≤++⋯++成立,即当n≥3时,.6.(2023•宁波模拟)函数y=f(x)的图象为自原点出发的一条折线,当n-1≤y≤n(n∈N*)时,该函数图象是斜率为b n (b ≠0)的一条线段.已知数列{a n }由定义.(1)用b 表示a 1,a 2;(2)若b =2,记T n =a 1+2a 2+⋯+na n ,求证:.【解答】解:(1)由题意可得,,,解得:,;证明:(2)当b =2时,由,得,∴,则,∴T n =a 1+2a 2+⋯+na n =(1+2+...+n )-()=(),令P n =,则,∴==,∴,则>.7.(2023•邵阳二模)已知S n 为数列{a n }的前n 项和,a 1=2,S n +1=S n +4a n -3,记b n =log 2(a n -1)+3.(1)求数列{b n }的通项公式;(2)已知,记数列{c n }的前n 项和为T n ,求证:.【解答】解:(1)由S n +1=S n +4a n -3,可得S n +1-S n =4a n -3,即a n +1=4a n -3,即有a n +1-1=4(a n -1),可得a n -1=(a 1-1)•4n -1=4n -1,则b n =log 2(a n -1)+3=log 24n -1,+3=2n +1;(2)证明:=(-1)n +1•=(-1)n +1•(+),当n为偶数时,T n=(+)-(+)+...-(+)=(-),由{-}在n∈N*上递增,可得T n≥T2=(-)=;当nn为奇数时,T n=(+)-(+)+...+(+)=(+),由>0,可得T n>>.所以.8.(2022秋•慈溪市期末)记x i=x1+x2+x3+⋯+x n,,x i=x1×x2×x3×⋯×x n,n∈N*,已知数列{a n}和{b n}分别满足:a i=n2,b i=()n2+n.(1)求{a n},{b n}的通项公式;(2)求a i b i.【解答】解:(1)∵a i=n2,b i=()n2+n,∴n≥2时,a n=n2-(n-1)2=2n-1,b n===3n.n=1时,a1=1,b1=3,满足上式,∴a n=2n-1,b n=3n.(2)a n b n=(2n-1)3n.∴a i b i=T n=3+3×32+5×33+⋯+(2n-1)3n,3T n=32+3×33+⋯+(2n-3)3n+(2n-1)3n+1,相减可得:-2T n=3+2(32+33+⋯+3n)-(2n-1)3n+1=3+2×-(2n-1)3n+1,化为:T n=(n-1)3n+1+3,即a i b i=(n-1)3n+1+3.9.(2023•南平模拟)已知数列{a n}的前n项和为S n,,a2=3.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求T n的取值范围.【解答】解:(1)因为a n+1=S n+1-S n,所以由,得,所以,所以,即.在中,令n=1,得,所以a1=1.所以数列是首项为1,公差为1的等差数列,所以,即:.当n≥2时,,a1=1也适合上式,所以数列{a n}的通项公式为a n=2n-1.(2)由(1)知,,所以,因为b n>0,所以T n随着n的增大而增大,所以,又显然,所以,即T n的取值范围为.10.(2023•杭州一模)已知数列{a n}的前n项和为S n,且S n+2=2a n.(1)求a及数列{a n}的通项公式;2(2)在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,求数列{}的前n项和T n.【解答】解:(1)由题意,当n=1时,S1+2=a1+2=2a1,解得a1=2,当n=2时,S2+2=2a2,即a1+a2+2=2a2,解得a2=4,当n≥2时,由S n+2=2a n,可得S n-1+2=2a n-1,两式相减,可得a n=2a n-2a n-1,整理,得a n=2a n-1,∴数列{a n}是以2为首项,2为公比的等比数列,∴a n=2•2n-1=2n,n∈N*.(2)由(1)可得,,,在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,则有a n+1-a n=(n+1)d n,∴,∴,∴T n=++•••+=+++•••+,,两式相减,可得T n=+++•••+-=1+-=-,∴T n=3-.11.(2023•南通模拟)设数列{a n}的前n项和为S n,已知S n=2a n-n+1.(1)证明:数列{a n+1}是等比数列;(2)若数列{b n}满足b1=a2,,求数列{b n}的前14项的和.【解答】解:(1)S n=2a n-n+1⋯①,则S n+1=2a n+1-(n+1)+1⋯②,②-①,得a n+1=2a n+1-2a n-1,即a n+1=2a n+1,∴a n+1+1=2(a n+1),即,令S n=2a n-n+1中n=1,得S1=a1=2a1-1+1,解得a1=0,则a1+1=1,∴{a n+1}是首项为1,公比为2的等比数列.