防跳回路的作用
- 格式:doc
- 大小:119.00 KB
- 文档页数:5
1 防跳回路的作用a1 防止因控制开关或自动装置的合闸接点未能及时返回(例如操作人员未松开手柄, 自动装置的合闸接点粘连) 而正好合闸在故障线路和设备上, 造成断路器连续合切现象。
b1 对于电流启动、电压保持式的电气防跳回路还有一项重要功能, 就是防止因跳闸回路的断路器辅助接点调整不当(变位过慢) , 造成保护出口接点先断弧而烧毁的现象。
这种现象对于微机保护装置来说是不可容忍的, 而这一点却常被人们忽视。
2 防跳回路的典型接线常用防跳回路有串联式防跳回路、并联式防跳回路、弹簧储能式防跳回路、跳闸线圈辅助接点式防跳回路等。
国产断路器多采用串联式防跳回路断路器多采用并联式防跳回路。
其中串联式防跳回路最合理, 应用也最广泛, 它除具有防跳功能外, 还具有防止保护出口接点断弧而烧毁的优点, 这也是应用微机保护装置不可缺少的技术条件。
其他防跳回路只具有防止断路器跳跃的功能, 跳闸线圈辅助接点式防跳回路在执行防跳功能时, 跳闸线圈长期带电有可能烧毁。
2.1 串联式防跳回路所谓串联式防跳, 即防跳继电器TBJ 由电流启动, 该线圈串联在断路器的跳闸回路中。
电压保持线圈与断路器的合闸线圈并联。
当合闸到故障线路或设备上, 则继电保护动作, 保护出口接点TJ 闭合,此时防跳继电器TBJ 的电流线圈启动, 同时断路器跳闸, TBJ 的常闭接点断开合闸回路, 另一对常开接点接通电压线圈并保持。
若此时SK (5—8) 或HJ 接点不能返回而继续发出合闸命令, 由于合闸回路已被断开, 断路器不能合闸, 从而达到防跳目的。
另外,当TBJ 启动后, 其并联于保护出口的常开接点闭合并自保, 直到“逼迫”断路器常开辅助接点变位为止,有效地防止了保护出口接点断弧。
串联式防跳回路,如图1 所示。
2.2 并联式防跳回路所谓并联式防跳, 即防跳继电器KO 的电压线圈并联在断路器的合闸回路上(如图2 所示)。
例如一个持久的合闸命令存在时, 合闸整流桥输出经Y3, S2, S3, S1, KO (2—1) 接通。
5、防跳回路及同开关防跳的配合2007-12-04 16:365、防跳回路及同开关防跳的配合5.1 防跳回路的作用和实现方式操作回路的一个重要作用是提供防跳功能。
防跳是防止“开关跳跃”的简称。
所谓跳跃是指由于合闸回路手合或遥合接点粘连等原因,造成合闸输出端一直带有合闸电压。
当开关因故障跳开后,会马上又合上,保护动作开关会再次跳开,因为一直加有合闸电压,开关又会再次合上。
所以对此现象,通俗的称为“开关跳跃”。
一旦发生开关跳跃,会导致开关损坏,严重的还会造成开关爆炸,所以防跳功能是操作回路里一个必不可少的部分。
防跳功能的实现是通过跳闸保持继电器TBJ和防跳继电器TBJV来共同实现的。
(以RCS96XX线路保护操作回路图为例)。
保护或人为跳闸时,TBJ动作,在启动跳闸保持回路的同时,接于TBJV线圈回路的TBJ常开接点也闭合。
如果此时合闸接点(包括手合或遥合或重合闸)是闭合的,则TBJV线圈带电,并且串于其线圈回路的TBJV常开接点闭合,构成一自保持回路。
接于合闸线圈回路的TBJV 常闭接点打开,切断合闸回路。
整个回路主要有两点:1)防跳功能是在跳闸时才启动的,通过TBJ来启动,如果TBJ跳闸保持没有启动,则也不能启动防跳2)TBJV一旦启动后,通过自身的保持回路自保持,这样虽然开关跳开后TBJ会返回,但防跳回路仍然会起作用,直到合闸接点分开,TBJV才会返回。
现场验证防跳功能试验也很简单,开关在合位,一直合着手合把手的同时加故障电流。
如果保护动作把开关跳开后,开关没有合闸,说明防跳回路起作用。
如果发生跳跃,则说明防跳没起作用,重点应检查TBJ回路,看是否跳闸保持没有启动。
(注意:一旦发生跳跃,应马上松开合闸把手,防止开关发生故障)5.2 同VD4等某些自身带有防跳功能开关的配合因为开关跳跃是非常严重的故障,所以有些开关本身带有防跳回路。
为了防止产生寄生回路,按规定只能保留一套防跳,常规一般是保留保护本身的。
断路器防跳回路的应用分析及改进设计发布时间:2022-06-17T07:01:27.083Z 来源:《福光技术》2022年13期作者:温明洪钱松李雄瑞[导读] 高压断路器是用来接通和开断高压电路,它既能分合正常负荷电流,又能切断巨大的短路故障电流,迅速可靠地熄灭电弧,所以它是企业变电站中最重要的运行操作电气设备。
