《两角和与差的正弦、余弦、正切公式》教学设计
- 格式:docx
- 大小:88.57 KB
- 文档页数:11
第五章三角函数《5.5.1两角和与差的正弦、余弦和正切公式》教学设计【教材分析】本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1两角和与差的正弦、余弦和正切公式。
本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。
让学生感受数形结合及转化的思想方法。
发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。
【教学目标与核心素养】【教学重难点】教学重点:掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式教学难点:两角和与差的正弦、余弦、正切公式的灵活运用。
【教学过程】合,这一性质叫做圆的旋转对称性.连接A1P1,AP.若把扇形分别与点A1,P1重合.根据圆《5.5.1 两角和与差的正弦、余弦和正切公式》导学案【学习目标】1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.会用两角和与差的正弦、余弦、正切公式进行简单的三角函数的求值、化简、计算等.4.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.【重点难点】重点:了解两角差的余弦公式的推导过程.难点:会用两角和与差的正弦、余弦、正切公式进行简单的三角函数的求值、化简、计算等【知识梳理】1两角和与差的余弦公式2 两角和与差的正弦公式3两角和与差的正切公式【学习过程】 问题探究1.两角差的余弦公式如果已知任意角α,β的正弦、余弦,能由此推出α+β,α-β的正弦、余弦吗?下面,我们来探究cos(α-β)与角α,β的正弦、 余弦之间的关系不妨令α≠2kπ+β,k ∈Z . 如图5.5.1,设单位圆与x 轴的正半轴相交于点A (1,0),以x 轴非负半轴为始边作角α,β,α—β, 它们的终边分别与单位圆相交于点A 1(cosα,sinα), P 1(cosβ,sinβ),P(cos(α-β),sin(α-β)).任意一个圆绕着其圆心旋转任意角后都与原来的圆重合,这一性质叫做圆的旋转对称性.连接A 1P 1,AP .若把扇形OAP,绕着点O 旋转β角,则点A ,P 分别与点A 1,P 1重合.根据圆的旋转对称性可知,AP ̂与A 1P 1̂ 重合,从而, 所以AP =A 1P 1 根据两点间的距离公式,得[cos (α−β)−1]2+[s in (α−β)]2=(cosα−cosβ)2+(sinα−sinβ)2, 化简得:cos (α−β)=cosαcosβ+sinαsinβ当α=2kπ+β (k ∈Z )时,容易证明上式仍然成立. 所以,对于任意角α,β有cos (α−β)=cosαcosβ+sinαsinβ (C(α-β))此公式给出了任意角α,β的正弦、余弦与其差角α-β的余弦之间的关系,称为差角的余弦公式,简记作C(α-β).典例解析例1 利用公式cos (α−β)证明:(1)cos (π2-α)= sinα ; (2)cos (π-α)= cosα.例2 已知sinα=45,α∈(π2,π), cosβ=−513,β是第三象限角,求cos (α−β)的值.由公式cos (α−β)出发,你能推导出两角和与差的三角函数的其他公式吗? 下面以公式cos (α−β)为基础来推导其他公式. 例如,比较cos (α−β)与cos (α+β),并注意到α+β与 α−β之间的联系:α+β=α−(−β)则由公式cos (α−β), 有cos (α+β)=cos[α−(−β)]=cosαcos (−β)+sinαsin (−β)=cosαcosβ−sinαsinβ于是得到了两角和的余弦公式,简记作C (α+β). cos (α+β)=cosαcosβ−sinαsinβ. 问题探究上面得到了两角和与差的余弦公式.我们知道,用诱导公式五(或六)可以实现正弦、余弦的互化.你能根据C(α+β),C(α-β)及诱导公式五(或六),推导出用任意角α,β的正弦、余弦表示sin (α+β),sin (α-β)的公式吗?通过推导,可以得到:s in (α+β)=sinαcosβ+cosαsinβ,(S (α+β)) s in (α−β)=sinαcosβ−cosαsinβ;(S (α-β))你能根据正切函数与正弦函数、余弦函数的关系,从C(α±β),S(α±β)出发,推导出用任意角α,β的正切表示tan (α+β),tan (α−β)的公式吗?通过推导,可以得到: tan (α+β)=tan α+tanβ1−tan αtanβT(α+β) tan (α−β)=tan α−tanβ1+tan αtanβT(α−β)和(差)角公式中,α,β都是任意角.如果令α为某些特殊角,就能得到许多有用的公式.你能从和(差)角公式出发推导出诱导公式吗?你还能得到哪些等式公式S(α+β),C(α+β),T(α+β)给出了任意角α,β的三角函数值与其和角α+β的三角函数值之间的关系.为方便起见,我们把这三个公式都叫做和角公式.类似地,S(α-β),C(α-β),T(α-β)都叫做差角公式. 典例解析例3.已知sinα=−35,α是第四象限角,求sin (π4−α),cos (π4+α),tan (α−π4)的值.由以上解答可以看到,在本题条件下有sin (π4−α)=cos (π4+α).那么对于任意角α,此等式成立吗?若成立,你会用几种方法予以证明?例4 利用和(差)角公式计算下列各式的值: (1)sin72°cos42°-cos72°sin42°; ( 2 ) cos20°cos70°- sin20°sin70° ; ( 3 )1+tan 15°1−tan 15°;【达标检测】1. cos 65°cos 35°+sin 65°sin 35°等于( )A .cos 100°B .sin 100°C .32D .12 2.已知α是锐角,sin α=35,则cos ⎝ ⎛⎭⎪⎫π4+α等于( )A .-210B .210C .-25D .253.已知锐角α,β满足cos α=35,cos(α+β)=-513,则cos β等于( ) A .3365 B .-3365 C .5475 D .-5475 4.计算3-tan 15°1+3tan 15°=________.5.已知α,β均为锐角,sin α=55,cos β=1010,求α-β.参考答案: 知识梳理1.cos αcos β+sin αsin βcos αcos β-sin αsin β2.sin αcos β+cos αsin βsin αcos β-cos αsin β3.tan α+tan β1-tan αtan βtan α-tan β1+tan αtan β学习过程 典例解析例1证明: (1)cos (π2-α)= cos π2cos α+sin π2sinβsinα=0+1×sinα=sinα. (2)cos (π-α)== cosπcos α+sinπsinβsinα=(-1)×cosα+o .=- cosα. 例2解:由sinα=45,α∈(π2,π),得cosα=−√1−sinα2=−√1−(45)2=−35 又由cosβ=−513,β是第三象限角,得sinβ=−√1−cosβ2=−√1−(−513)2=−1213.所以cos (α−β)=cosαcosβ+sinαsinβ=(−35) ×(−513)+(45) ×(−1213)=−3365 例3.解 : 由 sinα=−35,α是第四象限角, 得cosα=√1−sinα2=√1−(−35)2=45 所以 tanα=sin αcosα=−3545= - 34于是有sin (π4−α)=sin π4cos α−cos π4sin α=√22×45−√22×(−35)=7√210;cos (π4+α)=cos π4cos α−sin π4sin α=√22×45−√22×(−35)=7√210;tan (α−π4)=tan α−tanπ41+ tan αtanπ4= tan α−11+ tan α=−34−11+(−34)=−7例 4 分析 : 和 、 差角公式把 α ± β 的三角函数式转化成了 α , β 的三角函数式 .如果反过来 , 从右到左使用公式 , 就可以将上述三角函数式化简 . 