(2)由(1)知,则,∴,且,∴当n为偶数时,,即,∴b1+b2+⋯+b14=b1+(b2+b3)+(b4+b5)+⋯+(b12+b13)+b14=1+21-1+23-1+⋯+211-1+212-1=.12.(2023•杭州一模)已知△ABC中角A、B、C所对的边分别为a、b、c,且满足2c sin A cos B+2b sin A cos C=a,c>a.(1)求角A;(2)若b=2,BC边上中线AD=,求△ABC的面积.【解答】解:(1)∵2c sin A cos B+2b sin A cos C=a,∴由正弦定理得2sin C sin A cos B+2sin B sin A cos C=3sin A,∵sin A>0,∴sin C cos B+sin B cos C=,∴sin(B+C)=,∵A+B+C=π,∴sin A=,∵c>a,∴;(2)∵,则,b=2,BC边上中线AD=,故,解得,∴.13.(2023•宁波模拟)记锐角△ABC的内角为A,B,C,已知sin2A=sin B sin C.(1)求角A的最大值;(2)当角A取得最大值时,求2cos B+cos C的取值范围.【解答】解:(1)∵sin2A=sin B sin C,∴在锐角△ABC中,由正弦定理得a2=bc,∴,∵0<A≤,故角A的最大值为;(2)由(1)得,则C=-B,则=,在锐角△ABC中,<B<,∴B+∈(,),∴sin(B+)∈(,),故2cos B+cos C的取值范围为(,).14.(2022秋•温州期末)记△ABC的内角A,B,C的对边分别为a,b,c,已知=1.(1)求B;(2)若,△ABC内切圆的面积为π,求△ABC的面积.【解答】解:(1)因为=1,∴b cos C+b sin C-a-c=0,根据正弦定理可得:sin B cos C+sin B sin C-sin A-sin C=0又A+B+C=π,∴sin B cos C+sin B sin C-sin(B+C)-sin C=0,∴sin B sin C-cos B sin C-sin C=0,又C∈(0,π),∴sin C>0,∴,∴,又B∈(0,π),∴,∴,∴;(2)∵△ABC内切圆的面积为π,所以内切圆半径r=1.由于,∴,①由余弦定理得,b2=(a+c)2-3ac,∴b2=48-3ac,②联立①②可得,即,解得或(舍去),∴.15.(2023•龙岩模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,.(1)求角B;(2)若D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,求sinθ的值.【解答】解:(1)△ABC中,,所以+=,由正弦定理得,=,因为sin(A+B)=sin(π-C)=sin C,所以=;又因为C∈(0,π),所以sin C≠0,所以sin B=cos B,即tan B=,又因为B∈(0,π),所以B=.(2)因为D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,所以∠BDC=2θ,AD=BD=3,DC=1,AC=4,在△ABC中,由正弦定理得,=,所以BC==8sinθ,在△BDC中,由余弦定理得,BC2=BD2+CD2-2BD•CD cos2θ=10-6cos2θ,所以64sin2θ=10-6cos2θ,所以52sin2θ=4,解得sin2θ=,又因为θ∈(0,),所以sinθ=.16.(2023•湖北模拟)在△ABC中,记角A,B,C的对边分别为a,b,c,已知,且c= 2,点D在线段BC上.(1)若,求AD的长;(2)若的面积为,求的值.【解答】解:(1)由,得2sin B sin(A+)=sin A+sin C=sin A+sin A cos B+ cos A sin B,∴sin A sin B+sin B cos A=sin A+sin A cos B+cos A sin B,∴sin B-cos B=2sin(B-)=1,又B∈(0,π),∴B-=,∴B=,∵,∴∠ADB=,在△ABD中,由正弦定理得=,∴=,解得AD=;(2)设CD=t,则BD=2t,又S△ABC=3,∴×2×3t×=3,解得t=2,∴BC=3t=6,又AC===2,在△ABD中,由正弦定理可得=,∴sin∠BAD=2sin∠ADB,在△ACD中,由正弦定理可得=,∴sin∠CAD=sin∠ADC,∵sin∠ADB=sin(π-∠ADC)=sin∠ADC,∴==2.17.(2023•南通模拟)如图,在平面四边形ABCD中,AB=1,,CD=2,.(1)若BC⊥CD,求sin∠ADC;(2)记△ABD与△BCD的面积分别记为S和S2,求的最大值.1【解答】解:(1)∵BC⊥CD,∴,,,,,∴sin∠ADC=sin(∠BDC+∠ADB)=sin∠BDC cos∠ADB+cos∠BDC sin∠ADB=;(2)设∠BAD=α,∠BCD=β,∴,∴,∴①,==,当且仅当,时取最大值,综上,,的最大值是.18.