云南电网有限责任公司曲靖供电局云南省曲靖市 655000摘要:开关柜的主要作用是在电力系统进行发电、输电、配电和电能转换的过程中进行开合、控制和保护用电设备。
其关键部件包含断路器、操动机构、互感器及各种继电保护装置。
其中断路器是保证电力系统稳定、可靠的关键电气设备;继电保护装置则是为了更加智能、精确地监视电力系统,控制断路器对电力系统进行保护的二次设备。
在变电站运行中,若出现断路器合闸永久性故障,继电保护动作,驱动开关柜内断路器跳闸,此时断路器合闸命令仍未解除,断路器将再次合闸,如此断路器将出现反复合分,这种断路器跳跃现象可能导致断路器爆炸。
针对这种断路器跳跃问题,在断路器合闸回路中增设了断路器防跳回路,该回路将励磁线圈并联在断路器合闸回路中,继电器动作节点串入合闸回路中,防跳继电器线圈为电压励磁,在保护动作后可靠地切断断路器合闸回路,防止断路器再次合闸。
跳位监视回路是继电保护在跳位继电器动作时,监视断路器的位置,及控制回路的完整性,以构成非全相判据。
基于此,本篇文章对断路器防跳回路的应用分析及改进设计进行研究,以供参考。
关键词:断路器;防跳回路;应用分析;改进设计引言高压断路器是用来接通和开断高压电路,它既能分合正常负荷电流,又能切断巨大的短路故障电流,迅速可靠地熄灭电弧,所以它是企业变电站中最重要的运行操作电气设备。
高压断路器的控制操作回路承担着高压断路器的基本手动、继电保护和自动装置自动分合闸任务,能够显示断路器合闸、分闸位置状态的红、绿灯信号,并且能够利用断路器控制操作手柄与断路器实际位置不对应的原理区分手动与自动操作的不同,并且跳闸、合闸线圈按照短时通电要求设计,以防止长时间大电流发热烧坏线圈,因此在合闸、分闸操作任务完成后,断路器的控制回路应该自动切断合、分闸回路,无论断路器是否带有机械闭锁装置,都应该具备防止高压断路器多次跳、合闸的电气防跳功能。
浅析继电保护防跳回路摘要:电力系统出现故障的时候,根据继电保护的选择性,相应的断路器要能可靠跳闸。
控制回路是实现断路器可靠分合闸的二次回路。
当线路送电的时候,如果运行人员合闸时间长或合闸回路结点粘死,此时线路有故障,会导致断路器多次合分,给运行人员的安全和设备的稳定造成极大的威胁,因此合理设计防跳回路显得比较重要。
关键词:断路器;控制回路;防跳回路引言:电力系统中断路器是比较重要的电气元件。
当系统出现故障的时候,断路器可靠跳闸才能保证电力系统的安全与稳定。
控制回路是实现断路器可靠跳合闸的二次回路。
若控制回路中不设置防跳,当合闸结点粘结以后,若系统故障断路器跳闸,会导致断路器不断合分,严重情况导致断路器爆炸,给人身安全带来威胁。
合理设置防跳回路成为研究的一个重点。
1、典型防跳回路分析1.1、断路器防跳回路断路器防跳回路是利用断路器辅助接点,防跳继电器和合闸接点一直导通实现的。
当断路器为跳位,储能机构储好能以后,断路器位置结点闭合,防跳继电器辅助触点闭合,此时远近控把手打到近控,运行人员合闸,合闸结点粘死,合闸线圈带电,断路器合闸。
若此时系统出现永久性故障,分闸回路也接通,断路器分闸,防跳继电器启动,合闸回路中的结点断开,合闸回路断开。
此时虽然合闸秒冲一直还存在,但由于合闸回路已经断开,所以不会造成断路器连续跳跃。
当断路器回路中没有防跳继电器时,若合闸结点粘死,系统发生故障,跳合闸回路将会间断接通,导致断路器不断分合,发生断路器跳跃现象,严重时断路器可能爆炸。
1.2、操作箱防跳回路操作箱的防跳回路是通过跳闸保持继电器、防跳继电器、合闸接点闭合实现的。
测控屏的手合、手分,远方跳闸、合闸,保护跳闸、合闸都是通过操作箱实现的。
如图1所示,当断路器为合位,保护装置投重合闸功能。
系统出现永久性故障,保护装置跳闸,TJ跳闸继电器闭合,断路器跳开。
重合闸结点HJ闭合,断路器重合。
因为系统是永久性故障,TJ跳闸继电器又闭合,此时恰好重合闸结点HJ粘死,跳合闸脉冲同时存在,HJ、TBJ同时接通,TBJV接通,合闸回路TBJV的常闭结点断开,合闸回路就会断开,不会出现断路器的“跳-合-跳-合-跳”的跳跃现象。
浅析断路器防跳回路的应用及常见的故障发布时间:2021-03-25T06:09:52.055Z 来源:《河南电力》2020年9期作者:刘如灏[导读] 断路器作为一次设备,是整个电力系统硬件组成与系统运行过程中的关键性装置,能够为电力系统的安全稳定运行提供积极支持。