解 :( 1 ) 由公式 S (α - β ) , 得 sin72°cos42°- cos72°sin42°=Sin(72°- 42°)=sin30°=12(2) 由公式 C (α +β ) , 得cos20°cos70°- sin20°sin70°= cos(20°+70°)=cos90°=0 (3) 由公式 T (α +β )及tan 45°=1, 得1+tan 15°1−tan 15°=tan 45°+tan 15°tan 45°−tan 15°=tan (45°+15°)=tan 60°=√3三、达标检测1. 【解析】 原式=cos(65°-35°)=cos 30°=32. 【答案】 C2.【解析】 因为α是锐角,sin α=35,所以cos α=45,所以cos ⎝ ⎛⎭⎪⎫π4+α=22×45-22×35=210.故选B . 【答案】 B3.【解析】 因为α,β为锐角,cos α=35,cos(α+β)=-513, 所以sin α=45,sin(α+β)=1213.所以cos β=cos[(α+β)-α]=cos(α+β)·cos α+sin(α+β)·sin α=-513×35+1213×45=3365.故选A .【答案】 A 4.【解析】 3-tan 15°1+3tan 15°=tan 60°-tan 15°1+tan 60°tan 15°=tan 45°=1.【答案】 15.【解】 ∵α,β均为锐角,sin α=55,cos β=1010, ∴sin β=31010,cos α=255.∵sin α<sin β,∴α<β,∴-π2<α-β<0,∴sin(α-β)=sin αcos β-cos αsin β=55×1010-255×31010=-22,∴α-β=-π4.《5.5.1 两角和与差的正弦、余弦和正切公式》同步练习一基础巩固1.的值是( ) A .B .C .D .2.已知为锐角,为第三象限角,且,,则的值为( ) A . B . C .D .3.已知,则为第三象限角,则的值等于( ) A .B .C .D . 4.若,,且,均为钝角,则的值为( ) A .B .C .D .5.已知,则的值为( )ABC .D .6.计算:______________7.,且是第四象限角,则______. 8.不用计算器,求值:。
《两角和与差的正弦、余弦、正切公式》教案一、教学目标理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2。
教学难点:两角和与差正弦、余弦和正切公式的灵活运用。
三、学法与教学用具学法:研讨式教学四、教学设想:(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ+=-;()cos cos cos sin sin αβαβαβ-=+.这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢?提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?让学生动手完成两角和与差正弦和正切公式。
()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-+=-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦sin cos cos sin αβαβ=+. ()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-. 通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?(分式分子、分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-. 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+ 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.(二)例题讲解例1、已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 解:因为3sin ,5αα=-是第四象限角,得4cos 5α===, 3sin 35tan 4cos 45ααα-===- , 于是有43sin sin cos cos sin 444252510πππααα⎛⎫⎛⎫-=-=--= ⎪ ⎪⎝⎭⎝⎭43cos cos cos sin sin 444252510πππααα⎛⎫⎛⎫+=-=--= ⎪ ⎪⎝⎭⎝⎭两结果一样,我们能否用第一章知识证明?3tan tan144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭ 例2、利用和(差)角公式计算下列各式的值:(1)、sin 72cos 42cos72sin 42-;(2)、cos 20cos70sin 20sin 70-;(3)、1tan151tan15+-. 解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象.(1)、()1sin 72cos 42cos 72sin 42sin 7242sin 302-=-==; (2)、()cos 20cos 70sin 20sin 70cos 2070cos900-=+==; (3)、()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15++==+==--.例3x x解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?)()1cos sin 30cos cos30sin 22sin 3022xx x x x x x ⎫=-=-=-⎪⎪⎭思考:是怎么得到的?=12的。
《两角和与差的正弦、余弦和正切公式(第一课时)》教学设计1.经历探索两角差余弦公式的过程,发展学生逻辑推理素养.2.掌握公式()C αβ-,初步体会公式()C αβ-的意义,发展学生逻辑推理、数学运算素养. 教学重点:经历推导两角差余弦公式的过程,知道两角差余弦公式的意义. 教学难点:发现差角余弦公式与圆的旋转对称性间的联系.Geogebra 软件、PPT 课件.资源引用:【知识点解析】认识两角差的余弦公式【知识点解析】运用公式给角求值问题的一般思路(一)整体感知 引导语:本节我们主要的研究内容是:三角恒等变换,即在不改变含有三角函数的式子的值的前提下,对式子变形.三角恒等变形在求值、化简、证明中有着十分广泛的应用.之前我们学习过的同角三角关系和诱导公式,都是三角恒等变换的重要工具.今天我们在此基础上学习新的恒等变换公式.问题1:我们之前学习过诱导公式,它们的共同点是,等号左侧都是一个终边落在坐标轴上的特殊角与一个任意角的和或差,现在,我们希望将它们一般化,得到新的公式.你认为新公式应具备怎样的特点?预设的师生活动:学生思考并回答,教师进行引导并排除不合理的回答. 预设答案:新公式应该含有两个任意角的和或差.设计意图:对诱导公式进行梳理归纳,引出任意两个角的和与差,为后续的学习和研究指明方向.同时,指明了诱导公式与即将研究的和角、差角公式之间是特殊与一般的关系. 问题2:之前我们利用圆的对称性证明了诱导公式,你还记得当时我们证明诱导公式的思路和步骤吗?预设的师生活动:学生回顾并回答,教师可酌情引导学生复习回顾.预设答案:第一步,从“形”的角度出发,找到相互对称的两个角的终边关系;第二步,从“数”的角度考虑,写出单位圆上相互对称的的点的坐标;第三步,“数形”融合,将前两步的结果整合,得出结论.设计意图:回顾诱导公式的证明思路,可供随后探究差角余弦公式时参考借鉴.(二)新知探究问题3:先前我们在单位圆中利用圆的对称性推导出诱导公式,下面我们继续借助单位圆,采用同样的思路研究含有两个任意角,αβ的三角恒等变形公式.首先,我们考虑两个任意角终边不重合时的情形.如果已知任意角,αβ的正弦、余弦,那么cos()αβ-与它们有什么关系呢?设计意图:这个问题直接指向本课时的核心内容,但学生暂时难以解答,故通过以下追问引导学生逐步接近答案.追问1:首先我们从“形”的角度出发,你认为该问题中涉及到的基本角有哪些?请你将它们连同单位圆一起画在坐标系中,将重要的点标注出来,并观察图形,你能发现哪些可能有用的等量关系.预设答案:基本角为,,αβαβ-,重要的点包括三个角的终边与单位圆的交点(依次记为11,,P A P ),始边与单位圆的交点A .可能有用的等量关系是11PA PA =.师生活动:学生按照要求作图,并寻找等量关系,若寻找时遇到困难,教师演示动态几何图形,帮助并引导学生发现11PA PA =,或找多名同学展示他们作出的图形,让学生们根据多幅图形寻找共同规律.此外,学生可能在此环节得到其它“没用”的等量关系,教师亦可收集起来,与学生们探讨其是否“有用”,最终将其它“没用”的等量关系剔除掉.