(2023•广州模拟)记△ABC的内角A,B,C的对边分别为a,b,c.已知a.(1)证明:sin A+sin C=2sin B;(2)若,求△ABC的面积.【解答】证明:(1)∵a,∴,∴a(1+cos C)+c(1+cos A)=3b,∴由正弦定理可得,sin A(1+cos C)+sin C(1+cos A)=3sin B,∴sin A+sin A cos C+sin C+sin C cos A=3sin B,∴sin A+sin C+sin(A+C)=3sin B,∵A+B+C=π,∴sin A+sin C+sin B=3sin B,∴sin A+sin C=2sin B;(2)∵sin A+sin C=2sin B,∴a+c=2b,∵b=2,∴a+c=4①,∵,∴bc cos A=3,∴a2=b2+c2-2bc•cos A,即a2=4+c2-6,∴c2-a2=2,即(c-a)(c+a)=2,∴c-a=②,联立①②解得,a=,c=,∴,∴sin A=,∴S△ABC===.19.(2023•平湖市模拟)已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角A的大小;(2)设AD是BC边上的高,且AD=2,求△ABC面积的最小值.【解答】解:(1)左边=,右边=,由题意得⇒sin(B+C)+cos(B +C)=0⇒tan(B+C)=-1,即tan A=1,又因为0<A<π,所以;(2)由,由余弦定理得,,,当且仅当b=c 时取“等号”,而,故.20.(2023•烟台一模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c-2b cos A=b.(1)求证:A=2B;(2)若A的角平分线交BC于D,且c=2,求△ABD面积的取值范围.【解答】证明:(1)∵c-2b cos A=b,∴由正弦定理可得,sin C-2sin B cos A=sin B,∵A+B+C=π,∴sin(A+B)=sin C,∴sin(A+B)-2sin B cos A=sin A cos B+cos A sin B-2sin B cos A=sin B,∴sin(A-B)=sin B,∵△ABC为锐角三角形,∴A∈(0,),B∈(0,),∴A-B∈,∵y=sin x在(-,)上单调递增,∴A-B=B,即A=2B;(2)解:∵A=2B,∴在△ABD中,∠ABC=∠BAD,由正弦定理可得,=,∴AD=BD=,∴=,∵△ABC为锐角三角形,∴,解得,∴,∴△ABD面积的取值范围为().。
解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,当n≥2时,S n=2a n﹣1+1,②,﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。
高中数学必修知识点解三角形及数列(一)解三角形:1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b cR C===A B (R 为C ∆AB 的外接圆的半径)2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a RA =,sin 2bR B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111sin sin sin 222CSbc ab C ac ∆AB =A ==B . 4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =第二章 数列11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。
2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +), 那么这个数列就叫做等差数列。
⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔= ⑶通项公式:1(1)()n m a a n d a n m d =+-=+- 或(n a pn q p q =+、是常数). ⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+; ②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列; ③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。