(海南省海口供电局变电所定安巡维中心海南海口 571200)摘要:断路器作为一次设备,是整个电力系统硬件组成与系统运行过程中的关键性装置,能够为电力系统的安全稳定运行提供积极支持。
断路器防跳回路可以规避断路器出现手动装置合闸与自动装置合闸的情况,如果控制开关触点或触点发生卡顿,则保护动作将会产生反复跳合。
文章首先阐明断路器跳跃危害,然后对防跳回路作用及断路器合闸进行说明,最后基于防跳回路工作原理,讨论相应故障及解决方案。
关键词:防跳回路;电力系统;断路器;装置合闸引言电力系统主要构成部分包括灭弧结构与断流设备,断路器正常运行过程中能够切断空载与负荷电流,一旦系统出现故障,断路器就会与继电保护装置进行配合作业,切断超负荷电流。
断路器实际使用过程中需要配备防跳跃闭锁回路,且断路器只能出现一次合闸行为,以此保障合闸期间断路器反复跳合的问题。
基于上述原因,对断路器防跳回路的作用及故障进行详细分析,能够为电力系统正常供电提供一定的技术保障。
1断路器跳跃故障在永久性故障电路闭合中,如果出现故障反复闭合的情况,则故障范围将会持续扩大,并产生相应事故,当保护跳闸信号显示为断路时,故障严重程度会更高,例如断路器爆炸、人生安全事故等。
真空断路器在6kV电压下的主触点约为10mm,真空包装不能承受连续的关闭冲击。
此外,开关线圈符合短时工作系统的工作特征,处于多次分合闸下,极易使合闸线圈出现损坏。
因此,为避免此现象对电力系统的负面影响,应制定相应的防跳举措[1]。
2防跳回路的作用和断路器合闸当前断路器生产制备过程中普遍会配备防跳回路装置,并在此装置的作用下,有效提升断路器的稳定性与可靠性,降低跳跃故障的出现频率。
断路器防跳回路的动作原理及故障处理发表时间:2019-01-18T10:23:40.063Z 来源:《河南电力》2018年15期作者:山江涛陈刚[导读] 断路器控制回路多种多样,其防跳回路基本设计思路都是断开合闸回路山江涛陈刚(国网安康供电公司陕西安康 725000)摘要:断路器控制回路多种多样,其防跳回路基本设计思路都是断开合闸回路,但其实现方式却不尽相同。
根据多年的二次回路检修经验,对目前广泛采用的防跳回路接线和原理给予介绍,并就实际应用中的故障排查进行探讨。
关键词:防跳;故障处理一、断路器防跳的概念及作用所谓的防跳,是指“防止跳跃”。
跳跃是指断路器在合闸于故障线路时,如果操作控制开关未复归或控制开关触点、自动装置触点粘连,此时继电保护动作使断路器跳闸,发生的多次“跳-合”现象。
断路器防跳,就是利用操动机构本身的机械闭锁或另在操作接线上采取措施,以防止这种跳跃现象的发生。
二、防跳回路的典型接线及防跳的动作原理常用的防跳回路有两种:串联式防跳回路和并联式防跳回路,比较少见还有弹簧储能式防跳回路、跳闸线圈辅助接点式防跳回路等。
以下仅就常用的两种防跳回路进行分析。
1.串联式防跳回路串联式防跳,其防跳功能的起动由串接在跳闸回路中的防跳继电器TBJ电流起动线圈实现。
TBJ是一个双线圈继电器,由串接与跳闸回路的电流启动线圈TBJ,和接于防跳回路的电压自保持线圈TBJV组成。
在跳闸过程中,当TJ闭合接通TBJ回路时,防跳回路中的TBJ2闭合,电压自保持线圈启动,TBJV2闭合,TBJV1断开。
如果在保护跳闸期间,HJ发生粘连,HJ->LP2->TBJV2->TBJV这条回路接通,TBJV电压自保持,使得TBJV1始终断开,合闸回路始终处于断开状态。
这也就达到了防跳的目的:将断路器闭锁在跳闸状态。
如果跳闸完成后没有跳令存在,则在断路器完成分闸后,跳闸回路被DL常开接点断开,TBJ电流线圈失电,此时由于HJ是断开的,不能形成TBJV电压自保持,复归。
防跳回路的工作原理防跳回路是一种用于保护电路和设备的重要措施,它可以有效地防止电路中出现跳回现象,从而保证电路的正常运行和设备的安全使用。
防跳回路的工作原理主要包括以下几个方面。
防跳回路通过使用特定的电子元件和电路设计来实现对跳回现象的检测和控制。
在电路中加入防跳回元件,如继电器、开关等,通过这些元件的状态变化来实现对跳回现象的监测。
当电路中出现跳回现象时,防跳回元件会自动切断电路,从而避免跳回现象对电路和设备的损坏。
防跳回路还可以通过加入适当的保护电路来实现对电路和设备的保护。
在电路中加入过流保护、过压保护等保护电路,可以在电路出现异常时及时切断电路,避免电路和设备受到损坏。
这些保护电路可以根据实际情况进行选择和设计,以满足电路和设备的保护需求。
防跳回路还可以通过使用合适的接线方式来实现对跳回现象的防止。