设计意图:引导学生发现导出公式()C αβ-的关键步骤:11PA PA =.追问2:你能证明这个等量关系吗?预设的师生活动:教师演示动态图形,验证猜想的正确性不会随着角,αβ终边位置的改变而改变.学生通过思考或交流,完成证明.如果必要的话,教师可以简单介绍圆的各种对称性(包括圆的旋转对称性在内)作为提示.预设答案:可以借助圆的旋转对称性证明11A P AP=,进而得到11A P AP =;可以借助圆的旋转对称性证明三角形OAP 与三角形11OA P 全等,进而得到11AP A P =;或者直接利用圆的旋转对称性证明线段11,A P 端点在旋转后分别与,A P 重合,从而11AP A P =.设计意图:引导学生借助圆的旋转对称性完成关键步骤11AP A P =的证明.追问3:接下来,我们从“数”的角度考虑,你能写出刚刚得到的几何等量关系式中出现过的点的坐标吗?预设的师生活动:学生按照要求写出坐标,教师演示动态图形,指出各点的坐标不会随着,αβ终边位置的变化而变化.预设答案:1(cos ,sin )P αα,1(cos ,sin )Aββ,(cos(),sin())P αβαβ--,(1,0)A . 设计意图:参照先前发现并证明诱导公式的思路,按部就班地进行操作.同时也在为将来学习平面解析几何提供预备性体验.追问4:已知平面直角坐标系任意两点111(,)P x y ,222(,)P x y ,则点12,P P 之间的距离d =.请你借助以上“两点间的距离公式”,融合以上“形”与“数”的探究,你能得到什么结论?预设的师生活动:教师可运用勾股定理对距离公式进行简单的推导.学生综合各方面信息进行演算,教师可指派若干学生对其结果进行交流展示.预设答案:根据两点间距离公式,结合11PA PA =,有= 整理得cos()cos cos sin sin αβαβαβ-=+ (*).设计意图:通过一系列追问作为引导,彻底完成问题2的解答.问题4:如果两个任意角终边重合,上述结论成立吗?预设答案:当,αβ终边重合时,cos cos ,sin sin αβαβ==,此时等式(*)左侧cos 2π1k ==,右侧22sin cos 1αα=+=,两侧的值相等,因此上述结论仍然成立.设计意图:完成公式另一种情况的论证,在这个过程中,也体现了分类与整合的数学思想,有利于培养学生严谨的思维习惯.教师讲解:综合问题3与问题4的结果,可知cos()cos cos sin sin αβαβαβ-=+对任意角,αβ均成立.此公式给出了任意角,αβ的正弦、余弦与其差角αβ-的余弦之间的关系,称为差角的余弦公式,简记作()C αβ-.★资源名称:【知识点解析】认识两角差的余弦公式★使用说明:本资源展现“认识两角差的余弦公式”,辅助教师教学,加深学生对于知识的理解和掌握.适合教师课堂进行展示.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.例1 证明:(1)cos(π)cos x x -=-; (2)πcos sin 2x x ⎛⎫-= ⎪⎝⎭; (3)cos()cos x x -=; (4)cos(π)cos x x +=-.预设的师生活动:可以叫四位同学上黑板做,然后教师点评.预设答案:证明:(1)将公式()C αβ-中的,αβ分别替换为π,x ,得cos(π)cos πcos sin πsin cos x x x x -=+=-;(2)将公式()C αβ-中的,αβ分别替换为π,2x , 得πππcos cos cos sin sin sin 222x x x x ⎛⎫-=+= ⎪⎝⎭; (3)将公式()C αβ-中的,αβ分别替换为0,x ,得()cos 0cos0cos sin0sin cos x x x x -=+=;(4)将公式()C αβ-中的,αβ分别替换为π,x -,得cos(π+)cos[π()]cos πcos()sin πsin()cos x x x x x =--=-+-=-.设计意图:(1)(2)为公式()C αβ-的直接套用,可加强学生对公式的熟悉程度;(3)只需将x -看作0x -即可;(4)需将公式()C αβ-中的,αβ分别替换为π,x -,这为下一课时中公式()C αβ+的证明做好铺垫.以上诱导公式虽在之前已经证明,但在此由公式()C αβ-为出发点再次进行推证原因有二:一是新证法更加简捷明了,二是凸显出公式()C αβ-的重要意义.问题5:结合例1可见,两角差的余弦公式中,含有两个任意角,这与我们之前学习的诱导公式(含有一个任意角和一个特殊角)相比,具有更高的自由度.由此你能解读诱导公式与公式()C αβ-之间的关系吗?试一试.预设的师生活动:学生思考并交流后,交流展示,教师对学生们的回答进行梳理总结,最终形成比较完备的答案.预设答案:从区别与联系两个方面解读二者的关系:二者的区别是:第一,适用场合不同,二者涉及到的任意角的数量不同,因此适用的场合并不一样,诱导公式适用于关于一个特殊角与一个任意角代数和的恒等变换问题,差角余弦公式适用于关于两个任意角的差角的余弦值的恒等变换问题,第二,功能不同,诱导公式可以实现改变函数名称,将求任意角的三角函值转化为求锐角三角函数值的问题等功能,这些功能是()C αβ-不具备的,但公式()C αβ-具备求出两个任意角的差角的余弦值的功能,这是诱导公式不能完成的;二者的联系是:第一,差角余弦公式中含有两个任意角,将其中一个替换为特殊角,即可推导出部分诱导公式,因此()C αβ-是更上位的公式;第二,二者均为三角恒等变换的重要变形依据,它们均可以经由圆的对称性质推导得到.设计意图:对诱导公式和差角公式的关系进行梳理,帮助学生厘清关系,培养学生辩证分析问题的思维方式.例2 借助公式()C αβ-,解答以下题目:(1)计算cos15的值;(2)已知4sin 5α=,π,π2α⎛⎫∈ ⎪⎝⎭,5cos 13β=-,β是第三象限角,求cos()αβ-的值. 追问:(1)中的角度并不是差的形式,你打算如何借助()C αβ-完成计算?(2)中cos ,sin αβ并没有直接给出,我们如何借助公式()C αβ-求得cos()αβ-的值?★资源名称:【知识点解析】运用公式给角求值问题的一般思路★使用说明:本资源展现“运用公式给角求值问题的一般思路”,辅助教师教学,加深学生对于知识的理解和掌握.适合教师课堂进行展示讲解.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.预设答案:对于(1),我们可以把15化成我们熟悉的30,45,60等特殊角之中某两角的差的形式,再借助公式()C αβ-求解;对于(2),可以借助同角三角关系求出cos ,sin αβ,进而利用公式()C αβ-求解cos()αβ-.解:(1)(解法一)cos15=cos(4530)cos45cos30sin 45sin30-=+122224=+⋅=; (解法二)cos15=cos(6045)cos60cos45sin60sin 45-=+122224=⋅+=;(2)因为π,π2α⎛⎫∈ ⎪⎝⎭,故3cos 5α==-,因为β是第三象限角,故12sin 13β==-, 因此3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪⎝⎭⎝⎭. 设计意图:通过两个比较简单的求值问题,促使学生进一步熟悉公式()C αβ-,能借助公式()C αβ-解决简单的三角恒等变换问题.(三)归纳小结问题6:请你回顾本节课的内容,思考以下问题:本课时出现过的哪些性质、公式、定理,它们之间具有怎样的推出关系?叙述公式()C αβ-,你在使用公式解决问题时有哪些心得体会?此外你还有哪些感悟?预设的师生活动:学生进行归纳、思考并回答.预设答案:()C αβ-⎫⇒⇒⎬⇒⎭圆的旋转对称性诱导公式勾股定理两点间的距离公式. 使用()C αβ-时,由于,αβ均为任意角,故可以代换成任意值,包括零、特殊角、负角等等.cos()αβ-需要sin ,cos ,sin ,cos ααββ四个值齐备时方可算出,缺一不可,若有所缺,往往可以借助同角三角关系算出所缺的数值.公式()C αβ-中含有两个任意角,是诱导公式更上位的公式,可以推导出诱导公式;先从“形”的角度出发,再从“数”的角度考虑,最后融合“数”与“形”,似乎是一种探究数形关系的有效策略.设计意图:回顾反思,在头脑中形成思维网络.(四)作业布置教科书习题5.5第1,2,3题.(五)目标检测设计1.已知15sin 17θ=,θ是第二象限角,求πcos 3θ⎛⎫- ⎪⎝⎭的值. 2.已知π3ππ22αβ<<<<,且2sin 3α=,3cos 4β=-,求cos()αβ-的值.预设答案:1; 2设计意图:通过两个比较简单的求值问题,促使学生巩固同角三角关系及公式()C αβ-,提升数学运算素养.可对学生是否达到目标“能否运用公式()C αβ-解决简单的三角恒等变换问题”提供评测依据.。
