现代控制理论复习知识点
- 格式:ppt
- 大小:135.00 KB
- 文档页数:23
现代控制理论知识点汇总Revised at 2 pm on December 25, 2020.第一章 控制系统的状态空间表达式1. 状态空间表达式 n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。
2. 状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。
②状态方程和输出方程都是运动方程。
③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。
④状态变量的选择不唯一。
⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。
⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。
⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。
3. 模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。
4. 状态空间表达式的建立① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。
② 由系统的机理出发建立状态空间表达式:如电路系统。
通常选电容上的电压和电感上的电流作为状态变量。
利用KVL 和KCL 列微分方程,整理。
现代控制理论复习提纲第一章:绪论(1)现代控制理论的根本内容包括:系统辨识、线性系统理论、最优控制、自适应控制、最优滤波(2)现代控制理论与经典控制理论的区别第二章:控制系统的状态空间描述1.状态空间的根本概念;系统、系统变量的组成、外部描述和内部描述、状态变量、状态向量、状态空间、状态方程、状态空间表达式、输出方程2.状态变量图概念、绘制步骤;3.由系统微分方程建立状态空间表达式的建立;第三章:线性控制系统的动态分析1.状态转移矩阵的性质及其计算方法〔1〕状态转移矩阵的根本定义;〔2〕几个特殊的矩阵指数;〔3〕状态转移矩阵的根本性质〔以课本上的5个为主〕;〔4〕状态转移矩阵的计算方法掌握:方法一:定义法方法二:拉普拉斯变换法例题2-2第四章:线性系统的能控性和能观测性(1)状态能控性的概念状态能控、系统能控、系统不完全能控、状态能达(2)线性定常连续系统的状态能控性判别包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据掌握秩判据、PBH判据的计算(3)状态能观测性的概念状态能观测、系统能观测、系统不能观测(4)线性定常连续系统的状态能观测性判别包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据掌握秩判据、PBH判据的计算(5)能控标准型和能观测标准型只有状态完全能控的系统才能变换成能控标准型,掌握能控标准I型和II型的只有状态完全能观测的系统才能变换成能控标准型,掌握能观测标准I型和II 型的计算方法第五章:控制系统的稳定性分析〔1〕平衡状态〔2〕李雅普诺夫稳定性定义:李雅普诺夫意义下的稳定概念、渐进稳定概念、大范围稳定概念、不稳定性概念(3)线性定常连续系统的稳定性分析例4-6第六章线性系统的综合(1)状态反应与输出反应(2)反应控制对能控性与观测性的影响复习题1. 、和统称为系统变量。
2. 系统的状态空间描述由和组成,又称为系统的动态方程。
3. 状态变量图是由、和构成的图形。
4. 计算1001A-⎡⎤=⎢⎥⎣⎦的矩阵指数Ate__________。
第一章 控制系统的状态空间表达式1. 状态空间表达式 n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况; C 输出矩阵,表示输出与每个状态变量间的组成关系, D 直接传递矩阵,表示输入对输出的直接传递关系。
2. 状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。
②状态方程和输出方程都是运动方程。
③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。
④状态变量的选择不唯一。
⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。
⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。
⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。
3. 模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。
4. 状态空间表达式的建立① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。
② 由系统的机理出发建立状态空间表达式:如电路系统。
通常选电容上的电压和电感上的电流作为状态变量。
利用KVL 和KCL 列微分方程,整理。
③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。
现代控制知识点总结在现代化的工业生产和自动化系统中,控制技术扮演着至关重要的角色。
控制技术的发展不断推动着生产系统的智能化、高效化和自动化。