合理的接线方式可以减少电路中的回路电流,从而降低跳回现象的发生几率。
例如,使用星形接线方式可以避免电路中出现回路电流,从而有效地防止跳回现象的发生。
防跳回路的工作原理还包括对电路中的过程和参数进行监测和控制。
通过对电路中的电流、电压、频率等参数的监测,可以及时发现电路中出现的异常情况,并采取相应的措施进行控制。
这些措施可以包括调整电路参数、切换电源等,以确保电路的正常运行和设备的安全使用。
防跳回路的工作原理主要包括使用特定的电子元件和电路设计实现对跳回现象的检测和控制,加入适当的保护电路实现对电路和设备的保护,使用合适的接线方式减少回路电流,监测和控制电路中的过程和参数等。
通过这些措施,防跳回路可以有效地防止电路中出现跳回现象,保证电路的正常运行和设备的安全使用。
断路器防跳回路原理与分析摘要:在电力系统中,开关控制回路的防跳回路是工程验收定检当中极其重要的回路。
防跳是防止“开关跳跃”的简称。
所谓跳跃是由于合闸回路手合或者遥合节点粘连等原因,造成合闸输出端一直有合闸电压。
当开关因故障跳开后,会马上又合上,保护动作开关会再次跳开,因为一直有合闸电压,开关又会再一次合上。
众所周知,一旦发生开关跳跃,会导致开关损坏,严重还会造成开关爆炸,所以防跳功能是开关控制回路中必不可少的一部分。
理解防跳回路的功能作用,分析控制回路中有关防跳继电器与合闸回路、监视回路相互配合问题,以及防跳试验注意事项等方面是十分重要的。
关键词:防跳回路,防跳继电器,开关辅助节点一、引言为什么要设置防跳回路开关跳跃是由于开关原因导致开关反复重合闸,如果我们不采取防跳措施就会使开关的速断能力下降,严重会引起开关爆炸,威胁人身安全。
我们可以考虑,开关发生跳跃有两种情况:第一种是开关合闸于线路故障,保护动作使开关断开,但是由于合闸脉冲没有解除,就会使开关再次合上。
第二种情况是开关的机构发生故障(例如偷跳,机构脱扣),不能使开关正常合闸,如果此时开关合闸脉冲没有解除,就会反复合闸,会造成开关损坏。
为此,我们设置了两套防跳回路,第一种为保护装置防跳,第二种为开关机构防跳。
二、防跳的具体过程下面我们已220kV线路的防跳为例来说明:2.1保护装置防跳过程:由于220kV线路分合闸操作为分相操作,以C相为例,做防跳试验时,开关在合闸位置,用短接线短接保护屏A后端子排手合位置端子,使得手合保持继电器1SHJ励磁,从而1SHJ继电器常开节点闭合。
当在昂立仪器加入故障电流和故障电压时,使跳闸回路导通,跳开开关,使得52开关辅助节点闭合,此时手合短接处没有松开,使得合闸回路导通。
合闸回路为正电→11YJJ→n238→4D4→手合继电器1SHJ节点→SHJC继电器→1TBUJC常闭节点→2TBUJC常闭节点→操作机构箱→负电。
断路器本体防跳回路原理详解1. 引言断路器是电力系统中保护装置的一种,主要用于预防电路过载和短路,保证电力系统的安全运行。
断路器通常由断路器本体和辅助触头组成,而断路器本体中的防跳回路则起到了重要的作用。
本文将详细解释断路器本体防跳回路的基本原理。
2. 断路器本体结构断路器本体是断路器的主要组成部分,它由固定触头、触发机构、分合闸机构和电磁铁等组件构成。
2.1 固定触头固定触头是断路器本体中的触头之一,它固定在断路器的固定触头腔中。
固定触头的主要作用是提供电流的进出口。
2.2 触发机构触发机构是断路器本体中的关键部件,它负责控制断路器的开合动作。
触发机构通常由电磁铁和机械传动机构组成。
2.3 分合闸机构分合闸机构是断路器本体中的另一个重要部件,它用于实现断路器的分合闸动作。
分合闸机构通常由机械传动机构和弹簧机构组成。
2.4 电磁铁电磁铁是断路器本体中的一个关键元件,它由线圈和铁芯组成。
当电磁铁通电时,会在铁芯上产生强磁场,从而引起机械传动机构的运动。
3. 断路器本体防跳回路原理断路器本体防跳回路是断路器中的一种保护机制,它的主要作用是防止断路器在分闸或合闸时因异常情况而造成的跳闸回路。
断路器本体防跳回路的设计原理如下:3.1 被动触发机构断路器本体防跳回路采用了被动触发机构的设计,即断路器只有在电力系统中存在异常情况时才会自动跳闸。
异常情况包括电流过载、短路、接地故障等。
3.2 过电流保护装置断路器本体防跳回路中通常配备了过电流保护装置,该装置能够监测电力系统中的电流大小,并根据设定的保护参数来判断是否存在过电流情况。
当电流超过设定值时,过电流保护装置会自动触发断路器的分闸动作。