5.5.1两角和与差的正弦、余弦、正切公式(第2课时)(人教A 高中数学必修第一册第五章)一、教学目标1.掌握两角和与差的正弦、正切公式的推导,并进行简单的化简求值2.掌握两角和与差的正弦、正切公式的变形推导,及相关的应用二、教学重难点1.两角和与差的正弦、正切公式的推导、逆用、变形及其应用2.两角和与差的正弦、正切公式的应用三、教学过程1.正弦公式正切公式的形成问题1:两角和与差的正弦根据两角和与差的余弦公式可推出两角和与差的正弦公式:S α+β:sin(α+β)=S α-β:sin(α-β)=【预设的答案】证明:由诱导公式以及两角和与差的余弦公式可知:sin()cos[()]cos[()]22cos()cos sin()sin 22ππαβαβαβππαβαβ+=-+=--=-+-=βαβαsin cos cos sin +而且:sin()sin[()]sin cos()cos sin()αβαβαβαβ-=+-=-+-=βαβαsin cos -cos sin 例如,sin 75sin(4530)sin 45cos 30cos 45sin 30o o o o o o o=+=+=sin15sin(4530)sin 45cos 30cos 45sin 30o o o o o o o=-=-=【预设的答案】例如,sin 75sin(4530)sin 45cos 30cos 45sin 30o o o o o o o=+=+122224+=⨯+⨯=sin15sin(4530)sin 45cos 30cos 45sin 30o o o o o o o=-=-122224=⨯-⨯=【对点快练】1.sin 75°=____________.2.若cos α=-45,α是第三象限的角,则____________.2.−【设计意图】两角和与差的正弦公式是可以由余弦公式推导的,用实际案例让学生感受该公式的应用,用变式训练让学生快速掌握公式的应用。
第三章三角恒等变换一、课标要求:本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,以及运用这些公式进行简单的恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.1. 了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;2. 理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;3. 运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用.二、编写意图与特色1.本章的内容分为两节:“两角和与差的正弦、余弦和正切公式”,“简单的三角恒等变换”,在学习本章之前我们学习了向量的相关知识,因此作者的意图是选择两角差的余弦公式作为基础,运用向量的知识来予以证明,降低了难度,使学生容易接受;2.本章是以两角差的余弦公式作为基础来推导其它的公式;3.本章在内容的安排上有明暗两条线,明线是建立公式,学会变换,暗线是发展推理和运算的能力,因此在本章全部内容的安排上,特别注意恰时恰点的提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,强化运用数学思想方法指导设计变换思路的意识;4.本章在内容的安排上贯彻“删减繁琐的计算、人为技巧化的难题和过分强调细枝末叶的内容”的理念,严格控制了三角恒等变换及其应用的繁、难程度,尤其注意不以半角公式、积化和差、和差化积公式作为变换的依据,而只把这些公式的推导作为变换的基本练习.三、教学内容及课时安排建议本章教学时间约8课时,具体分配如下:3.1两角和与差的正弦、余弦、和正切公式约3课时3.2简单的恒等变换约3课时复习约2课时§3.1 两角和与差的正弦、余弦和正切公式一、课标要求:本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用.二、编写意图与特色本节内容可分为四个部分,即引入,两角差的余弦公式的探索、证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探索、证明及初步应用.三、教学重点与难点1.重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;2.难点:两角差的余弦公式的探索与证明.两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、学法与教学用具1. 学法:启发式教学2. 教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家可以猜想,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-=(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处. 思考:()cos ?αβ+=,()()cos cos αβαβ+=--⎡⎤⎣⎦,再利用两角差的余弦公式得出()()()()cos cos cos cos sin sin cos cos sin sin αβαβαβαβαβαβ+=--=-+-=-⎡⎤⎣⎦(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值.解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 3022224=+=-=⨯-=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯= 点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活运用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===- 所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.(四)小结:α、β的象限,也就是符号问题,学会灵活运用.(五)作业:15012.P T T -。
《两角和与差的正弦余弦和正切公式》教学设计
《两角和与差的正弦余弦和正切公式》教学设计范文
三角函数式的化简
化简要求:
1)能求出值应求值?
2)使三角函数种类最少
3)项数尽量少
4)尽量使分母中不含三角函数
5)尽量不带有根号
常用化简方法:
线切互化,异名化同名,异角化同角,角的变换,通分,逆用三角公式,正用三角公式。
例1、
三角函数式给值求值:
给值求值是三角函数式求值的重点题型,解决给值求值问题关键:找已知式与所求式之间的角、运算以及函数的差异,角的变换是常用技巧,
给值求值问题往往带有隐含条件,即角的范围,解答时要特别注意对隐含条件的`讨论。
例2、
三角函数给值求角
此类问题是三角函数式求值中的难点,一是确定角的范围,二是选择适当的三角函数。
解决此类题的一般步骤是:
1)求角的某一三角函数值
2)确定角的范围
3)求角的值
例3.
总结:
解决三角函数式求值化简问题,要遵循“三看”原则:
①看角,通过角之间的差别与联系,把角进行合理拆分,尽量向特殊? 角和可计算角转化,从而正确使用公式。
②看函数名,找出函数名称之间的差异,把不同名称的等式尽量化成同名或相近名称的等式,常用方法有切化弦、弦化切。
③看式子结构特征,分析式子的结构特征,看是否满足三角函数公式,若有分式,应通分,可部分项通分,也可全部项通分。
“一看角,二看名,三是根据结构特征去变形”。
两角和与差的正弦、余弦、正切公式教案
三维教学目标
1.知识与技能
能从两角差的余弦公式导出两角和的余弦公式,以及两角和与差的正弦、正切公式,了解公式间的内在联系. 能应用公式解决比较简单的有关应用的问题.
2.过程与方法
通过层层探究体会数学思维的形成特点.
3.情感目标与价值观
通过公式变形体会转化与化归的思想方法.
教学重点:推导两角和的余弦公式及两角和与差的正弦、正切公式,并能区别两角和与差的正弦、余弦、正切公式.
教学难点:两角和与差的正弦、余弦、正切公式的理解和灵活运用.
突破措施:学生在前面诱导公式及两角差的余弦公式的基础上,比较自然的推出
两角和的余弦公式,以及两角和与差的正弦、正切公式.
学情分析:三角函数是高考的重点内容,本节主要是公式的推导和应用,难度不大,要让学生加强记忆,且熟练应用.