高中数学必修5解三角形、数列、不等式测试题(考试时间120分钟,总分150分)一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上)1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab2C .2a-2b<0 D.1a >1b2.sin15°cos45°+cos15°sin45°等于( ) A .0B .21 C .23 D .13.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23 C.1 D.34.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 1015.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .6 6.在等比数列中,112a =,12q =,132n a =,则项数n 为 ( ) A. 3B. 4C. 5D. 67.不等式20(0)ax bx c a ++<≠的解集为R ,那么( )A. 0,0a <∆<B. 0,0a <∆≤C. 0,0a >∆≥D. 0,0a >∆>8.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 9.若)4πtan(α-=3,则tan α 等于( ) A .-2 B .21-C .21 D .210.在等差数列{a n }中,若a 3+a 9+a 15+a 21=8,则a 12等于( )A .1B .-1C .2D .-211.下列各式中,值为23的是( ) A .2sin15°-cos15° B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°12.关于x 的方程2210ax x +-=至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-1二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =14. 不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为15.不等式21131x x ->+的解集是 . 16. 已知数列{}n a 满足23123222241n n n a a a a ++++=-,则{}n a 的通项公式 三.解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤,并把正确解答过程写在答题卡上)17. (10分)(1) 解不等式0542<++-x x ,(2)求函数的定义域:5y =18.(12分)等差数列{}n a 满足 212=a ,155=a ,求通项n a 及前n 项和的最大值.19.(12分)在△ABC 中,BC =a ,AC =b ,a ,b是方程220x -+=的两个根, 且2()1coc A B +=。
解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,=2a n﹣1+1,②,当n≥2时,S n﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。
高考数学必考重点知识大全信任许多的同学同学都是特别的关怀理科数学有哪些必考的学问点的。
接下来是我为大家整理的高考数学必考重点(学问大全),盼望大家喜爱!高考数学必考重点学问大全一集合与简洁规律1.易错点遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种状况,在解题中假如思维不够缜密就有可能忽视了B≠φ这种状况,导致解题结果错误。
尤其是在解含有参数的集合问题时,更要充分留意当参数在某个范围内取值时所给的集合可能是空集这种状况。
空集是一个特别的集合,由于思维定式的缘由,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
2.易错点忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特殊是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
在解题时也可以先确定字母参数的范围后,再详细解决问题。
3.易错点四种命题的结构不明致误错因分析:假如原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。
在解答由一个命题写出该命题的其他形式的命题时,肯定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要留意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“a,b都是偶数”的否定应当是“a,b不都是偶数”,而不应当是“a,b都是奇数”。
4.易错点充分必要条件颠倒致误错因分析:对于两个条件A,B,假如A=B成立,则A是B的充分条件,B是A的必要条件;假如B=A成立,则A是B的必要条件,B 是A的充分条件;假如A=B,则A,B互为充分必要条件。
解题时最简单出错的就是颠倒了充分性与必要性,所以在解决这类问题时肯定要依据充要条件的概念作出精确的推断。