3.3 短路保护装置除了过电流保护装置外,断路器本体防跳回路还配备了短路保护装置。
短路保护装置能够检测电力系统中的短路故障,并根据设定的保护参数来判断是否存在短路情况。
当检测到短路故障时,短路保护装置会立即触发断路器的分闸动作。
由于跳合闸回路中的跳合闸线圈为感性负载,回路断开时,将承受线圈产生的反向浪涌电压,往往会出现接点拉弧,因此,切断跳合闸线圈回路应由具有一定灭弧能力的断路器辅助触点在开关主触头动作后完成;同时,由于保护接点应瞬时返回,为避免保护接点返回时断开跳合闸回路,保护出口接点导通跳合闸回路的同时应启动保持回路,由保持回路来保证即使保护接点断开后跳合闸回路仍旧导通。
在断路器合闸后,断路器位置常闭接点(S1LA)断开合闸回路,位置常开接点闭合。
正电源经合闸保持接点、合闸保持继电器(SHJa)、机构防跳继电器自保持接点、机构箱防跳继电器(K75LA)到负电源形成通路。
正常情况下,需要该回路电流小于合闸保持继电器的自保持电流,通过合闸保持继电器的复归,断开该回路。
如果操作箱合闸保持回路与机构箱防跳回路的参数配合不当,可能导致在开关合闸后,操作箱合闸保持继电器无法返回,造成机构箱防跳回路始终处于励磁状态,合闸回路一直被断开。
这种情况下,断路器只能被合、分一次。
3.两个防跳功能同时使用可能存在的问题通过以上的分析可知,操作箱防跳和断路器机构防跳都能独立实现断路器的防跳功能。
如果两种防跳回路同时使用会出现以下三种情况:1)当操作箱防跳继电器(1TBUJ)先动作,切断断路器的合闸回路,合闸正电不会导至机构防跳继电器K15LA出,则断路器机构防跳不会动作。
由操作箱防跳继电器(1TBUJa)实现防跳功能,防跳功能正常。
2)当机构防跳继电器(K75LA)先动作,切断断路器的合闸回路,但合闸正电会导至操作箱防跳继电器(1TBUJa)处;当跳闸保持继电器(12TBIJa)动作,操作箱防跳继电器(1TBUJa)仍然会动作,切断合闸回路,合闸正电不会导至断路器机构防跳继电器(K75LA)处,则K75LA返回;由操作箱防跳继电器TBJV实现防跳功能,防跳功能正常。
3)极端情况下,操作箱防跳继电器(1TBUJa)和机构防跳继电器(K75LA)同时动作。
断路器本体防跳回路原理一、断路器的基本原理1.1 断路器的作用断路器是一种用于保护电路和设备的电气开关装置,其主要作用是在电路发生过载、短路等故障时,能够快速切断电源,避免电气设备受到损害或引起火灾等事故。
1.2 断路器的分类根据其额定电流和使用场合不同,断路器可以分为低压断路器、中压断路器和高压断路器。
其中,低压断路器主要应用于家庭、商业和工业领域;中压断路器通常用于变电站和工业领域;高压断路器则主要应用于输电线路和变电站等大型场合。
1.3 断路器的组成一个完整的断路器通常由本体、触头系统、操作机构、弹簧机构、辅助触头等部分组成。
其中,本体是最重要的部分之一,它包括了静触头、动触头以及弧室等部分。
二、防跳回装置的作用及原理2.1 防跳回装置的作用在正常使用过程中,由于某些原因(如震动、温度变化等),断路器可能会发生跳回现象,即已经关闭的断路器重新合上。
这种情况下,如果电气设备没有得到及时的保护,就有可能会引起火灾等事故。
因此,为了避免这种情况的发生,需要在断路器中安装防跳回装置。
2.2 防跳回装置的原理防跳回装置主要由弹簧机构和防跳钩组成。
在正常使用过程中,当操作机构将断路器切断电源时,弹簧机构会将动触头向后拉开,并将防跳钩卡住固定触头。
这样一来,在弹簧机构受到外力作用(如震动)时,动触头就不会被拉回到原来的位置上去了。
三、断路器本体防跳回路原理3.1 断路器本体防跳回路的作用除了在操作机构中安装防跳回装置之外,还可以在断路器本体中设置一个防跳回电路来进一步增强其安全性能。
该电路能够检测到动触头是否已经完全脱离静触头,并在此基础上控制弹簧机构的动作,从而确保断路器在关闭后不会发生跳回现象。
3.2 断路器本体防跳回路的原理断路器本体防跳回电路主要由检测电路、控制电路和驱动电机组成。
在正常使用过程中,当操作机构将断路器切断电源时,弹簧机构会将动触头向后拉开,并将防跳钩卡住固定触头。
此时,检测电路会检测到动触头已经完全脱离静触头,并向控制电路发送信号。
防跳回路的工作原理防跳回路是一种电路保护装置,用于防止电路中的开关在关闭时出现反弹现象,从而保护电路的正常运行。
防跳回路的工作原理主要包括以下几个方面:1. 电容器的作用防跳回路中通常会加入一个电容器,其作用是在开关断开时,通过电容器的放电作用,将电路中的电荷释放掉,从而避免开关反弹。