教学设计:
=
cos15_____
情景导入
有了两角差的余弦公式,我们能解决一些问题,但范围有
限,因此自然想得到两角差的正弦、正切公式,以及两角和的
72cos 42cos72sin 42
-20cos70sin 20sin 70-;(3).1tan15
1tan15
+-
练习:求下列各式的值:
72
cos18cos72sin18
tan12tan 33tan12tan 33
++
34sin 26cos34cos 2620cos 40cos 20cos50
-+
)
131cos sin 22
x x - (2)cos x -
板书设计:。
2024年3月上半月㊀教学导航㊀㊀㊀㊀公式延续,思维拓展两角和与差的正弦㊁余弦㊁正切公式 教学设计◉江苏省宿迁中学㊀王嘉琨1教材分析两角和与差的正弦㊁余弦㊁正切公式 是高中数学新教材(人教A版)必修第一册5.5.1的第2课时,是在第1课时 两角差的余弦公式 基础上的延续与拓展,也为后续三角恒等变换公式体系奠定基础.2学情分析学生在前面已经学习了诱导公式㊁两角差的余弦公式等,初步具备了三角函数式中 变角 与 变名 思维,这都为本节课研究两角和与差的正弦㊁余弦㊁正切公式提供了知识㊁方法和思想上的准备.3教学目标(1)以两角差的余弦公式作为基础,自主发现推导两角和与差的正弦.余弦㊁正切公式,并理解这些公式之间的内在联系.(2)通过例题的训练,加深对公式的理解和应用.4重点㊁难点(1)教学重点:两角和与差的正弦㊁余弦㊁正切公式的推导及其应用.(2)教学难点:灵活运用公式进行三角函数式的化简㊁求值等.5教学过程(1)复习回顾,问题引入问题1㊀上一节课我们学习了两角差的余弦公式C(α-β),你能说出这个公式以及它的推导过程吗?利用圆的旋转不变性来推导的,具体步骤如下:第一步,在坐标系中画出角度α,β,α-β与单位圆,并标出终边与单位圆的交点;第二步,根据三角函数的定义写出各点的坐标;第三步,利用圆的旋转不变性得到等量关系;第四步,代入化简得到公式.问题2㊀除了公式C(α-β)外,你还能提出一些新的研究问题吗?你打算如何研究这些问题?师生活动:教师引导学生提出新的研究问题,学生思考研究新问题的方法.引导语:对于其他几个公式,也可以利用单位圆来研究.不过,本书不采用这这种研究方法,而是利用公式C(α-β)来推导其他公式.数学上把这种将新问题转化成已经解决的问题的方法叫作化归与转化的思想方法.设计意图:通过问题1帮助学生回顾利用圆的旋转不变性推导两角差的余弦公式的过程,明确研究公式C(α-β)的方法.(2)公式探究,发现问题问题3㊀你能利用公式C(α-β)推导出两角和的余弦公式吗?师生活动:先让学生独立思考,然后请学生回答推导思路,鼓励学生用多种方法解决.方案一:注意到α+β与α-β之间的关系,即α+β=α-(-β),再由公式C(α-β)推导;方案二:可以利用换元的观点来推导,用 -β 替换公式C(α-β)中的 β 也能获得公式c o s(α+β)=c o sαc o sβ-s i nαs i nβ.设计意图:从加减法的关系和整体代换的方法体现了数学中的化归与转化以及换元的数学思想方法.(3)深入拓展,公式推导问题4㊀由C(α+β)能推导出s i n(α+β)的公式吗?师生活动:学生独立思考后,教师可以根据学生的反应追问下列问题.思考1㊀如何建立正弦与余弦值之间的关系呢?预设答案:利用诱导公式五(或六),即可实现正弦㊁余弦之间的相互转化.思考2㊀如何得到s i n(α+β)的公式呢?预设答案:s i n(α+β)=c o sπ2-(α+β)éëêêùûúú=c o s(π2-α)-βéëêêùûúú=c o s(π2-α)c o sβ+s i n(π2-α) s i nβ=s i nαc o sβ+c o sαs i nβ.设计意图:利用两角和的余弦公式和诱导公式推导两角和的正弦公式.问题5㊀如何得到s i n(α-β)的公式呢?师生活动:学生独立完成,教师邀请学生展示和点评.预设答案:用 -β 来替换s i n(α+β)中的 β ,则有s i n(α-β)=s i nαc o s(-β)+c o sαs i n(-β)=s i nαc o sβ-c o sαs i nβ.72教学导航2024年3月上半月㊀㊀㊀引导语:把以上两角和的正弦公式和两角差的正弦公式分别记为S (α+β)和S (α-β).设计意图:通过整体化思维,以及化归与转化思想,利用两角和的正弦公式来推导两角差的正弦公式.问题6㊀已知任意角α,β的正切,你能推导出t a n (α+β)和t a n (α-β)吗?师生活动:学生独立完成,教师邀请学生展示和点评.预设答案:由正切与正弦㊁余弦的关系,可知t a n (α+β)=s i n (α+β)c o s (α+β)=s i n αc o s β+c o s αs i n βc o s αc o s β-s i n αs i n β,分子㊁分母同时除以c o s αc o s β,整理得t a n (α+β)=t a n α+t a n β1-t a n αt a n β.同理t a n (α-β)=t a n α-t a n β1+t a n αt a n β.引导语:把以上两角和的正切公式和两角差的正切公式分别记为T (α+β)和T (α-β).设计意图:利用正弦㊁余弦㊁正切之间的关系推导两角和与差的正切公式.问题7㊀和(差)角公式和我们以前学习的诱导公式之间有什么关系吗请用图示说明.师生活动:学生独立思考后,和同学交流自己的想法,教师展示图示,揭示它们之间的内在联系.诱导公式是和(差)角公式的特殊情况,如用S (α-β)推导诱导公式如图1所示.图1设计意图:比较和(差)角公式和诱导公式的异同,构建知识间的内在联系,加深对公式的理解.(4)公式应用,熟练掌握例1㊀已知s i n α=-35,α是第四象限的角,求s i n (π4-α),c o s (π4+α),t a n (α-π4)的值.思考1:你打算如何求解?请说说你的思维过程.思考2:如果去掉 α是第四象限的角 这个条件,结果和求解过程会有什么变化思考3:在以上解答中我们可以看到,在本题条件下,s i n(π4-α)=c o s (π4+α),那么对于任意角α,上式还成立吗你能想到几种方法来证明?预设答案:方案一:等式左右两边均使用和差公式展开.方案二:寻找π4-α与π4+α之间的内在联系,再结合诱导公式来转化与处理,即s i n (π4-α)=s i n π2-(π4+α)éëêêùûúú=c o s (π4+α).例2㊀利用和(差)角公式计算下列各式的值:①si n 72ʎc o s 42ʎ-c o s 72ʎs i n 42ʎ;②c o s 20ʎc o s 70ʎ-s i n 20ʎs i n 70ʎ;③1+t a n 15ʎ1-t a n 15ʎ.思考4:从例1和例2可以看出和(差)角公式有什么作用?(预设答案:求值或化简.)设计意图:例1步步递进,逐层深入,充分展示数学思维的发散性;例2强化公式的理解和应用,规范解题格式,训练有序思维和逆向思维.(5)系统归纳,总结提升问题8㊀你能用图式来回顾本节课5个和(差)角公式的推导过程吗?师生活动:学生独立完成(如图2)后与同学交流.图2问题9㊀在和(差)角公式的推导过程中用到了什么数学思想方法预设答案:化归与转化的思想整体代换的思想等.设计意图:用框图回顾推导过程,建立知识之间的内在联系,归纳总结本节课的数学思想方法等.6教学反思(1)公式延续,深入应用本节课以两角差的余弦公式为基础,利用角的变换和函数名之间的转换,将要推导的公式转化为熟悉的公式来解决.整个推导过程不但能够培养学生逻辑推理数学素养,还能让学生领悟知识之间的内在联系,初步体会三角恒等变换的特点以及转化与化归思想在数学研究中的应用价值.(2)关注应用,能力提升我们应该改变以往公式教学中 轻过程㊁重应用 的方式,在关注公式的理解和应用的同时,更应该让学生全程参与到公式的发现和推导中来,因为推导过程所承载的数学育人功能是不可能只通过 公式的应用 来实现的;还可以鼓励学生课后选择一个公式作为基础,采用不同的研究路径重新研究这一过程,再一次经历解决问题的过程.Z82。
两角和与差的正弦余弦正切公式教学案一、教学目标:1.知识与技能目标:掌握两角和与差的正弦、余弦、正切公式。
2.过程与方法目标:鼓励学生积极思考、合作学习,培养学生的逻辑推理能力。
3.情感与态度目标:培养学生的数学兴趣,增强对数学的自信心。
二、教学重、难点:1.教学重点:学习正弦、余弦、正切两角和与差的公式,能够正确地应用到解题中。
2.教学难点:正弦、余弦、正切两角和与差的公式的推导与应用。
三、教学准备:1.教师准备:教案、笔记、教辅资料、教学媒体等。
2.学生准备:学习笔记、作业本。
四、教学步骤:Step 1 引入新课1.教师展示一幅图形,引导学生观察图形中的三角形,并提问:对于一个任意的三角形ABC,如何求角A和角C的两角和与差的正弦、余弦和正切?2.引导学生思考,并提醒学生复习正弦、余弦、正切的定义和性质。
Step 2 探究与讨论1.教师以角A和角C的两角和为例,引导学生分析角A和角C的三角函数之间可能存在的关系,并引导学生探究和讨论。