本讲主要复习了必修(5)数列、解三角形、不等式等三部分知识要点和考点。
在利用这些知识点解决问题时注重函数的思想、数与形结合的思想、方程的数学思想、分类讨论的数学思想、等价转化的数学思想及配方法、特值法、分离参数法等数学思想方法的应用。
考点一:数列、不等式、解三角形等基础知识的考查例1、在下列命题中,把正确命题的序号填在题后的横线上。
(1)当三角形的各角的余切成等差数列时,各角所对边的平方成等差数列(2)已知不等式①②x2-6x+8<0 ③2x2-9x+m<0若同时满足①②的x值也满足③,则m9.(3)一个等差数列和一个等比数列,其首项是相等的正数,若其第(2n+1)项是相等的,则这两个数列的第(n+1)项也是相等的。
(4)方程有解时a的取值范围是在上述命题中正确命题的序号是。
分析:(1)设三个角A,B,C所对的边分别是a,b,c.由已知条件得:2cotB=cotA+cotC然后化为正、余弦。
通分再利用正、余弦定理可证:2b2=a2+c2.(2)可用特值法:先求不等式①②解集的交集。
再对m取特值验证。
也可利用二次函数的图像解决。
(3)利用等差、等比数列的通项公式表示这两个数列的第(n+1)项,然后比较大小。
或取特值验证。
(4)分离参数法:把a分离出来,用表示a,再用均值不等式求解。
解析:(1)由已知得:2cotB=cotA+cotC.利用正、余弦定理可证:2b2=a2+c2.故命题(1)是正确的。
(2)不等式①②的交集是(2,3),取m=0时,不等式化为:显然当2<x<3时,不等式成立。
故命题(2)错误另解:利用二次函数图像求解:设f(x)=2x2-9x+m,如图由已知得:(3)设数列分别是等差数列、等比数列。
首项分别是>0公差和公比分别是d、q,取n=2,q=2,由已知:即:,故==-=故,故命题(3)错误。
(4)由方程得:-(4+a)=.故此命题错误。
考点二:不等式与数列的综合应用的考查例2、已知数列{a}是首项a1>0,q>-1且q≠1的等比数列,设数列{b}的通项为b=a-ka(n∈N),数列{a}、{b}的前n项和分别为S,T.如果T>kS对一切自然数n都成立,求实数k的取值范围.分析:由探寻T和S的关系入手谋求解题思路。
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
太多的事物不仅与表示它的量的大小有关,而且也与方向有关.三角恒等变换左图为世界著名的艺术殿堂——法国卢浮宫,它的正门入口处有一个金字塔建筑,它的设计者就是著名的美籍华人建筑师贝聿铭.那么在测量这类建筑物的高度时(如右图),我们需要来解复合角∠DAC =α-β的正、余弦值,这就需要对两角差的正、余弦进行变换.事实上,变换是数学的重要工具,同时也是高中数学学习的主要对象之一.其中代数变换我们已经在初中学习过,而且在必修4的第一章也涉及同角三角函数的变换.与代数变换一样,三角变换也是一种只变其形,不改变其本质的一种变换.两角差的余弦公式我们知道cos45°=22,cos30°=32.请同学们思考这样一个问题:cos15°=cos(45°-30°)=cos45°-cos30°成立吗?答案当然是不成立,因为cos15°的值应该是一个正值,而cos45°-cos30°是一个负值,那么cos15°的值与cos45°和cos30°之间到底存在什么关系呢?两角和与差的正弦、余弦变脸是川剧艺术中塑造人物的一种特技,演员在熟练的动作之间,奇妙地变换着不同的脸谱,用以表现剧中人物的情绪、心理状态的突然变化,达到“相随心变”的艺术效果,那么在三角函数中,两角和与差的正弦余弦之间又有怎样的变换呢?两角和与差的正切坐在教室里,需要一个合适视角才能看清楚黑板;在足球比赛中,若你从所守球门附近带球过人沿直线推进,要想把球准确地踢进大门去,需要确定一个最佳位置,这些实际生活中的问题可不是仅仅一个角度就可以解决的,其中涉及到至少两个角度的因素,只有把问题分析全面,才能稳操胜券.怎样确定两角之间的关系呢?二倍角的正弦、余弦、正切公式在我们接触到的事物中,带有一般性的事物总是大开大合,纵横驰骋,往往包含一切,而特殊的事物则是小巧玲珑,温婉和融,往往显出简洁,奇峻之美.三角函数的和(差)角的正弦、余弦、正切公式中的角都是带有一般性的,一般性中又蕴含着特殊性,即两角相等的情形,那么这些二倍角又有什么简洁,奇峻之美呢?三角恒等变换变换是生活中的常态,换一个环境,换一种心情,换一个角度,或许就柳暗花明又一村了,我们经常看到的魔术更是如此.可见,变换已深入到我们生活中的每一个角落.在前面几节的学习中,我们已经领略了三角变换的风采,那么,对于前面学习的和角公式,通过对各公式做加减运算,又能得到什么样的变换呢?解三角形在本章“解三角形”的引言中,我们遇到这么一个问题,“遥不可及的月亮离地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,那么,他们是用什么神奇的方法探索到这个奥秘的呢?1992年9月21日,中国政府决定实施载人航天工程,并确定了三步走的发展战略。