本文将从控制理论、控制系统的组成、控制器的类型、现代控制技术等方面对现代控制知识点进行总结。
一、控制理论控制理论是现代控制的基础,它主要研究控制系统的设计、分析和优化。
在控制理论中,最经典的理论是PID控制器(比例、积分、微分控制器)。
PID控制器基于误差信号的比例、积分和微分来调节控制变量,它的简单结构和良好的稳定性使得它在工业控制中得到广泛应用。
除了PID控制器,控制理论中还有模糊控制、神经网络控制、模型预测控制等现代控制技术。
这些技术通过不同的控制策略和算法来实现对复杂、非线性的系统控制,提高了控制系统的性能和效率。
二、控制系统的组成控制系统是由传感器、执行器、控制器和执行对象组成的。
传感器用于采集控制对象的状态信息,将其转换为电信号送入控制器;执行器根据控制器的指令控制执行对象的动作;控制器是整个系统的核心部件,它根据传感器反馈的信息计算出控制信号,并将其送至执行器。
控制系统的组成非常复杂,不同的控制系统需要不同的传感器、执行器和控制器来实现。
在现代工业生产中,控制系统的组成将更加多样化和复杂化,需要运用各种现代控制技术来实现对各种复杂对象的控制。
三、控制器的类型控制器是控制系统的核心部件,它按照控制对象的状态信息,计算出控制信号来实现对执行对象的控制。
根据其控制策略和算法的不同,控制器主要有以下几种类型:1. 开环控制器:开环控制器没有反馈环节,它根据固定的控制规律来生成控制信号。
开环控制器简单、成本低,但不能对外界的干扰进行修正,容易受到外界因素的影响。
2. 闭环控制器:闭环控制器有反馈环节,它根据传感器反馈的信息进行计算和修正,实现对控制对象的精确控制。
闭环控制器有PID控制器、模糊控制器、神经网络控制器等。
3. 数字控制器:数字控制器是一种基于数字信号处理的控制器,它使用数字信号进行控制计算和处理,能够实现对非线性、复杂系统的控制,并且具有较强的抗干扰能力和精确性。
现代控制理论期末总结一、引言现代控制理论是控制科学领域的重要学科之一,它涉及到多学科的知识和技术,包括数学、物理、电子工程等。
随着科学技术的进步和社会需求的变化,现代控制理论也在不断发展和完善。
本文对现代控制理论的基本概念、主要方法和应用进行总结和归纳。
二、基本概念1. 控制系统:控制系统是由若干个组成部分组合起来,形成的一个整体。
主要包括被控对象、控制器、传感器和执行机构等。
2. 系统模型:系统模型是对控制对象的数学描述,主要有状态方程和传输函数两种形式。
3. 控制器:控制器是根据系统的输入和输出来生成控制信号,将控制对象的输出调整到期望值或稳定状态。
4. 闭环控制与开环控制:闭环控制是指根据反馈信号来调整控制信号的方法,开环控制是指不考虑反馈信号而直接调整控制信号的方法。
三、主要方法1. PID控制:PID控制是一种常用的控制方法,它基于比例、积分和微分三个部分来调整控制信号,使得系统输出能够快速稳定地达到期望值。
2. 状态空间法:状态空间法是一种描述系统动态行为的方法,通过状态变量和状态方程来描述系统的状态演化过程,实现对系统的控制。
3. 最优控制:最优控制是寻找使系统性能达到最佳的控制方法,主要有最小时间、最小能量、最小轨迹等不同的优化目标。
4. 自适应控制:自适应控制是指根据系统的动态特性来调整控制器的参数,以适应不断变化的控制对象。
5. 非线性控制:非线性控制是处理非线性系统的方法,包括滑模控制、反馈线性化、自适应模糊控制等。
四、应用领域1. 工业控制:现代控制理论在工业控制中得到广泛应用,包括自动化生产线、机器人控制、工艺流程控制等。
2. 航空航天:现代控制理论在飞行器的姿态控制、飞行轨迹规划、自动驾驶等方面有着重要的应用。
3. 医疗器械:现代控制理论在医疗器械中的应用包括影像诊断、手术机器人、生命支持系统等。
4. 交通运输:现代控制理论在交通运输中的应用包括车辆控制、交通网优化、智能交通系统等。
第二章线性系统的数学描述数学模型可以有许多不同的形式,较常见的有三种:第一种是:把系统的输入量和输出量之间的关系用数学方式表达出来,称之为输入输出描述,或外部描述;第二种是:不仅可以描述系统输入、输出之间的关系,而且还可以描述系统的内部特性,称之为状态空间描述或内部描述;第三种是:用比较直观的方块图(结构图)和信号流图模型进行描述。
910 2.1 线性系统的时域数学模型()(1)(2)121()()()()()n n n n n c t a c t a c t a c t a c t ---+++++()(1)(2)0121()()()()()m m m m m b r t b r t b r t b r t b r t ---=+++++ (2.1) 式中,()r t 和()c t 分别是系统的输入信号和输出信号,()()n c t 为()c t 对时间t 的n 阶导数;i a (1,2,)i n =和j b (0,1,)j m =是由系统的结构参数决定的系数。
2.2 传递函数11m n b s a s --++++++11 式中1011()m m m m M s b s b s b s b --=++++1011()nn n n N s a s a s a s a --=++++()M s 和()N s 分别称为传递函数()G s 的分子多项式和分母多项式。