2.学生合作讨论,提出各自的思考结果并互相交流。
Step 3 运用公式解题1.教师给出两具体的角A和角C的数值,并提问学生如何求其两角和与差的正弦、余弦和正切的值。
2.学生运用公式计算,并与他人交流讨论结果,互相纠正错误。
Step 4 归纳总结1.教师总结学生的讨论结果,整理归纳出正弦、余弦、正切两角和与差的公式。
2.指导学生将这些公式整理成归纳表格或表格。
Step 5 拓展应用1.教师给出一些拓展应用题目,要求学生利用所学知识解答。
2.学生独立完成练习题,并互相交流讨论。
Step 6 小结与反思1.教师对本节课的内容进行小结,并引导学生参与总结。
2.向学生征求反馈意见,以便以后教学改进。
五、教学评价:1.学生通过合作探究和讨论,积极参与课堂活动。
2.学生能够利用正弦、余弦、正切两角和与差的公式解决实际问题。
3.学生对角度与三角函数之间的关系有了更深入的了解。
4.学生对本节课的教学内容和方式进行评价。
教学过程复习预习1、用五点法画y=A sin(ωx+φ)一个周期内的简图的方法;2、函数y=sin x的图象变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤:法一法二知识讲解考点1 两角和与差的正弦、余弦、正切公式sin(α±β)=sin_αcos_β±cos_αsin_βcos(α±β)=cos_αcos_β∓sin_αsin_βtan(α±β)=tan α±tan β1∓tan αtan β考点2 二倍角的正弦、余弦、正切公式sin 2α=2sin_αcos_αcos 2α=cos2α-sin2α=2cos2α-1=1-2sin2αtan 2α=2tan α1-tan2α三、例题精析【例题1】【题干】化简下列各式:(1)(sin α+cos α-1)(sin α-cos α+1)sin 2α;(2)sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°.【解析】 (1)原式=⎝ ⎛⎭⎪⎫2sin α2cos α2-2sin 2α2⎝ ⎛⎭⎪⎫2sin α2cos α2+2sin 2α24sin α2cos α2cos α=⎝ ⎛⎭⎪⎫cos α2-sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2sin α2cos α2cos α=⎝ ⎛⎭⎪⎫cos 2α2-sin 2α2sin α2cos α2cos α=cos αsin α2cos α2cos α=tan α2.(2)∵sin 50°(1+3tan 10°)=sin 50°·cos 10°+3sin 10°cos 10°=sin 50°·2sin 40°cos 10°=1, cos 80°1-cos 20°=sin 10°2sin 2 10°=2sin 210°. ∴sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°=1-cos 20°2sin 210°= 2.【例题2】【题干】已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.【解析】∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝ ⎛⎭⎪⎫α2-β= 1-sin 2⎝ ⎛⎭⎪⎫α2-β=53,sin ⎝ ⎛⎭⎪⎫α-β2= 1-cos 2⎝ ⎛⎭⎪⎫α-β2=459,∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β =⎝ ⎛⎭⎪⎫-19×53+459×23=7527,∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.【例题3】【题干】已知cos α=17,cos(α-β)=1314,且0<β<α<π2.(1) 求tan 2α的值;(2)求β.【解析】 (1)由cos α=17,0<α<π2,得sin α=1-cos 2α= 1-⎝ ⎛⎭⎪⎫172=437.故tan α=sin αcos α=437×71=4 3.于是tan 2α=2tan α1-tan 2α=2×431-(43)2=-8347.(2)由0<β<α<π2,得0<α-β<π2.又∵cos(α-β)=1314,∴sin(α-β)=1-cos 2(α-β)= 1-⎝ ⎛⎭⎪⎫13142=3314.由β=α-(α-β),得cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12. ∴β=π3.【例题4】【题干】 (天津高考)已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的定义域与最小正周期;(2)设α∈⎝ ⎛⎭⎪⎫0,π4,若f ⎝ ⎛⎭⎪⎫α2=2cos 2α,求α的大小.【解析】(1)由2x +π4≠π2+k π,k ∈Z ,得x ≠π8+k π2,k ∈Z , 所以f (x )的定义域为⎩⎨⎧⎭⎬⎫x ∈R |x ≠π8+k π2,k ∈Z .f (x )的最小正周期为π2. (2)法一:由f ⎝ ⎛⎭⎪⎫α2=2cos 2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos 2α,sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=2(cos 2α-sin 2α), 整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α).∵α∈⎝ ⎛⎭⎪⎫0,π4,所以sin α+cos α≠0.∴(cos α-sin α)2=12,即sin 2α=12. 由α∈⎝ ⎛⎭⎪⎫0,π4,得2α∈⎝ ⎛⎭⎪⎫0,π2,∴2α=π6,即α=π12. 法二:∵由f ⎝ ⎛⎭⎪⎫α2=2cos 2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos 2α, 即tan ⎝ ⎛⎭⎪⎫α+π4=2sin ⎝ ⎛⎭⎪⎫π2+2α=2sin2⎝ ⎛⎭⎪⎫π4+α,∴sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=4sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α.又∵α∈⎝ ⎛⎭⎪⎫0,π4,∴sin ⎝ ⎛⎭⎪⎫α+π4≠0.∴1cos ⎝ ⎛⎭⎪⎫α+π4=4cos ⎝ ⎛⎭⎪⎫π4+α.∴cos 2⎝⎛⎭⎪⎫π4+α=14.∵α∈⎝ ⎛⎭⎪⎫0,π4,∴π4+α∈⎝ ⎛⎭⎪⎫π4,π2.∴cos ⎝ ⎛⎭⎪⎫π4+α=12,π4+α=π3.即α=π3-π4=π12.课堂运用【基础】1.(2012·辽宁高考)已知sin α-cos α=2,α∈(0,π),则tan α=()A.-1B.-2 2C.22D.1解析:选A 由sin α-cos α=2sin ⎝ ⎛⎭⎪⎫α-π4=2,α∈(0,π),解得α=3π4,所以tan α=tan 3π4=-1.2.已知α为第二象限角,sin α+cos α=33,则cos 2α=()A.-53B.-59C.59 D.53解析:选A将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53.因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)·(cos α+sin α)=-53.3.已知α+β=π4,则(1+tan α)(1+tan β)的值是() A.-1 B.1C.2 D.4解析:选C ∵α+β=π4,tan(α+β)=tan α+tan β1-tan αtan β=1, ∴tan α+tan β=1-tan αtan β.∴(1+tan α)(1+tan β)=1+tan α+tan β+tan αtan β =1+1-tan αtan β+tan αtan β=2.【巩固】4 . 3-sin 70°2-cos210°=________.解析:3-sin 70°2-cos210°=3-cos 20°2-cos210°=3-210°-2-cos210°=2.答案:25.(2013·南通模拟)设f (x )=1+cos 2x 2sin ⎝ ⎛⎭⎪⎫π2-x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4的最大值为2+3,则常数a =________.解析:f (x )=1+2cos 2x -12cos x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4=cos x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4 =2sin ⎝ ⎛⎭⎪⎫x +π4+a 2sin ⎝ ⎛⎭⎪⎫x +π4=(2+a 2)sin ⎝ ⎛⎭⎪⎫x +π4. 