电容器的容量大小应根据具体电路的需求来确定,一般情况下,容量越大,防跳回效果越好。
2. 二极管的作用在防跳回路中,还会加入一个二极管,其作用是在开关断开时,通过二极管的反向导通作用,将电路中的电荷释放掉,从而避免开关反弹。
二极管的选择应根据具体电路的需求来确定,一般情况下,选择反向击穿电压较高的二极管效果较好。
3. RC电路的作用在防跳回路中,还可以采用RC电路来实现防跳回的效果。
RC电路由电阻和电容器组成,其作用是在开关断开时,通过电容器的放电作用,将电路中的电荷释放掉,从而避免开关反弹。
RC电路的电阻和电容器的选择应根据具体电路的需求来确定,一般情况下,电阻越大,电容器越小,防跳回效果越好。
4. 稳压二极管的作用在防跳回路中,还可以采用稳压二极管来实现防跳回的效果。
稳压二极管具有稳定电压的特性,其作用是在开关断开时,通过稳压二极管的反向导通作用,将电路中的电荷释放掉,从而避免开关反弹。
稳压二极管的选择应根据具体电路的需求来确定,一般情况下,选择稳压电压较高的稳压二极管效果较好。
综上所述,防跳回路的工作原理主要包括电容器的作用、二极管的作用、RC电路的作用和稳压二极管的作用。
在实际应用中,应根据具体电路的需求来选择合适的防跳回路方案,以保证电路的正常运行。
TBJ,TWJ,HBJ防跳原理[内容摘要]:断路器防跳回路的作用是防止接点粘连的情况下,跳、合闸命令同时施加到断路器得跳、合闸线圈上,造成断路器反复跳闸、合闸,损坏断路器。
防跳回路的设计使断路器出现跳跃时,将断路器闭锁在跳闸位置。
防跳回路分为操作箱中防跳回路和断路器中防跳回路,操作箱中的防跳回路与断路器中的防跳回路一般不能同时使用,如果同时使用,断路器中的防跳继电器可能会造成因“寄生”回路而自保持,无法返回。
通过跳、合闸回路二次接线的改动来实现操作箱中防跳回路和断路器中的防跳回路之间的选择。
关键词:防跳;跳闸位置;合闸位置;重合闸;拒动1.基本原理:1.1断路器防跳回路的作用是防止接点粘连的情况下,跳、合闸命令同时施加到断路器得跳、合闸线圈上,造成断路器反复跳闸、合闸,损坏断路器。
防跳回路的设计使断路器出现跳跃时,将断路器闭锁在跳闸位置。
图(1)图1接线为操作箱防跳回路原理图,其中TBJ是防跳继电器,当正常分、合闸时,对操作影响不大。
但一旦发生合闸于故障线路,手合继电器SHJ来不及分开或粘连,或自动装置的合闸接点ZHJ粘连时,如果没有防跳继电器时,断路器会发生反复的跳闸、合闸,短时间内多次切断故障电流,这是不允许的。
这种断路器的跳跃现象轻则对系统造成多次冲击,严重时可能使断路器爆炸。
接入防跳继电器后,当断路器手动分闸或保护装置跳闸时,都有跳闸电流流过TBJ的电流线圈,这时合闸回路TBJ的常闭TBJ1接点分开,合闸回路不通,如果合闸信号没有复归,将通过TBJ的常开接点TBJ2使TBJ的电压线圈得电,使其自保持,直到合闸信号返回。
这样TBJ就起到防止断路器反复分、合闸的作用。
接于分闸回路的TBJ电流线圈,要求其在分闸时造成的压降要小,规程规定不能大于控制电源额定电压的5%,TBJ继电器的动作电流则不能大于分闸电流的50%,保证TBJ在分闸过程中可靠动作。
1.2在有些断路器中已经考虑了防跳回路,它一般是由电压型继电器来完成防跳功能的。
断路器防跳回路原理
断路器是电力系统中常用的一种保护设备,它能够在电路发生故障时迅速切断电源,保护电器设备和人身安全。
但是,在某些情况下,断路器可能会出现跳回的现象,即在故障被排除后,断路器仍然无法合上,需要手动操作才能恢复正常。
这种情况下,就需要采用断路器防跳回路来解决问题。
断路器防跳回路的原理是利用电磁铁的作用,使得断路器在故障被排除后能够自动合上。
具体来说,当断路器跳闸时,防跳回路中的电磁铁会被激活,吸引断路器上的铁芯,使得断路器保持在断开状态。
当故障被排除后,电磁铁会自动断电,断路器上的铁芯也会被释放,断路器就能够自动合上了。
断路器防跳回路的设计需要考虑多种因素,如电磁铁的选型、电路的稳定性等。
一般来说,电磁铁的选型需要考虑其吸引力和功率消耗之间的平衡,以及其在高温环境下的可靠性。
电路的稳定性则需要考虑电源的稳定性、电容电感的选择等因素。
断路器防跳回路是一种非常重要的保护措施,能够有效地避免断路器跳回的现象,保障电力系统的正常运行。
在实际应用中,需要根据具体情况进行设计和调试,以确保其稳定性和可靠性。
1防跳回路的作用