2.5 线性系统的状态空间描述A Buy C du =+⎧⎨=+⎩x x x(2.3) 2.5.2 状态空间表达式与传递函数的关系1()()G s C sI A B D -=-+(2.4)12 2.5.3 状态空间表达式的建立情形一: 线性微分方程中不含输入的导数项,传递函数没有零点()(1)11n n n n y a y a y a y u --++++= (2.5)情形二 线性微分方程含有输入的导数(不超过3阶),传递函数有零点 ()(1)()(1)11011n n n n n n n n y a y a y a y b u b u b u b u ----++++=++++ (2.6) 1011111()()n n n nn n n nb s b s b s b Y s U s s a s a s a ----++++=++++(2.7)13 Chp.9 状态空间系统响应、可控性与可观性9.1 线性定常系统的响应已知线性定常连续系统状态方程的一般形式为0()()(), (0)t A t B t =+=x x u x x(2.8) 状态变量的初始值为0x ,控制作用为()t u 。
现代控制理论知识点归纳现代控制理论是指20世纪后半叶发展起来的控制理论,其主要特点是运用数学、电子和计算机等高科技手段解决实际控制问题,在控制理论研究和应用方面取得了巨大成就。
本文将对现代控制理论的知识点进行归纳,以便更好地理解和掌握该学科。
1. 控制系统的基本概念。
控制系统指通过对被控对象施加控制以达到预期目的的系统,由输入信号、控制器、被控对象和输出信号组成。
其中输入信号指控制器对被控对象的输入,包括指令信号、干扰信号和噪声信号;控制器是控制系统的核心,通常使用反馈控制器、前馈控制器和组合控制器等;被控对象是控制系统中被控制的对象,包括机械系统、电力系统、化学系统等;输出信号是被控对象的响应信号,可分析其稳定性、动态性能和鲁棒性等。
2. 系统建模和分析。
将实际控制系统抽象为数学模型是现代控制理论的基础。
系统建模的方法包括基于物理原理的建模、基于经验的建模和基于统计学的建模等。
针对特定的控制问题可采用不同的建模方法。
系统的分析包括稳定性分析、动态性能分析和鲁棒性分析等。
稳定性是控制系统的基本要求,通过判断系统是否稳定可以避免系统崩溃或振荡。
动态性能是指控制系统对输入信号的响应能力,包括动态误差、响应时间、超调量等性能指标。
鲁棒性是指控制系统对参数变化或外界干扰的鲁棒性,越强的控制系统对各种不确定因素的适应能力越强。
3. 控制器设计。
现代控制理论的目的是设计出满足控制要求的控制器,设计控制器的方法包括传统方法和现代方法。
传统方法是指使用PID控制器、状态反馈控制器、最优控制器等传统方法设计控制器。
现代方法是指使用神经网络、模糊控制、滑动模式控制等现代方法设计控制器。
设计控制器需要综合考虑系统的稳定性、动态性能和鲁棒性等因素。
4. 联合控制系统。
现代控制理论还涉及联合控制系统的研究,即将机械、电气、电子、计算机等多方面因素融合在一起,实现更加复杂的控制任务。
联合控制系统的研究需要考虑各种子系统之间的协同和交互作用,同时要保证系统的稳定性和鲁棒性。
第一章1、输入-输出描述:通过建立系统输入输出间的数学关系来描述系统特性。
含:传递函数、微分方程(外部描述)2、状态空间描述通过建立状态(能够完善描述系统行为的内部变量)和系统输入输出间的数学关系来描述系统行为。
3、limg ij (s)=c,真有理分式c ≠0的常数,严格真有理分式c=0,非真有理分式c=∞4、输入输出描述局限性:a 、非零初始条件无法使用,b 、不能揭示全部内部行为。
5、状态变量的选取:a 、n 个线性无关的量,b 、不唯一,c 、输出量可作状态变量,d 、输入量不允许做状态变量,e 、有时不可测量,f 、必须是时间域的。
6、求状态空间描述的传递函数矩阵:G(s)=C(sI-A)-1B+D7、输入-输出描述——>状态空间描述(中间变量法)8、化对角规范形的条件:系统矩阵A 的n 个特征值λ1,λ2,…, λn 两两互异,或当系统矩阵A 的n 个特征向量线性无关。
9、*x =Ax+Bu *x =A x +B u A =P -1AP B =P -1B *x =P -1*x x =P -1x u =u 10、代数重数σi :同为λi 的特征值的个数,也为所有属于 λi 的约当小块的阶数之和。
几何重数αi :λi 对应的约当小块个数,也是λi 对应线性相关特征向量个数。
11、组合系统状态空间描述:a 、并联:]*1111*222211212200[]x x B A u A x B x x y C C D D u x ⎧⎡⎤⎡⎤⎡⎤⎡⎤⎪⎢⎥=+⎢⎥⎢⎥⎢⎥⎪⎢⎥⎣⎦⎪⎣⎦⎣⎦⎣⎦⎨⎪⎡⎤⎪⎡=++⎢⎥⎣⎪⎣⎦⎩,1()()N i i G s G s ==∑b 、串联:]()*1111*221221212122120x A x B u A B C x B D x x y D C C D D u x ⎧⎡⎤⎡⎡⎤⎡⎤⎤⎪⎢⎥=+⎢⎢⎥⎢⎥⎥⎪⎢⎥⎦⎪⎣⎣⎦⎣⎦⎣⎦⎨⎪⎡⎤⎪⎡=+⎢⎥⎣⎪⎣⎦⎩,11()()()...()N N G s G s G s G s -=c 、反馈:1121()()[()()]G s G s I G s G s -=+第二章1、求e At :a 、化对角线线规范形法,b 、拉普拉斯法2、由*x =Ax+Bu y=Cx+Du 求 x(t)=e At x 0+∫e A(t-τ)Bu(τ) d τ,(t ≥0) 第三章1、能控性:如果存在一个不受约束的控制作用u(t)在有限时间间隔t0-tf 内,能使系统从任意初始状态x(t0)转移到任意预期的终端状态x(tf),则称状态x(t0)是能控的,若系统的所有状态x(t0)都是能控的,则称系统是状态完全能控的。