依题意有2+a 2=2+3,故a =±3.答案:±3【拔高】6.已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝ ⎛⎭⎪⎫0,π2. (1)求sin θ和cos θ的值;(2)若sin(θ-φ)=1010,0<φ<π2,求cos φ的值.解:(1)∵a ⊥b ,∴sin θ-2cos θ=0,又∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴sin θ=255,cos θ=55. (2)∵sin(θ-φ)=1010,∴cos(θ-φ)=31010或-31010.当cos(θ-φ)=31010时,cos φ=cos[θ-(θ-φ)]=cos θ·cos(θ-φ)+sin θ·sin(θ-φ)=55×31010+255×1010=22.当cos(θ-φ)=-31010时,cos φ=cos[θ-(θ-φ)]=cos θ·cos(θ-φ)+sin θ·sin(θ-φ)=-55×31010+255×1010=-210<0.∵φ∈⎝ ⎛⎭⎪⎫0,π2,∴cos φ<0不合题意,舍去.∴cos φ的值等于22.7.(2013·岳阳模拟)已知向量a =(sin ωx ,cos ωx ),b =(cos φ,sin φ),函数f (x )=a·b ⎝ ⎛⎭⎪⎫ω>0,π3<φ<π的最小正周期为2π,其图象经过点M ⎝ ⎛⎭⎪⎫π6,32. (1)求函数f (x )的解析式;(2)已知α,β∈⎝ ⎛⎭⎪⎫0,π2,且f (α)=35,f (β)=1213,求f (2α-β)的值.解:(1)依题意有f (x )=a·b =sin ωx cos φ+cos ωx sin φ=sin(ωx +φ).∵函数f (x )的最小正周期为2π,∴2π=T =2πω,解得ω=1.将点M ⎝ ⎛⎭⎪⎫π6,32代入函数f (x )的解析式,得sin ⎝ ⎛⎭⎪⎫π6+φ=32. ∵π3<φ<π,∴π6+φ=2π3,∴φ=π2.故f (x )=sin ⎝ ⎛⎭⎪⎫x +π2=cos x . (2)依题意有cos α=35,cos β=1213,而α,β∈⎝ ⎛⎭⎪⎫0,π2, ∴sin α= 1-⎝ ⎛⎭⎪⎫352=45,sin β= 1-⎝ ⎛⎭⎪⎫12132=513, ∴sin 2α=2425,cos 2α=cos 2α-sin 2α=925-1625=-725,∴f (2α-β)=cos(2α-β)=cos 2αcos β+sin 2αsin β=-725×1213+2425×513=36325.课程小结1.两角和与差的三角函数公式的理解:(1)正弦公式概括为“正余,余正符号同”.“符号同”指的是前面是两角和,则后面中间为“+”号;前面是两角差,则后面中间为“-”号.(2)余弦公式概括为“余余,正正符号异”.(3)二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成已知角、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.。
《两角和与差的正弦、余弦、正切公式》教学设计一、教学分析1. 两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的•在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较COS(a - 3 )与cos( a + 3 ),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即a + 3 = a -(- 3 )的关系,从而由公式C( a - 3)推得公式G a + 3),又如比较Sin( a - 3 )与cos( a - 3 ),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)( 6 )即可推得公式S( a- 3)、S a+3)等•2. 通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解•因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义3. 本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆•本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等•另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的•二、三维目标1. 知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力2. 过程与方法:通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3. 情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质三、教学重、难点教学重点:两角和与差的正弦、余弦、正切公式及其推导教学难点:灵活运用所学公式进行求值、化简、证明四、教学用具三角板,彩色粉笔,幻灯片五、教学方法教法:引导探究,归纳总结学法:合作讨论,自主学习六、教学过程1导入新课(问题导入)教师出示问题,先让学生计算以下几个题目,既可以复习回顾上节所学公式,又为本节新课作准备•若sin a ^5 ,a€(0, 2 ) , COS 3 =1°, (0, 2 ),求COS(a - 3 ),cos( a + 3 )的值.学生利用公式C(a-3)很容易求得COS (a - 3),但是如果求COS (a + 3)的值就得想法转化为公式C(a - 3)的形式来求,此时思路受阻,从而引出新课题,并由此展开联想探究其他公式.2 •推进新课提出问题①还记得两角差的余弦公式吗?请一位同学到黑板上默写出来②在公式C( a - 3冲,角3是任意角,请学生思考角a - 3中3换成角-3是否可以?此时观察角a +3与a -(- 3 )之间的联系,如何利用公式C( a- 3)来推导COS( a + 3 )=?③分析观察C( a +3 )的结构有何特征?④在公式G a-3八C a+ 3)的基础上能否推导sin( a +3 )=?Sin( a - 3 )=?⑤公式S( a- 3八S( a + 3)的结构特征如何?⑥对比分析公式C a- 3)、G a + 3)、S( a - 3)、S( a+3),能否推导出tan( a - 3 )=? tan (a + 3) = ?⑦分析观察公式T( a- 3八T( a +3 )的结构特征如何?⑧思考如何灵活运用公式解题?活动:对问题①,学生默写完后,教师播放幻灯片,然后引导学生观察两角差的余弦公式, 点拨学生思考公式中的a, B 既然可以是任意角,是怎样任意的?你会有些什么样的奇妙想法呢?鼓励学生大胆猜想,引导学生比较COS ( a - 3 )与cos( a + 3 )中角的内在联系,学生有的会发现a - 3中的角3可以变为角-3,所以a -(- 3 )= a + 3〔也有的会根据加减运算关 系直接把和角a + 3化成差角a -(- 3 )的形式〕•这时教师适时引导学生转移到公式 C a - 3)上 来,这样就很自然地得到cos( a + 3 )=COS [a -(- 3 ) ] =cos a cos(- 3 )+si n a si n(- 3 )=COS a COS 3 -S in a sin3 . 所以有如下公式:cos( a + 3 )=cos a COS 3 -sin a sin 3我们称以上等式为两角和的余弦公式,记作 G a +3 ).对问题②,教师引导学生细心观察公式 Ga +3 )的结构特征,可知“两角和的余弦,等于这两角的余弦积减去这两角的正弦积”,同时让学生对比公式 G a - 3)进行记忆,并填空:cos75 °=cos(对问题③,上面学生推得了两角和与差的余弦公式,教师引导学生观察思考,怎样才能得到两角和与差的正弦公式呢?我们利用什么公式来实现正、7Tsin( a + 3 )=cos [2 -( a + 3 门 7F7F=cos( £ - a )cos 3 +sin( £ - a )sin 3 =sin a cos 3 +cos a sin 3 .在上述公式中,3用-3代之,则-3 )=si n [a +(- 3 ) ] =s in a cos(- 3 )+cos a si n(- 3 )=s in a cos 3 -cos a sin 3 .因此我们得到两角和与差的正弦公式,分别简记为sin( a + 3 )=sin a cos 3 +cos余弦的互化呢?