a1 防止因控制开关或自动装置的合闸接点未能及时返回(例如操作人员未松开手柄, 自动装置的合闸接点粘连) 而正好合闸在故障线路和设备上, 造成断
路器连续合切现象。
b1 对于电流启动、电压保持式的电气防跳回路还有一项重要功能, 就是防止因跳闸回路的断路器辅助接点调整不当(变位过慢) , 造成保护出口接点先断弧而烧毁的现象。
这种现象对于微机保护装置来说是不可容忍的, 而这一点却常
被人们忽视。
2防跳回路的典型接线
常用防跳回路有串联式防跳回路、并联式防跳回路、弹簧储能式防跳回路、跳闸线圈辅助接点式防跳回路等。
国产断路器多采用串联式防跳回路
断路器多采用并联式防跳回路。
其中串联式防跳回路最合理, 应用也最广泛, 它除具有防跳功能外, 还具有防止保护出口接点断弧而烧毁的优点, 这也是
应用微机保护装置不可缺少的技术条件。
其他防跳回路只具有防止断路器跳跃的功能, 跳闸线圈辅助接点式防跳回路在执行防跳功能时, 跳闸线圈长期带电
有可能烧毁。
2.1串联式防跳回路
所谓串联式防跳, 即防跳继电器TBJ 由电流启动, 该线圈串联在断路器的跳闸回路中。
电压保持线圈与断路器的合闸线圈并联。
当合闸到故障线路或
设备上, 则继电保护动作, 保护出口接点TJ 闭合,此时防跳继电器TBJ 的电流线圈启动, 同时断路器跳闸, TBJ 的常闭接点断开合闸回路, 另一对常开接点接通电压线圈并保持。
若此时SK (5—8) 或HJ 接点不能返回而继续发出合闸命令, 由于合闸回路已被断开, 断路器不能合闸, 从而达到防跳目的。
另外,当TBJ 启动后, 其并联于保护出口的常开接点闭合并自保, 直到“逼迫”断路器常开辅助接点变位为止,有效地防止了保护出口接点断弧。
串联式防跳回路,如图1 所
示。
2.2并联式防跳回路
所谓并联式防跳, 即防跳继电器KO 的电压线圈并联在断路器的合闸回路上(如图2 所示)。
例如一个持久的合闸命令存在时, 合闸整流桥输出经Y3, S2, S3, S1, KO (2—1) 接通。
断路器合闸后, 并联在合闸回路的辅助接点S3′闭合, 启动防跳继电器KO , KO 接点即由2—1 位置切换到4—1 位置, 断开合闸回路并保持。
若此时线路或设备故障, 继电保护动作跳闸。
但由于合闸回路已可靠断
开, 从而防止了开关跳跃。
2.3弹簧储能式防跳回路
如图3, 当一个持久合闸命令到来时, 合闸电流经SK 或HJ 通过S3, K1, K1, S2, S1, YA 1 接通开关合闸。
合闸后弹簧机构开始储能, 并联在合闸回路的弹簧储能辅助开关S3 常闭点接通防跳继电器K1, K1 的常开点自保, 常闭点断开合闸回路。
若此时线路或设备故障, 继电保护动作跳闸, 由于合闸回路已可靠
断开, 有效地防止了开关跳跃。
2.4跳闸线圈辅助接点式防跳回路
如图4 所示, 在合闸过程中出现短路故障时, 保护装置使断路器跳闸, 由跳闸线圈操动的常开辅助接点TQ 2 闭合, 保持跳闸线圈继续通电。
跳闸线圈的常闭辅助接点TQ 1 断开, 切断合闸回路, 如果此时合闸命令继续存在, 也不会使断路器再次合闸。
合闸命令解除后, 跳闸线圈失电, 接线恢复原来状态。
3应用过程中需注意的问题
a1 对于没有防跳装置的断路器应加装电气防跳回路, 串联式防跳回路性能最优, 应优先采用, 可收到一举两得的效果。
b1 串联式防跳继电器的启动电流线圈应按灵敏度不小于2 选型, 且安装时应注意电流线圈与电压线圈的极性一致。
c1 当保护装置内部和开关操作机构都有电气防跳回路时, 推荐采用保护装置内部的防跳回路, 而将操作机构中的防跳回路甩掉, 这样使用可靠, 维护方
便。
d1 对于弹簧储能式操作机构, 有人认为其储能机构本身已具有防跳功能, 似乎不必再加电器防跳回路。
但储能机构并不能防止因合闸接点粘连而造成的开关跳跃, 又没有防止保护出口接点断弧烧毁的功能, 所以还是加装电气防跳回路
为好。
高压电缆的试验方法:
电力系统和工矿企业运行着大量的6~35kV交联聚乙烯绝缘的电力电缆(简称交联电缆或XLPE电缆),做好其交接和预防性(重做终端和接头)试验是保证安全运行的重要工作。
大量的试验实践认为,6~10kV交联电缆同35kV交联电缆的绝缘厚度相差较大(如35(26)kV交联电缆绝缘厚度10.5mm,10(6)kV交联电缆绝缘厚度3.4mm),它们的试验方法和内容是有所不同的。
1、35kV交联电缆交接和预防性试验