学生可能有的想到利用诱导公式⑸⑹来化余弦为正弦(也有的会想到利用同角的平方和关系式 .2 2sin a +COS a=1来互化,此法让学生课下进行),因此有71=COS [ (1- a )- 3】sin( asin , sin( - )=sin cos -cos sin .对问题⑥,教师引导学生思考,在我们推出了公式Ga - 3八Ga +3)、S( a + 3)、S a - 3)后,自然想到两角和与差的正切公式,怎么样来推导出tan( a - 3 )=?,tan( a + 3 )=?呢?学生很容易想到利用同角三角函数关系式,化弦为切得到•在学生探究推导时很可能想不到讨论,这时教师不要直接提醒,让学生自己悟出来sin(dt + sin cos当cos( a +3 )工0 时,tan( a + 3 )=+ 0) —汕氓池声如果cos a cos 3工0,即cos aM 0且COs 3工0时,分子、分母同除以COS a COs 3得tan fl + tantan( a +3 )=1一販氐伽H 一旳,据角a、3的任意性,在上面的式子中,3用-3代之,则有tan盘+tan(-Q) _ tan盘-tan 0tan( a -3 )= 1-tan dtan(-jiT) H-tanatan 0由此推得两角和、差的正切公式,简记为T( a - 3八T( a +3).对问题⑥,让学生自己联想思考,两角和与差的正切公式中a、3、a±3的取值是任意的吗?学生回顾自己的公式探究过程可知,a、3、a±3都不能等于 2 +k n (k €Z),并引导学生分析公式结构特征,加深公式记忆.对问题⑦⑧,教师与学生一起归类总结,我们把前面六个公式分类比较可得C( a + 3八S( a +3八T( a +3 )叫和角公式;S a- 3)、G a - 3八T( a - 3 )叫差角公式.并由学生归纳总结以上六个公式的推导过程,从而得出以下逻辑联系图•可让学生自己画出这六个框图•通过逻辑联系图,深刻理解它们之间的内在联系,借以理解并灵活运用这些公式•同时教师应提醒学生注意:不仅要掌握这些公式的正用,还要注意它们的逆用及变形用•如两角和与差的正切公式的变形式tan a +tan 3 =tan( a + 3 )(1-tan a tan 3 ) , tan a -tan 3 =tan( a - 3 )(1+tan atan3),在化简求值中就经常应用到,使解题过程大大简化,也体现了数学的简洁美•对于两角和与差的正切公式,当tan a, ta n 3或ta n (a±3 )的值不存在时,不能使用T(“±B)处理某些有关问题,但可改用诱导公式或其他方法,例如:化简tan( 2 - 3 ),因为tan 2的sin(—捋2 cos p—一戸) 尸值不存在,所以改用诱导公式tan( / - 3 )= 2 来处理等•应用示例3 7T 讥7T_ __________________________ ___________ ___________例1 已知sin a = 5 , a 是第四象限角,求sin( 4 - a ),cos( 4 + a ),tan( 4 - a )的值.活动:教师引导学生分析题目中角的关系,在面对问题时要注意认真分析条件,明确要求.再思考应该联系什么公式,使用公式时要有什么准备,准备工作怎么进行等.例如本题中,要先求出cos a ,tan a的值,才能利用公式得解,本题是直接应用公式解题,目的是为了让学生初步熟悉公式的应用,教师可以完全让学生自己独立完成-;- jl - - 7解:由sin a = 士,a是第四象限角,得cos a = ' 、」.sui a———X 〜X (= ) —于是有sin( - - a )=sin - cos a -cos - sin a = _托7T 打忑4 忑# 3、诽—————X —-——X (--J = ----------- ,cos(〜+ a )=cos 4 cos a -sin f sin a =-/Ttan a -tan —___________托tan ta -11 + tan a tan 一-- -------------j =1 一:一丿点评:本例是运用和差角公式的基础题,安排这个例题的目的是为了训练学生思维的有序性逐步培养他们良好的思维习惯.变式训练11. 不查表求cos75 °,tan105 °的值.解:cos75 °=cos(45 °+30 °)=cos45 °cos30 °-sin45 °sin30 °Ji 血]7$-^挖--- X ■--- — ---- X —= --------------=- 2 2 245tan 105 °=tan(60 °+45°)= tan 60' + tan 45'1- tan 60' tan 45°語+ 1=6 =倍巧).32.设a€(0,-),若sin a = 3,则2sin( a + )等于()717A.-B.二CtD.4答案:A2 齐3—_____ ——----------------例2 已知sin a = 2 , a€( 2 , n ),cos 3 = °, 3^ ( n,己),求sin( a - 3 ),cos( a + 3 ),tan( a + 3 ).tan( a - 4 )=导学生认真分析题目中已知条件和所求值的内在联系.根据公式S( a - 3八G a+3 )、T( a +3 )应先求活动:教师可先让学生自己探究解决,对探究困难的学生教师给以适当的点拨,指出cos a 、sin 3、tan a 、tan 3的值,然后利用公式求值,但要注意解题中三角函数值的 符号.2 兰解:由 Sin a = -; , a € (二,n ),得= 了 ,二 tan a =-137V___ __________________________________又由 cos 3 =」,3€ ( n , J ).近• tan 3 =」.• sin( a - 3 )=sina cos 3 -cos a sin 323一;X (-)-(753 2—— ------------------------------ ---------- 「••• cos( a +3 )=cos a cos 3 -sin a sin 3 =( - ) X ( f )- -; X (-12点评:本题仍是直接利用公式计算求值的基础题,其目的还是让学生熟练掌握公式的应用,训练学生的运算能力 . 变式训练2引导学生看章头图,利用本节所学公式解答课本章头题,加强学生的应用意识30解:设电视发射塔高 CD=x 米,/ CAB=c ,则sin a =「’,12• tan( a +3 )=tan 龊十 tan R 1 — ten a tan &2运「斤—— --- + ------- 5 3 1十迢卫-備+浙15 + 2735-32^5-^27V7在Rt △ABD中,tan(45 °+ a )^ - '■ tan a .30tanC45B于是x= t血既,30 £F 60又sin a , a€(0, 2 cos a~ 67 ,tan a~ 戈.14-1l + tsn CL o------------- 屈 -------- -1- tan a ] _ 丄tan(45 °+a )= =3,30x3••• x= 戈-30=150(米).答:这座电视发射塔的高度约为150米.3例3 在厶ABC中,sinA= 5(0 °<A<45°),cosB=门(45 °<B<90° ),求sinC 与cosC 的值.活动:本题是解三角形问题,在必修5中还作专门的探究,这里用到的仅是与三角函数诱导公式与和差公式有关的问题,难度不大,但应是学生必须熟练掌握的•同时也能加强学生的应用意识,提高学生分析问题和解决问题的能力•教师可让学生自己阅读、探究、讨论解决,对有困难的学生教师引导学生分析题意和找清三角形各角之间的内在联系,从而找出解决问题的路子•教师要提醒学生注意角的范围这一暗含条件解:•••在△ABC中,A+B+C=180° , •C=180° -(A+B).34又T sinA= 5 且0°<A<45° , •cosA=二.5 12又•••cosB=l 亏且45°<B<90° , •sinB= 1 .•sinC=sin [ 180 °-(A+B) ] =sin(A+B)=sinAcosB+cosAsinB3 54 12 633 x肓3x乜=石,cosC=cos [180 °-(A+B) ] =-cos(A+B)=sinAsinB-cosAcosB3 1245 163x右工x B =石.点评:本题是利用两角和差公式,来解决三角形问题的典型例子,培养了学生的应用意识,也使学生更加认识了公式的作用,解决三角形问题时,要注意三角形内角和等于180°这一暗含条件.变式训练3在厶ABC中,已知si n(A-B)cosB+cos(A-B)si nB > 1,则厶ABC是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰非直角三角形答案:C七、课堂小结1. 学生提纲契领:学生回顾本节课都学到了哪些数学知识和数学方法,有哪些收获与提高,在公式推导中你悟出了什么样的数学思想?对于这六个公式应如何对比记忆?其中正切公式的应用有什么条件限制?怎样用公式进行简单三角函数式的化简、求值与恒等式证明。