对于35(26)kV交联电缆的交接和预防性试验,GB50150—1991《电气装置安装工程电气设备交接试验标准》和DL/T596—1996《电力设备预防性试验规程》规定都是做直流耐压试验 [1,2]。
但在直流耐压试验过程中,会有电子注入到交联电缆介质聚合物的内部,在半导电层凸出处或微小空隙处等产生空间电荷的积累,电缆投运及送上交流电压后会相互迭加,发生绝缘击穿。
例如:某厂馈线YJLV26/35(1×185mm2)交联电缆,交接试验时直流耐压合格,然后送上交流电压空负荷试运行24h,但在运行4h时,L3相电缆绝缘击穿并接地;某变电站馈线YJLY 26/35(1×240mm2)交联电缆,交接试验时直流耐压合格,在空负荷试运行18h时,L3相电缆绝缘击穿并接地。
IEC60840—1999标准对30~150kV交联聚乙烯等绝缘电力电缆及其附件的竣工试验首先推荐1.73U0,5min交流耐压试验。
我国35(26)kV等级电缆范围属于IEC60840—1999标准范围。
国外对XLPE绝缘线芯模拟在不同频率下击穿电压进行的试验研究表明,在频率35~75Hz(有资料称30~75Hz)时,击穿电压值均落在可置信度95%之内。
也就是说,当XLPE电缆长度、截面不同时,试验的等值负荷电容量变化时,谐振试验频率可选择为35~75Hz或30~75Hz范围与运行电压频率的差异较小。
交接试验电压为2U0(考虑了系统最大运行电压,即1.5min;重做终端或接头后的耐压试验电压为1.6U0,5min。
为了满足不同长度、不同截面的35(26)kV交联电缆的交接试验和重做终端或接头后的预防性耐压试验,一般可用多只(每只质量不超过25kg)电抗器采用不同的串并联组合方式。
同时,还要考虑到几十米短电缆的试验,要配置一台相应电压和电容量的补偿电容器。
若短电缆的电容量过小无法在限定频率(30~75Hz)内实现串联谐振,则可将补偿电容器并联在被试电缆上进行电缆的交流耐压试验。
35(26)kV交联电缆定期预防性试验现为每3年测量一次电缆主绝缘的绝缘电阻、外护套绝缘电阻、铜屏蔽直流电阻与导体直流电阻之比或铜屏蔽层感应电压和电流,不再进行定期预防性耐压试验。
2、6~10kV交联电缆交接和预防性试验
由于10(6)kV和15(8.7)kV电压等级电缆均用于10kV系统,我们认为其试验标准应按10kV系统的绝缘配合和使用条件进行交接和预防性试验。
有的单位却选用了不同的试验标准(10(6)kV电缆交流耐压为13kV,5min;15(8.7)kV电缆交流耐压为18kV,5min),一般对于当试验电压提高后相应的试验设备的容量和重量也将增加。
从绝缘配合和交流耐压试验的理论可知,具体交流耐压应按运行电压选择而不应按设备的铭牌电压选择。
对于重做电缆头或接头的交联电缆仍可按35kV级电缆的交流耐压试验标准选择,即1.6U0,5min。
应该指出,6~10kV交联电缆的主绝缘厚度较35kV交联电缆的主绝缘厚度薄得多,实践证明采用直流泄漏试验对6~10kV交联电缆进行绝缘综合诊断有一定效果。
日本中央电力研究所和关西电力株式会社6~10kV交联电缆在现场使用的还是直流泄漏试验。
1993年日本电线工业会发表论文[3]认为,对6~10kV等级交联电缆预防性试验项目有两项:电缆投运未满10年者,每1~2年定期测量主绝缘绝缘电阻、外护套绝缘电阻、铜屏蔽层直流电阻;投运10年以上时,还要再进行直流泄漏试验,对电缆进行绝缘综合诊断。
国内部分单位参照日本的规定对6~10kV交联电缆直流泄漏试验的试验电压。
3、结论
a)传统的直流耐压试验对交联电缆绝缘既有破坏作用,也不能准确诊断绝缘状况。
因此交联电缆的交接试验较合适的试验方法是进行2U0,5min的变频串联谐振试验,试验电流频率为35~75Hz(或30~75Hz);重做终端或接头后的耐压试验为1.6U0,5min的变频串联谐振试验,试验电流频率为35~75Hz(也
可为30~75Hz)。
b)对35(26)kV交联电缆定期预防性试验是每3年测量一次主绝缘的绝缘电阻、外护套绝缘电阻、铜屏蔽层直流电阻与芯线导体直流电阻之比或铜屏蔽层感应电压和电流,不再进行定期的预防性耐压试验。
c)对6~10kV交联电缆定期预防性试验是每3年测量一次主绝缘的绝缘电阻、外护套绝缘电阻、铜屏蔽直流电阻与芯线导体直流电阻之比或铜屏蔽感应电压和电流。
在主绝缘的绝缘电阻或外护套的绝缘电阻不符合标准要求时,对电缆进行1.6U0,5min变频串联谐振试验或进行直流泄漏电流试验,作为电缆绝缘综合诊
断。